
1

Comparing Combinatory Reduction Systems and Higher-Order Rewrite

Systems

Vincent van Oostrom

�

and Femke van Raamsdonk

��

�

Department of Mathematics and Computer Science, Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam

��

CWI, P.O. Box 4079, 1009 AB Amsterdam

Abstract

In this paper two formats of higher-order rewriting are compared: Combinatory Reduction Systems introduced by

Klop [Klo80] and Higher-order Rewrite Systems de�ned by Nipkow [Nipa]. Although it always has been obvious

that both formats are closely related to each other, up to now the exact relationship between them has not been

clear. This was an unsatisfying situation since it meant that proofs for much related frameworks were given twice.

We present two translations, one from Combinatory Reduction Systems into Higher-Order Rewrite Systems and

one vice versa, based on a detailed comparison of both formats. Since the translations are very `neat' in the

sense that the rewrite relation is preserved and (almost) reected, we can conclude that as far as rewrite theory is

concerned, Combinatory Reduction Systems and Higher-Order Rewrite Systems are equivalent, the only di�erence

being that Combinatory Reduction Systems employ a more `lazy' evaluation strategy. Moreover, due to this result

it is the case that some syntactic properties derived for the one class also hold for the other.

AMS Subject Classi�cation (1991): 68Q42

CR Subject Classi�cation (1991): F1.1, F4.1, F4.2

Keywords & Phrases: higher-order rewriting, �-calculus, developments, conuence

Note: The research of the second author is supported by NWO/SION project 612-316-606

1. Introduction

This paper is concerned with a comparison of two formats of higher-order rewriting: Com-

binatory Reduction Systems (CRSs) as introduced by Klop [Klo80] and Higher-order Rewrite

Systems (HRSs) as introduced by Nipkow [Nipa].

Inspired by Aczel [Acz78], Klop de�ned CRSs in [Klo80] as �rst-order term rewriting

systems possibly with bound variables, so as to include both �rst-order rewrite systems such

as Curry's Combinatory Logic and rewrite systems with bound variables such as Church's �-

calculus. The point was that a large amount of syntactic rewrite theory could be developed for

this framework.

In [Nipa], Nipkow introduces HRSs as a generalisation of �rst-order rewrite systems to

terms with higher-order functions and bound variables. Furthermore, HRSs were designed to

have the same logical basis as systems like Isabelle [Pau90] and �Prolog [NM88]. That is, a

typed �-calculus is used as a meta-language.

These di�erent objectives have led to surprisingly large di�erences in the presentation of

these systems. For CRSs the meta-language, i.e. the language in which the notions of term,

substitution and rewrite step are expressed, is left implicit in the presentation. For HRSs the

meta-language is Church's �

�

-calculus of simply typed �-terms with � as rewrite rule. In the

case of CRSs, the introduction of a special purpose meta-language makes the de�nition quite

involved. This disadvantage can be taken away by noting that the meta-language is in fact (a

polyadic version of) the �-calculus, of underlined �-terms with � as rewrite rule from [Klo80,

1. Introduction 2

Sec. I.3.5] (cf. also indexed �-calculus of [Bar84, x11.1.3]), i.e. the language of developments (or

let-expressions).

Once we have made the meta-language of CRSs explicit, we can compare both formats

by comparing their respective meta-languages. Comparing is done by giving encodings of one

system into the other and vice versa. The encoding of CRSs into HRSs is straightforward because

�-calculus can be encoded into �

�

-calculus. The encoding of HRSs into CRSs is somewhat more

involved; �

�

-calculus cannot be encoded directly into �-calculus. For example, the latter does

enjoy the disjointness property (rewriting preserves disjointness, cf. [Klo80, pg. 38]), while the

former doesn't. In general, in �

�

-calculus rewrite sequences can be longer than in �-calculus.

Our solution is to add an explicit �-rule (and the corresponding symbols) to the encoding of an

HRS. A rewrite step in the HRS is then simulated by a rewrite step in the CRS followed by an

explicit �-reduction to normal form. More precisely, let C be a CRS and H a HRS. We write!

C

and !

H

respectively for their rewrite relations. Translating is denoted by h i, and reduction to

normal form with respect to the explicit �-rule is written as !

!

�

. Then we have

h!

C

i = !

hCi

h!

H

i = !

hHi

�

!

!

�

if the relations are restricted to the set of translated terms.

How natural an encoding is, can be measured by the properties it preserves and reects.

Our encoding of CRSs into HRSs both preserves and reects the main property of rewrite

systems, i.e. whether one term rewrites (in one step) to another. This allows for a conuence

proof for orthogonal CRSs via a proof of conuence for orthogonal HRSs. As noted above the

translation the other way around is not that nice. The HRS is simulated by a more re�ned

CRS; `giant' HRS-steps are simulated by many `small' CRS-steps. This is analogous to the way

in which �-calculus is simulated by the ��-calculus de�ned in [ACCL90]. Of course, not every

step in the re�ned system is reected in the original HRS, but still we can say something: every

rewrite sequence between encodings of HRS-terms is reected in the original HRS. Again, this

allows for a conuence proof for orthogonal HRSs via a proof of conuence for orthogonal CRSs.

For the moment being, we have only considered use of our translation for conuence results.

Our comparison only considers CRSs versus HRSs. There are some more alternatives such

as Khasidashvili's Expression Reduction Systems [Kha90] and Takahashi's Conditional Lambda

Calculi [Tak]. We claim that the main di�erences between these and CRSs (or HRSs) are of a

syntactic nature. However, an exact comparison is left to future work.

The paper is organised as follows. In section 2 we will discuss in detail the di�erence

between CRSs and HRSs by �rst considering only terms and next also the rewrite relation on

terms. In section 3 we de�ne a translation from CRSs into HRSs and, using this translation, we

give a conuence proof for orthogonal CRSs. The translation from HRSs into CRSs is presented

in section 4, again the translation is used to give a conuence proof, now for orthogonal HRSs.

Section 5 concludes the paper with some discussion on higher-order rewriting. The reader is

assumed to be familiar with term rewriting and (simply typed) �-calculus.

Notation. We adhere mostly to the notations introduced by Klop for CRSs, and Nipkow for

HRSs. Since their introduction both formats have been subject to some change and we will use

their most recent presentations, viz. [KOR93] for CRSs and [Nipb] for HRSs. The most notable

change is the use of the functional format for CRSs instead of the applicative one of [Klo80].

The reason for choosing the functional format is that it is closer to the usual notation for term

2. Comparing the Syntax 3

rewriting systems. Moreover, in applicative CRSs the object-language application symbol is left

implicit in the notation, while for HRSs the meta-language application symbol is left implicit,

which would possibly give rise to confusion in comparing these formats.

2. Comparing the Syntax

Since some important di�erences between CRSs and HRSs are already manifest if only the way

terms are built is considered, we �rst restrict attention to term formation. Next, we �x attention

to rule formation and �nally the generation of the rewrite relation is considered.

2.1 Term Formation

2.1.1 CRS Terms A CRS C is a pair (A;R), where A is its alphabet of symbols and R its set

of rewrite or reduction rules. (Because of the termination connotation of the word `reduction'

we will use it only in the case of normalising rewrites.) In a CRS a distinction is made between

metaterms and terms. The left- and right-hand side of a rule are metaterms, but the rewrite

relation is a relation on terms.

The alphabet A of a CRS (A;R) consists of

� symbols for variables x y z : : :,

� the abstraction operator written as [] ,

� symbols for operators with a �xed arity F G H : : :,

� symbols for metavariables with a �xed arity Z Z

0

Z

1

: : :.

The set MTerms of metaterms is the least set such that

(1) x 2 MTerms for every variable x,

(2) [x]t 2 MTerms for a variable x and t 2 MTerms,

(3) F (t

1

; : : : ; t

n

) 2 MTerms if t

1

; : : : ; t

n

2 MTerms and F is an n-ary operator,

(4) Z(t

1

; : : : ; t

n

) 2 MTerms if t

1

; : : : ; t

n

2 MTerms and Z is an n-ary metavariable.

The set Terms of terms consists of all metaterms without metavariables. In a term or metaterm

of the form [x]t, we call t the scope of [x]. A variable x occurs free in a term or metaterm if it is

not in the scope of an occurrence of [x]. A variable x occurs bound otherwise. A term is called

closed if all variables occur bound. Only variables (and no metavariables) can be bound by the

abstraction operator. We will sometimes write [x

1

: : : x

n

]t for [x

1

] : : : [x

n

]t.

Let � be a fresh symbol. A context is a term with one or more occurrences of �. A

context with exactly one occurrence of � is written as C[], and one with n occurrences of �

as C[; : : : ;]. If C[; : : : ;] is a context with n occurrences of � and t

1

; : : : ; t

n

are terms, then

C[t

1

; : : : ; t

n

] denotes the result of replacing from left to right the occurrences of � by t

1

; : : : ; t

n

.

Example 2.1 The alphabet of �-calculus in CRS format consists of two operators: a unary

operator � for �-abstraction and a binary operator @ for application. Examples of some �-

terms written in CRS notation:

�([x]x) for �x:x,

@(x; y) for xy,

�([x]@(y; x)) for �x:yx, and

@(�([x]x); y) for (�x:x)y.

2. Comparing the Syntax 4

Because of the very liberal term formation in the CRS framework, many terms can be formed

from the alphabet consisting of � and @ that do not correspond to any �-term.

In the light of this example, it is clear that the notion of CRS needs to be extended to

systems with a restricted set of terms. Of course, such a restricted set of terms has to be closed

under rewriting. For example, �-calculus can be written as a CRS without `junk', by appropriate

restrictions on term formation. If one wants to stress the point that only a subset of the set of

terms is considered, one speaks about sub-CRSs.

2.1.2 HRS Terms A HRS H is just like a CRS a pair (A;R) where A is the alphabet and R

the set of rules. Term formation is speci�ed using �

�

-calculus, Church's simply typed �-calculus.

(Simple) types are formed from base types written as �; �; : : :, and the function type constructor

!.

The alphabet A of a HRS H = (A;R) consists of

� symbols for typed variables x y z : : :,

� a distinguished symbol � for abstraction,

� symbols for typed operators F G H : : :.

Typed terms are formed from abstraction and application according to the following rules:

(var)

x : �

(const)

F : �

[x : �]

.

.

.

(abstr)

t : �

�x:t : � ! �

(appli)

t : � ! � t

0

: �

tt

0

: �

Although environments are not made explicit, we take it for granted that variables and constants

cannot have more than one type. So every typable term has a unique type. Exactly like in �-

calculus, a variable x occurs bound in a term if it occurs in the scope of a �x, and it occurs free

otherwise.

Let � : 0 be a fresh symbol. A context is a term with one or more occurrences of �. Like

in the CRS case, a context with exactly one occurrence of � is written as C[], and one with

n occurrences of � as C[; : : : ;]. If C[; : : : ;] is a context C[; : : : ;] with n occurrences of � and

t

1

; : : : ; t

n

are terms of type 0, then C[t

1

; : : : ; t

n

] denotes the result of replacing from left to right

the occurrences of � by t

1

; : : : ; t

n

.

Only terms (and contexts) in long �-normal form will be considered:

Definition 2.2 The long �-normal form of a �

�

-term is obtained by repeatedly replacing C[t]

by C[�x:tx], where x does not occur free in t, the occurrence of t is non-functional, and t is

not an abstraction. This has the e�ect that all subterms are provided with the right number of

arguments.

Example 2.3 In the representation of untyped �-calculus as a HRS, we have only one base

type 0. The alphabet consists of two operators app : 0! (0! 0) for application and abs : (0!

0)! 0 for �-abstraction. Some examples of �-terms in this notation are:

abs (�x:x) for �x:x,

appxy for xy,

abs (�x:appyx) for �x:yx,

app (abs (�x:x))y for (�x:x)y.

2. Comparing the Syntax 5

Like in the CRS case, the HRS-representation of �-calculus contains junk. For instance, the

term �x:x doesn't correspond to any �-term. Note that all �-terms and the variables occurring

in them have type 0 in this notation.

This example illustrates that a notion of sub-HRS, analogous to the notion of sub-CRS, is

called for. Furthermore, the example shows that properties, such as strong normalisation, of the

meta-language (�

�

-calculus) have no bearing on properties of the object language (�-calculus).

2.1.3 Comparing Term Formation We discuss the two most important di�erences between

both formats.

In CRSs metaterm formation is given by a direct inductive de�nition. Function symbols and

metavariables come equipped with an arity and metaterms are formed by supplying these sym-

bols with the right number of arguments. Terms are metaterms not containing metavariables.

In HRSs a direct inductive de�nition of terms is circumvented by making use of �

�

-calculus

term formation. Function symbols come as constants equipped with a type and are combined

using the formation rules of �

�

-calculus. Attention is then restricted to terms in long �-normal

form. Most of the time, except at intermediate stages of a computation, attention is further

restricted to terms also in �-normal form.

Notation. To allow for an easy comparison we will call HRS-terms of base type in long ��-

normal form, in which all variables are of base type just terms and the others metaterms.

Note that the typing does not mean that only typed systems can be written as a HRS; the

typing takes place on a metalevel. If an untyped system is represented as a HRS, then only one

base type 0 is used (and all terms of the HRS corresponding to a term in the untyped system we

are considering, are of type 0). The base type 0 can be thought of as the set of all well-formed

terms. The statement t : 0 can be read as `t is a well-formed term'.

Typing in this way, such that well-formed terms are of base type, actually establishes two

things. For discussing them, �rst the arity and the order of a type are de�ned.

Definition 2.4 The arity Ar(�) of a type � is inductively de�ned as follows:

Ar(�) = 0 (if � is a base type)

Ar(� ! �) = 1 + Ar(�)

The order Ord(�) of a type � is de�ned as follows:

Ord(�) = 0 (if � is a base type)

Ord(� ! �) = max(1 +Ord(�);Ord(�))

The arity (order) of a term is de�ned to be the arity (order) of its type.

First, in a term every operator has exactly as many arguments as prescribed by the arity of

its type. This is because terms must be in long �-normal form. For instance, an operator

F : 0 ! (0 ! 0) can form a term only if it is provided with two arguments t

1

and t

2

of type

0. So the type of an operator, like the arity of an operator in CRSs, determines how many

arguments it should have. Second, in a term all the arguments have the right order, indicating

how active they are, or, whether they can be applied to other terms. For example an operator

G : (0 ! 0) ! 0 should have one argument of order 1. The order of an operator cannot

be directly expressed in the CRS framework. The arity of an CRS operator only prescribes

2. Comparing the Syntax 6

how many arguments this operator should get, but nothing is speci�ed about the orders these

arguments should have.

The second di�erence is that in CRSs a distinction is made between metavariables and

variables and metaterms and terms. Metavariables occur only in metaterms, which in turn occur

only as the left- or right-hand side of rewrite rules. The objects which are rewritten are terms.

This distinction is made in order to stress the point that a rewrite rule acts as a scheme, so its

left- and right-hand side are not ordinary terms. Taking this point of view, x in F (x)-as-a-term

is a variable, and x in F (x)-as-a-left-or-right-hand-side is a metavariable. In CRS notation, the

former is written as F (x) and the latter as F (Z). In HRSs no distinction is made between

metavariables and variables. Both terms and metaterms can be rewritten. The metavariables

in CRS-rules correspond to free variables in HRS-rules.

2.2 Rule Formation

In this section we will compare the rule formation of CRSs with the one of HRSs. We show that

rewrite rules in both formats satisfy equivalent requirements.

2.2.1 CRS Rules In a CRS, a rewrite rule l! r must satisfy the following:

(1) l and r are metaterms,

(2) the head-symbol of l is an operator symbol,

(3) all metavariables in r occur in l as well, l and r are closed,

(4) a metavariable Z in l occurs only in the form Z(x

1

; : : : ; x

n

) with x

1

; : : : ; x

n

distinct bound

variables.

We call the last condition the pattern-condition.

Example 2.5 The �-rule of �-calculus, (�x:M)N !M [x := N] is written in CRS format as

@(�([x]Z(x)); Z

0

)! Z(Z

0

)

The head-symbol of the left-hand side is @, and the metavariables Z and Z

0

occur in both sides.

2.2.2 HRS Rules A rewrite rule l! r in a HRS must meet the following requirements:

(1) l and r are both long ��-normal forms of base type,

(2) l is not �-equivalent to a free variable,

(3) all free variables in r occur in l as well,

(4) a free variable z in l occurs only in the form zt

1

: : : t

n

with t

1

; : : : ; t

n

�-equivalent to n distinct

bound variables.

Like for CRSs, the last condition is called the pattern-condition.

Example 2.6 The �-rewrite rule in HRS notation is

app (abs (�x:yx))z ! yz

with x; z : 0 and y : 0! 0.

2.2.3 Comparing Rule Formation Remembering that metavariables in rewrite rules of CRSs

correspond to free variables in rewrite rules, it is not di�cult to see that the requirements (1){(4)

of CRS rules correspond to the same ones of HRS rules.

The �rst condition speci�es that rules are built from metaterms. The second one states

that left-hand sides must have some structure and the third one that rewriting cannot introduce

arbitrary terms. These conditions are familiar from �rst-order rewriting. The last condition is

2. Comparing the Syntax 7

the pattern-condition. By that condition only names (simple objects), not values (compound

objects) can occur as arguments of free variables. Both in the case of CRSs and of HRSs it

establishes decidability of uni�cation of patterns, and computability of the rewrite relation, a

result of [Mil]. Intuitively this is so because it is still possible to `see' the pattern from its

substitution instances, that is, instantiating a pattern doesn't really change its structure.

2.3 Rewrite Step Generation

Once we know what requirements the rewrite rules should satisfy, we have to de�ne for both

formats how rewrite rules are instantiated in order to obtain an actual rewrite step. In both

cases, we have to plug in some term in the `holes' of the rule. In CRSs, the holes in the rule are

the metavariables, and in HRSs the free variables. The ways in which metavariables and free

variables are assigned a value, are related, but nevertheless essentially di�erent.

For de�ning substitution for CRSs, �-calculus is used. The substitution is performed

by replacing a metavariable by a (special form of a) �-term, and by reducing, in the term

obtained by this replacement, all residuals of �-redexes that are present in the initial term, i.e.

by performing a development (or expanding let-constructs). The well-known result in �-calculus

that all developments are �nite, guarantees that the substitution is well-de�ned.

For de�ning substitution for HRSs, like for de�ning term and rule formation, �

�

-calculus

is used as a metalanguage. The substitution is performed by replacing a free variable by a term

of the same type, and reducing the result of the replacement to �-normal form. In this case,

substitution is well-de�ned since in �

�

-calculus all �-rewrite sequences eventually terminate.

2.3.1 CRS Rewrite Steps In order to de�ne assignments for CRSs we �rst introduce a new

concept: the so-called substitutes (cf. [Kah92]). An n-ary substitute is an expression of the

form �(x

1

; : : : ; x

n

):s, where s is a term, � a `metalambda' and (x

1

; : : : ; x

n

) a tuple of n distinct

variables, which are considered to be bound by � and may be renamed in the usual way. A

substitute �(x

1

; : : : ; x

n

):s can be applied to an n-tuple of terms (t

1

; : : : ; t

n

), yielding s with

x

1

; : : : ; x

n

simultaneously replaced by t

1

; : : : ; t

n

respectively:

(�(x

1

; : : : ; x

n

):s)(t

1

; : : : ; t

n

) = s[x

1

:= t

1

: : : x

n

:= t

n

]

An assignment � consists of assigning n-ary substitutes to n-ary metavariables:

�(Z) = �(x

1

; : : : ; x

n

):s (Z an n-ary metavariable)

It is extended to a mapping from terms to terms in the following way:

x

�

= x

([x]t)

�

= [x]t

�

(F (t

1

; : : : ; t

n

))

�

= F (t

�

1

; : : : ; t

�

n

)

(Z(t

1

; : : : :t

n

))

�

= �(Z)(t

�

1

; : : : ; t

�

n

)

Note that the result of applying �(Z) to (t

�

1

; : : : ; t

�

n

) in the last clause is indeed a term.

A variable in an instance of a metavariable should be bound only if it is bound in the

occurrence of the metavariable. Unintended bindings occur for instance in (F [x]Z)

�

if �(Z) = x,

and in (Z(Z

0

))

�

if �(Z) = �(x):[y]x and �(Z

0

) = y. These problems can be avoided by renaming

bound variables. In the following we will assume that this is done whenever necessary.

Notation. In this paper we stick to the de�nition of [KOR93] of substitution as a one-stage

process. If we would use �-calculus as a meta-language, we would obtain substitution as a

2. Comparing the Syntax 8

two-stage process: �rst replacing the metavariables by the terms assigned to them, and then

explicitly developing the �-redexes. This would yield a presentation closer to the one of HRSs.

Rewrite rules generate a rewrite relation ! on terms in the following way. If l ! r is a

rewrite rule and � an assignment, then C[l

�

]! C[r

�

] is a rewrite or reduction step, where C[]

is some context. A contraction is de�ned as l

�

! r

�

. The reexive-transitive closure of ! is

called rewriting and is denoted as �. If s � t then we say that s rewrites to t. If we want to

make explicit that a rewrite rule R is applied in a rewrite step we write !

R

instead of !.

2.3.2 HRS Rewrite Steps In a HRS, an assignment is a �nite mapping from variables to

terms in long ��-normal form of the same type. Using the variable convention of �-calculus, an

assignment � is extended to a mapping from terms to metaterms, in the following way:

F

�

= F (for a constant F)

x

�

= �(x) (for a variable x)

(�x:t)

�

= �x:t

�

(tt

0

)

�

= t

�

t

0�

A rewrite relation ! on terms in long �� normal form is generated in the following way. If

l ! r is a rewrite rule and � an assignment, then C[l

�

#

�

] ! C[r

�

#

�

] is a rewrite step. Here

#

�

denotes �-reduction to normal form. Such a normal form indeed exists since simply typed

�-calculus is considered. A contraction is de�ned as l

�

#

�

! r

�

#

�

. The terminology of rewriting

is the standard one like in the CRS case.

2.3.3 Comparing Rewrite Step Generation In both formats it is the case that the �rst step in

performing a substitution is to replace a `hole' in the rewrite rule by a kind of `�-term'. Then we

compute the result of this replacement. And here lies the di�erence: since in the case of CRSs

we perform only a development of the �-terms, there is no reduction of created redexes. On the

other hand, to compute the result for HRSs full edged �

�

-calculus is used, that is, redexes that

are created during rewriting are also contracted.

To get an idea of what kind of di�erence in the rewrite relations we have due to these dis-

tinct evaluation mechanisms, consider the following example. The HRS rule F (�y:z(�x:yx))!

z(�x:x) with assignment � : z 7! �u:uK. We have the rewrite step:

F (�y:yK) = F (�y:(�x:yx)K)#

�

= F (�y:(�u:uK)(�x:yx))#

�

= (F (�y:z(�x:yx)))

�

#

�

! (z(�x:x))

�

#

�

= (�u:uK)�x:x#

�

= (�x:x)K#

�

= K

Observe how the complete development of the �-redexes of the assignment creates a new redex

which is also contracted (in the last line). This redex is `created downwards', so for this process

to end, we cannot rely on termination of developments or even superdevelopments (cf. [Raa93]),

but really need strong normalisation of simply typed �-calculus. On the other hand, the cor-

responding CRS rule F ([y]Z(y)) ! Z([x]x) and assignment � : Z 7! �(u):@(u;K), act more

lazily:

F ([y]@(y;K)) = (F ([y]Z(y)))

�

3. Translating a CRS into a HRS 9

! (Z([x]x))

�

= @([x]x;K)

The substitution is evaluated by a complete development of the �-redex. We have to add an

explicit �-reduction step, namely

@([x]x;K) ! K

in order to simulate the HRS rewrite step completely.

An other way of looking at it is to view [] really as an abbreviation of �(� :), for some

fresh symbol �. Now, although it seems that �-redexes can be created in the substitution

process above due to the presence of �'s in terms, this is not the case because they are always

`blocked' by the �. In the example, we end up with the term @(�(�x:x); K). A `rule' like

@(�(Z); Z

0

) ! ZZ

0

is needed to `unblock' the metalanguage redex (�x:x)K. This is the only

thing used in the translation of CRSs into HRSs.

The same `blocking' idea of this translation can also be used to show that developments of

terms in �-calculus must terminate: put fresh variables `in front of' abstractions and applications

not taking part in a �-redex. This gives a trivial typable �

�

-term which exactly simulates

developments. Creating new redexes is prevented by the presence of the fresh variables.

3. Translating a CRS into a HRS

In this section we will show that a CRS can be translated into a HRS such that there is a

one-to-one correspondence between rewritings in the CRS and in its associated HRS. We use h i

as notation for the translation. The mapping h i is chosen to be injective.

Definition 3.1 The HRS alphabet hAi associated with a CRS alphabet A consists of

� the symbol � : (0! 0)! 0 (meant to `collapse' a functional type),

� a variable hxi = x : 0, for each variable x in A,

� a constant hF i = F : 0! : : :! 0! 0 (Ar(F) + 1 times 0), for each operator F in A,

� a variable hZi = z : 0! : : :! 0! 0 (Ar(Z) + 1 times 0), for each metavariable Z in A,

and the ordinary symbols in a HRS alphabet.

Note that only one base type, namely 0, is used The translation CRS metaterms and

contexts is de�ned by extending the translation of symbols as follows

Definition 3.2 (1) h[x]ti = �(�x:hti)

Abstractions are translated as projected �-abstractions.

(2) hF (t

1

; : : : ; t

n

)i = F ht

1

i : : : ht

n

i

hZ(t

1

; : : : ; t

n

)i = zht

1

i : : : ht

n

i

Functional terms are translated by currying.

(3) h�i = � : 0

Holes are of base type.

The translation of a context hC[]i is denoted by hCi[]. The translation of CRS rule R : l ! r

is de�ned as hRi : hli ! hri.

For a CRS C, the HRS hCi is obtained by translating the alphabet and the set of rules of

C. We �rst give the translation of the main ingredient needed in a rewrite step: assignment.

Definition 3.3 The translation h�i of an assignment � is de�ned as follows: if �(Z) =

�(x

1

; : : : ; x

n

):s, then h�i(z) = �x

1

: : : x

n

:hsi.

3. Translating a CRS into a HRS 10

Of course, we have to show that these translations are correct in the sense that a CRS

concept yields the corresponding HRS concept.

Proposition 3.4 Let s

0

be the translation hsi of a CRS metaterm s. Then

a s

0

: 0, moreover there is a bijective correspondence between subterms of s and subterms of

type 0 of s

0

,

b s

0

is in long ��-normal form,

c if s satis�es the pattern-condition, then s

0

satis�es the pattern-condition,

d hFvar(s)i = Fvar(s

0

), where Fvar denotes the set of free variables in a CRS (or HRS)

metaterm.

Proof. The four properties are proved simultaneously, by structural induction. �

The bijective correspondence in a can be made more precise using the notion of position.

Proposition 3.5 The translations of CRS rules, contexts, and assignments yield the corre-

sponding concepts in the associated HRS.

Proof. The translation hRi : hli ! hri of a CRS rule R : l ! r, is a HRS rule because one

easily veri�es the conditions on the form of the rule:

� The head-symbol of l is an operator symbol, so hli = F : : : is not �-equivalent to a free

variable.

�

Fvar(hli) = hFvar(l)i (by d)

= hMvar(l)i (l is closed)

� hMvar(r)i (by assumption)

= hFvar(r)i (r is closed)

= Fvar(hri) (by d)

� By assumption l is closed, hence by the assumption that l satis�es the pattern-condition we

conclude from c, that hli satis�es the pattern-condition.

� The fact that l and r are terms of type 0 in long ��-normal form follows directly from a

and b.

Next, it su�ces to note that the proof for terms carries over to contexts in order to prove that

CRS contexts are translated into HRS contexts. Finally, let � : Z 7! �(x

1

; : : : ; x

n

):t be a CRS

assignment. Then h�i : z 7! �x

1

: : : x

n

:hti.

x

1

: 0 : : : x

n

: 0 hti : 0

�x

1

: : : x

n

:hti : 0! : : :! 0! 0

Using a and b, one easily checks that �x

1

: : : x

n

:hti is in long ��-normal form and has the same

type as z. �

Next we state some propositions expressing the interaction between forming contexts and

applying assignments on the one hand and translating on the other hand.

Proposition 3.6

a hC[t]i = hCi[hti]

b hC[t

1

; : : : ; t

n

]i = hCi[ht

1

i; : : : ; ht

n

i]

3. Translating a CRS into a HRS 11

c hs[x

1

:= t

1

: : : x

n

:= t

n

]i = hsi[x

1

:= ht

1

i : : : x

n

:= ht

n

i]

Proof.

a The proof proceeds by induction on the structure of C[].

b By repeatedly applying a.

c Choose a context C[; : : : ;] such that s = C[x

i

1

; : : : ; x

i

j

] and precisely the occurrences of the

variables x

1

,: : : ,x

n

are being displayed. Then

hs[x

1

:= t

1

: : : x

n

:= t

n

]i = hC[t

i

1

; : : : ; t

i

j

]i

= hCi[ht

i

1

i; : : : ; ht

i

j

i] (by b)

= hsi[x

1

:= ht

1

i : : : x

n

:= ht

n

i] (use Proposition 3.4 a)

�

Proposition 3.7 For every metaterm t and assignment � we have ht

�

i = hti

h�i

#

�

.

Proof. The proposition is proved by induction on the structure of the metaterm t. Note that

all �'s in hti that are introduced by translating the abstraction operator do not yield a �-redex

since they are `blocked' by their big brother �. �

We combine the previous two propositions to show that rewrite steps are naturally pre-

served by the translation.

Theorem 3.8 If s !

R

t in a CRS C with R : l ! r a rewrite rule, then we have hsi !

hRi

hti

in the corresponding HRS H.

Proof. Let s !

R

t in C, where s = C[l

�

] and t = C[r

�

], for some context C[] and some

assignment �. Then,

hsi = hC[l

�

]i

= hCi[hl

�

i] (by Proposition 3.6)

= hCi[hli

h�i

#

�

] (by Proposition 3.7)

! hCi[hri

h�i

#

�

]

= hCi[hr

�

i] (by Proposition 3.7)

= hC[r

�

]i (by Proposition 3.6)

= hti

�

This proves that for every rewrite step in a CRS C a rewrite step in the associated HRS

H can be performed. Now we will show that a rewrite step in the translation of a term must

originate from a rewrite step in C itself. For this, we will use that both contexts and assignments

in H can be translated back into the corresponding concepts in C, under the proper restrictions.

Proposition 3.9 If C

0

[t

0

] = hsi, then there exist C[] and t such that hC[]i = C

0

[] and hti = t

0

.

Proof. From Proposition 3.4 a we have C

0

[] : 0 and by the de�nition of a HRS context t

0

: 0.

Then the bijective correspondence of Proposition 3.4 a provides us with suitable C[] and t. �

3. Translating a CRS into a HRS 12

Proposition 3.10 If hli

�

0

#

�

= hsi and l satis�es the conditions for a left-hand side of a CRS

rule, then there exists a � such that h�i = �

0

.

Proof. By Proposition 3.4 d, we know that a free variable z in hli stems from a metavariable Z

in l. By the pattern-condition, each free variable occurs only in subterms of the form zx

1

: : : x

n

in hli, where n is the arity of Z, which have type 0 by Proposition 3.4 a. Note that all the

x

i

have type 0, so this subterm is �-expanded. If �

0

(z) = �y

1

: : : y

m

:t

0

, then m = n, because

�

0

(z) is by de�nition in long ��-normal form. Hence, (zx

1

: : : x

n

)

�

0

#

�

= t

0

[y

1

:= x

1

: : : y

n

:=

x

n

]#

�

= t

0

[y

1

:= x

1

: : : y

n

:= x

n

], because renaming doesn't create redexes. It is easy to show

that t

0

[y

1

:= x

1

: : : y

n

:= x

n

] must in fact be a subterm (of type 0!) of hsi and therefore a

translation of some term

^

t. Now we can de�ne �(Z) = �(y

1

; : : : ; y

n

):

^

t[x

1

:= y

1

: : : x

n

:= y

n

],

which meets the requirements. Note that by the pattern-condition all the x

i

are distinct. �

Theorem 3.11 Let C be a CRS and H its associated HRS. If hsi !

hRi

t

0

in H by rewrite rule

hRi : hli ! hri, then s!

R

t for some CRS term t such that hti = t

0

.

Proof. Let hsi !

R

t

0

in H, where hsi = C

0

[hli

�

0

#

�

] and t

0

= C

0

[hri

�

0

#

�

], for some context C

0

[]

and some assignment �

0

. Then

hsi = C

0

[hli

�

0

#

�

]

= hCi[hli

�

0

#

�

] (by Proposition 3.9)

= hCi[hli

h�i

#

�

] (by Proposition 3.10)

= hCi[hl

�

i] (by Proposition 3.7)

= hC[l

�

]i (by Proposition 3.6)

By injectivity we have s = C[l

�

]. If we take t = C[r

�

], then s! t and

hti = hC[r

�

]i

= hCi[hr

�

i] (by Proposition 3.6)

= hCi[hri

h�i

#

�

] (by Proposition 3.7)

= hCi[hri

�

0

#

�

]

= t

0

�

How natural a translation is can be measured by the properties which it preserves and

reects. Theorems 3.8 and 3.11 state that the main property of CRSs and HRSs, i.e. whether

one term rewrites (in one step) to another, is both preserved and reected. Combining this with

the fact that orthogonality is preserved, we obtain a conuence proof for orthogonal CRSs via

conuence of their associated HRS. For the de�nition of orthogonality of CRSs and HRSs we

refer the reader to [Klo80] and [Nipb].

Corollary 3.12 Orthogonal CRSs are conuent.

Proof. Let s �

C

t

1

and s �

C

t

2

be rewrites in an orthogonal CRS C. By Theorem 3.8, we can

lift these to rewrites hsi �

H

ht

1

i and hti �

H

ht

2

i in the HRS H associated to C. Because H is

easily seen to be orthogonal, we conclude from [Nipb, Cor. 4.9] that it is conuent, hence there

exist rewrites ht

1

i �

H

r

0

and ht

2

i �

H

r

0

, for some r

0

. These sequences can be projected again to

4. Translating a HRS into a CRS plus explicit � 13

form t

1

�

C

r and t

2

�

C

r by Theorem 3.11, also showing that hri = r

0

. The proof is expressed

by the following diagram.

ht

1

i

H

--

hri

�

�

�H

�

�

�

�

�

H

�

�

hsi

H

--

ht

2

i

3:8 3:11

t

1

C

--

r

�

�

�C

�

�

�

�

�

C

�

�

s

C

--

t

2

�

4. Translating a HRS into a CRS plus explicit �

In this section we de�ne a translation from HRSs into CRSs. Due to the di�erence in de�ning

assignments, discussed in section 2, the translation is not as straightforward as the translation

the other way round. The reason is that in CRSs, developments of untyped �-calculus are used

to de�ne assignments, whereas in the case of HRSs this is done by reductions to normal form in

simply typed �-calculus.

In order to be able to simulate every rewrite of a HRS in its associated CRS, a �-reduction

rule has to be added to the translation. It is given as

@([x]Z(x); Z

0

)!

�

Z(Z

0

)

To simplify the notation a bit we sometimes use @

n

to abbreviate n applications, for instance

@

2

(A;B;C) stands for @(@(A;B); C). Formally, @

n

for n � 1 is de�ned as

@

1

(t; t

1

) = @(t; t

1

)

@

n+1

(t; t

1

; : : : ; t

n

) = @(@

n

(t; t

1

; : : : ; t

n�1

); t

n

)

Again, the translation is denoted as h i and is chosen to be injective. In this case we do

not obtain a 1�1-correspondence between rewrite steps in a HRS H and the rewrite steps in its

encoding. Let's write C for the CRS with a set of rules consisting of the translated H-rules plus

the �-rules. The translation then satis�es the weaker property that if s!

H

t in a HRS H, then

hsi !

C�

hti, where !

C�

is de�ned to be a rewrite in C consisting of one step via a translated

H-rule followed by a �-reduction to �-normal form. Moreover, we obtain that a rewrite in

the encoding of H starting with the encoding of some term of H can be extended to a rewrite

corresponding to a rewrite in the original HRS. We will denote �-reduction to normal form as

!

!

�

.

First to an alphabet A of a HRS a CRS alphabet hAi is associated.

Definition 4.1 The CRS alphabet hAi associated with a HRS alphabet A consists of

� a symbol @ for application,

� for every symbol F 2 A for an operator of type � , a symbol F for an operator with arity

n = Ar(�),

4. Translating a HRS into a CRS plus explicit � 14

� the ordinary symbols of a CRS alphabet, i.e. symbols for variables x y z : : :, symbols for

metavariables with a �xed arity Z Z

0

Z

1

: : : and a symbol for abstraction, [] .

Definition 4.2 The translation of terms in long ��-normal form is de�ned inductively as fol-

lows:

� h�x

1

: : : x

n

:xt

1

: : : t

n

i = [x

1

] : : : [x

n

]@

n

(x; ht

1

i; : : : ; ht

n

i),

� h�x

1

: : : x

n

:F t

1

: : : t

n

i = [x

1

] : : : [x

n

]F (ht

1

i; : : : ; ht

n

i).

It is extended to contexts by de�ning h�i = �. We write hCi[] for the translation of C[].

Free variables in terms of HRSs correspond to free variables in terms of CRSs. Free

variables in rules of HRSs correspond to metavariables in rules of CRSs. Therefore a separate

de�nition of the translation of a rule has to be given, in which free variables are translated in

another way than in the translation of a term.

Definition 4.3 The translation hl ! ri of a HRS rule l! r is de�ned as hli ! hri, where hli

and hri are de�ned inductively as follows.

a The left-hand side l of a HRS rewrite rule is of the form l = Ft

1

: : : t

k

. Here t

1

; : : : ; t

k

are

long ��-normal forms in which inputs of free variables are �-equivalent to distinct bound

variables. The translation hli of l is de�ned by induction on the structure of such a long

��-normal form.

� h�x

1

: : : x

m

:xt

1

: : : t

n

i = [x

1

: : : x

m

]@(x; ht

1

i; : : : ; ht

n

i), if x is a variable which is bound in

l,

� h�x

1

: : : x

m

:zt

1

: : : t

n

i = [x

1

: : : x

m

]Z(t

1

#

�

; : : : ; t

n

#

�

), if z is a variable which is free in l

(note that t

1

; : : : ; t

n

are �-equivalent to distinct bound variables by the pattern-condition),

� h�x

1

: : : x

m

:F t

1

: : : t

n

i = [x

1

: : : x

m

]F (ht

1

i; : : : ; ht

n

i).

b The right-hand side r of a HRS rewrite rule is of the form r = st

1

: : : t

k

with s a symbol

standing for a free variable or an operator and t

1

; : : : ; t

k

in long ��-normal form. The

translation hri of r is by induction on the structure of a long ��-normal form.

� h�x

1

: : : x

m

:xt

1

: : : t

n

i = [x

1

: : : x

m

]@(x; ht

1

i; : : : ; ht

n

i), if x is a variable bound in r,

� h�x

1

: : : x

m

:zt

1

: : : t

n

i = [x

1

: : : x

m

]Z(ht

1

i; : : : ; ht

n

i), if z is a variable free in r,

� h�x

1

: : : x

m

:F t

1

: : : t

n

i = [x

1

: : : x

m

]F (ht

1

i; : : : ; ht

n

i).

As in the translation from CRSs to HRSs, we show that rewrite steps in a HRS can be

simulated by essentially the same step in the associated CRS. To that end, the translation is

extended to assignments.

Definition 4.4 An assignment of a HRS assigns to a variable a term of the same type in long

��-normal form. So an assignment assigns to a variable y of type � a term of the form �x

1

: : : x

n

:t

with n = Ar(�) and t not a �-abstraction. The translation h�i of an assignment � is de�ned as

follows: if �(y) = �x

1

: : : x

n

:t, then h�i(Y) = �(x

1

; : : : ; x

n

):hti.

First we show that the translation produces correct terms.

Proposition 4.5 If t is a HRS term in long ��-normal form, then hti is well-de�ned as a CRS

term.

Proof. The proof proceeds by induction on the structure of a long ��-normal form. �

The next proposition states that the translation of a rewrite rule is well-de�ned.

4. Translating a HRS into a CRS plus explicit � 15

Proposition 4.6 The translation hl ! ri of a HRS rewrite rule l ! r satis�es the de�nition

of a CRS rewrite rule.

Proof. It is easy to verify that hli and hri are both well-formed CRS metaterms. Further,

observe that

� Mvar(l) � Mvar(r) since metavariables originate from free variables,

� the head-symbol of hli is an operator symbol,

� all variables occur bound,

� metavariables occurring in hli have distinct bound variables as input.

�

Then we show that decomposing a term by a context, commutes with the translation.

Proposition 4.7 hC[t]i = hCi[hti].

Proof. The proof proceeds by induction on the de�nition of C[]. �

Finally we show that decomposing a term into a (meta)term and an assignment almost

commutes with the translation. For a decomposition into a left-hand side, i.e. a pattern, the

commutation is perfect, but for right-hand sides we need additional �-steps. This is proved in

the following two propositions.

Proposition 4.8

a Let s be a term in long ��-normal form, and u

1

; : : : ; u

n

terms that are �-equivalent to distinct

variables. Then hsi[z

1

:= u

1

#

�

: : : z

n

:= u

n

#

�

] = hs[z

1

:= u

1

: : : z

n

:= u

n

]#

�

i.

b hli

h�i

= hl

�

#

�

i.

Proof.

a The proof proceeds by induction on the structure of s.

b The is proved by induction on the structure of a long ��-normal form, in which arguments

of free variables are �-equivalent to distinct bound variables.

�

Combining the last two propositions, we observe that the `matching power' (or complexity

of matching, depending on one's point of view) of HRSs is already present in CRSs, making a

natural encoding of the former into the latter possible. This is due to the pattern-condition of

HRSs. For HRSs not satisfying the pattern-condition (cf. [Wol93]) this is no longer the case

and an encoding seems to be not straightforward anymore (even if we would lift some of the

restrictions on left-hand sides of CRS-rules). The next proposition shows that although CRSs

and HRSs have the same matching power, HRSs have more `rewrite power', i.e. they can do

more in one step.

Proposition 4.9

a Let s and u

1

; : : : ; u

n

be terms in long ��-normal form. Then we have hsi[z

1

:= hu

1

i : : : z

n

:=

hu

n

i]!

!

�

hs[z

1

:= u

1

: : : z

n

:= u

n

]#

�

i.

b hri

h�i

!

!

�

hr

�

#

�

i.

Proof.

a The proof proceeds by induction on the maximal length of the �-reduction of s[z

1

:=

u

1

: : : z

1

:= u

n

] to normal form.

4. Translating a HRS into a CRS plus explicit � 16

b The proof proceeds by induction on the structure of r.

�

Now we can collect the results of this section to show that every rewrite step in a HRS H

can be simulated in its corresponding CRS C.

Theorem 4.10 If s!

R

t by rewrite rule R = l! r in H, then we have hsi !

hRi

!

!

�

hti in the

corresponding CRS C.

Proof. The term s is of the form C[l

�

#

�

], and we have s = C[l

�

#

�

]!

R

C[r

�

#

�

] = t. We have

hsi = hC[l

�

#

�

]i

= hCi[hl

�

#

�

i] (by Proposition 4.7)

= hCi[hli

h�i

] (by Proposition 4.8)

!

hRi

hCi[hri

h�i

]

!

!

�

hCi[hr

�

#

�

i] (by Proposition 4.9)

= hC[r

�

#

�

]i (by Proposition 4.7)

= hti

�

The next thing to be done is to connect somehow a rewrite step in the translation of

a HRS with a rewrite step in the original HRS itself. Since the translation of a HRS H acts

as a re�nement of H, we cannot hope for a result as neat as in the previous section. But still

something can be said. First we will show that if we have the rewrite hsi !

C�

t

0

in the translation

of a HRS, then we can project it to a rewrite step s!

H

t, such that hti = t

0

.

The �rst observation we need is that there is a 1-1 correspondence between functional

subterms in hsi , i.e. subterms with a function symbol (also taking the @

n

into account) as head,

and subterms of type 0 in s. Further, we need two propositions.

Proposition 4.11 Suppose C

0

[t

0

] = hsi with t

0

a functional term. Then a context C[] and a

term t exist such that hCi[] = C

0

[] and hti = t

0

.

Proof. Via the correspondence we obtain an appropriate subterm of s, i.e. a context C[] and

a term t such that s = C[t] and hti = t

0

. Using Proposition 4.7 we have that hCi[] = C

0

[]. �

Proposition 4.12 Let l be the left-hand side of a HRS rewrite rule. If hli

�

0

= hsi, then there

is an assignment � with h�i = �

0

.

Proof. Metavariables Z

i

occur in hli in the form Z(x

1

; : : : x

n

). Suppose �

0

is de�ned as

�

0

(Z

i

) = �(u

1

; : : : ; u

n

):t

0

, hence (Z(x

1

; : : : x

n

))

�

0

= t

0

[u

1

:= x

1

: : : u

n

:= x

n

]. We know that

t

0

6= [x]t

00

, because otherwise we cannot have hli

�

0

= hsi due to the typing. Hence, t[: : :] is

a functional term, i.e. of one of the forms F (: : :) or @

n

(: : :) with n � 0 and so in s there is

a corresponding subterm t of type 0, such that hti = t

0

[u

1

:= x

1

: : : u

n

:= x

n

]. De�ne � as

�z = �x

1

: : : x

n

:t. Then h�i = �

0

. �

Theorem 4.13 If hsi !

hRi

!

!

�

hti in the CRS C by rewrite rule R = l! r, then s!

R

t in H,

for some t such that hti = t

0

.

4. Translating a HRS into a CRS plus explicit � 17

Proof. We have by de�nition of !

C�

, hsi = C

0

[hli

�

0

]!

C

t

0

= C

0

[hri

�

0

]!

!

�

t

0

, for some context

C

0

[], assignment �

0

, and term t

0

. Now we have

hsi = C

0

[hli

�

0

]

= hCi[hli

�

0

] (by Proposition 4.11)

= hCi[hli

h�i

] (by Proposition 4.12)

= hCi[hl

�

#

�

i] (by Proposition 4.8)

= hC[l

�

#

�

]i (by Proposition 4.7)

By injectivity of h i, we have s = C[l

�

#

�

], take t = C[r

�

#

�

], then s!

R

t and

hti = hC[r

�

#

�

]i

= hCi[hr

�

#

�

i] (by Proposition 4.7)

!

�

hCi[hri

h�i

] (by Proposition 4.9)

= hCi[hri

�

0

]

= t

0

By conuence of �, we have hti = t

0

. �

If we want to prove the Church-Rosser property for orthogonal HRSs via the same property

for CRSs, Theorem 4.13 is not quite enough. The �-rule, by construction, indeed is orthogonal

to the other rules and coinitial rewrites can be lifted, but only C�-steps can be projected, not

arbitrary C-rewrites. We now show that every rewrite in an arbitrary CRS C starting with a

term which is the translation of some HRS-term, can be completed, by performing a �-reduction

to �-normal form, to a rewrite which can be simulated by a `standard' rewrite consisting of C�-

steps.

The proof follows the strategy employed for proving � j= WCR

+

in [Klo80, pp. 144{148].

However, some di�culties arise. First, because of the possible non-left-linearity of the rules.

Second, because simply typed �-calculus doesn't satisfy the disjointness property in contrast to

underlined �-calculus.

The main property to be proved is that �-reductions to normal form do not interfere with

rewrite steps. To do this we �rst need to de�ne some tracing mechanisms.

Definition 4.14

a Let R = l ! r be a rewrite rule. Its conditional version R

c

= l

c

! r is obtained by

repeatedly replacing occurrences of a metavariable Z which occurs at least twice in l by a

fresh metavariable Z

0

and adding the condition Z � Z

0

to the rule. Its linearisation is R

l

obtained from R

c

by omitting the conditions.

b Let r be a metaterm, and

~

Z = Z

1

; : : : ; Z

n

be a list of metavariables containing the ones in r,

then the freezing r

f

of

~

Z in r is de�ned by r

f

= @

n

([~z]r

0

; [~x

1

]Z

1

(~x

1

); : : : [~x

n

]Z

n

(~x

n

)), where

~z = z

1

; : : : ; z

n

is a list of fresh variables, and r

0

is obtained by replacing in r all occurrences

of Z(

~

t) by @(z;

~

t). For a rule R = l! r, the freezing R

f

= l! r

f

is de�ned by freezing the

metavariables of l in r. We de�ne R

f�

to be the CRS with rules R

f

and �.

c Let R = l ! r be a rewrite rule. Its underlining R is obtained from R

cf

by underlining the

head-symbol of l

c

. (So R is �rst made conditional, then frozen and �nally its head-symbol

is underlined.)

d An (R-)underlining of a term s is a term containing some underlined symbols, which are the

head-symbols of R-redexes, and which is equal to s after removing the underlining.

4. Translating a HRS into a CRS plus explicit � 18

e A rewrite s �

C

t is an (R-)development if there is some underlining s of s, such that s �

R+�

t

and the underlined rewrite `projects' onto the original one. Note that, due to non-left-

linearity, the terms in the underlined rewrite need not be underlinings of terms.

Notation. This underlining of (head symbols of) redexes might be be considered confusing,

because underlinings were also used in �-calculus. Yet, we think it is the right notation because

the underlinings express the same idea of marking both times.

Example 4.15 The linearisation of the rule R = �([x]Z(x); [x]Z(x)) ! Z(�([x]Z(x))) is the

ruleR

l

= �([x]Z(x); [x]Z

0

(x))! Z(�[x]Z(x)). The freezing ofR is the ruleR

f

= �([x]Z(x); [x]Z(x))!

@([z]@(z; �[x]@(z; x)); [x]Z(x)). The underlining of R is the rule R = �([x]Z(x); [x]Z

0

(x)) !

@([z; z

0

]@(z; �[x]@(z; x)); [x]Z(x); [x]Z

0

(x)) if Z � Z

0

.

The idea of freezing is the one of [Lan93], postponing both duplication of the metavariables

and substitution into the metavariables. It is more extensive than the one in [Klo80], where only

substitution is postponed. Both postponed actions can be performed by �-reduction:

Proposition 4.16

a s!

C�

t is a development.

b Let s be equal to s after removal of underlinings. If s!

R�

t, then s!

C�

t. Here !

R�

=!

R

!

!

�

.

Proof.

a Idea. Underline the redex to obtain an underlining of s. Rewrite it with the underlined rule

and then to �-nf.

b Idea. In the �-reduction to normal form, we can do the postponed duplication and substi-

tution steps �rst and then the others. This rewrite can be projected to a C�-step.

�

It is not di�cult to see that explicit �-reductions in translated terms can be made to

correspond to �-reductions in �

�

-calculus. (De�ne a suitable forgetful map, forgetting explicit

@'s and replacing [] by �, giving typable terms). Hence � is terminating. In the following we

only consider rewrites that start with the translation of some term in the HRS.

Proposition 4.17 Every rewrite in R+ � terminates.

Proof. Sketch. Let R = l ! r. Let s

0

be obtained from s by replacing all R redexes l

�

by

@([x]x; r

�

). This can be done unambiguously because R doesn't have overlap with itself. The

idea is that we have replaced left-hand sides by their right-hand sides in advance, but have put

an extra identity in, to keep in mind that we have to do some work to simulate a step. (This

replacement works only because the rule is (left- and right-)linear). Now we have that every

rewrite starting from s can be simulated by a rewrite of the same length starting from s

0

. More

precisely, each �-step is simulated by a �-step and an R-step C[l

�

]!

R

C[r

�

] is simulated by the

corresponding �-step C

0

[@([x]x; r

�

0

)]!

�

C

0

[r

�

0

]. Since �-rewriting terminates, the R+�-rewrite

must be �nite. �

Corollary 4.18 Every development is �nite.

4. Translating a HRS into a CRS plus explicit � 19

Proposition 4.19 � commutes with R+ �. That is

R+ �

--

�

?

?

R+ �

--

�

?

?

Proof. By termination of R + � (Proposition 4.17) and Newman's Lemma (see e.g. [Oos93])

it su�ces to consider only local divergences in proving commutativity. The case of a local

divergence of �-steps is covered by conuence of �. The other case follows by considering the

relative positions of the �- and R-redex. If the �-redex is inside the R-redex, we have the

following diagram.

R

-

�

?

�

--

R

-

�

?

?

We may need some `compensating' �-steps due to possible conditions on R (which originate

from non-left-linearity of R). If the �-redex is outside the R-redex, we have the diagram:

R

-

�

?

R

--

�

?

The �-step may duplicate and even nest R-redexes, but this does not cause much trouble. A

parallel inside-out reduction of R-redexes works. (This is just as easy as for combinations of

�-calculus and �rst-order rewrite systems, as R is linear.) �

Proposition 4.20 If s!

C�

t and s!

!

�

s

0

, then s

0

�

C�

t.

Proof. By Proposition 4.16 we can construct the reduction s !

R

!

!

�

t, for some rule R and

underlining s of s. We prove that if s!

R

�

R+�

t, such that t is in �-normal form, and s!

!

�

s

0

,

then s

0

!

R�

t. The proof is by induction on the maximal length of a R+ � reduction sequence

starting from s and expressed by the following diagram.

s

R

-

R + �

--

t

4:19

s

0

?

?

�!

R

-

�

--

R

-

R+ �

--

t

?

?

;

H

H

H

H

H

H

H

H

H

R�

j

4:20

?

?

�!

R�

--

t

?

?

;

4. Translating a HRS into a CRS plus explicit � 20

By applying Proposition 4.16 again (in the reverse direction), we are done. �

Lemma 4.21 Suppose s �

C

t, and s and t are in �-normal form, then s �

C�

t.

Proof. The proof is expressed by the following diagram

s

R

-

�

--

R

-

�

--

R

-

�!

--

t

H

H

H

H

H

H

H

C�

j

@

@

@

�!

R

R 	

	

�

�

�
�!

4:20

@

@

@

�!

R

R 	

	

�

�

�
�!

4:20

@

@

@

�!

R

R 	

	

�

�

�
;

C�

--

C�

--

t

�

Note: The results in the literature on modularity of conuence for combinations of typed

�-calculi with various kinds of rewriting do not seem to apply here. This is because the rewrite

rules are not �rst-order. They can be frozen as above into a `�rst-order part' and a `substitution

part', but the former may contain rules with �-redexes on their right-hand sides, which is not

allowed for the systems studied in the literature. On the other hand, the method employed here

seems to be quite exible, since it makes use only of completeness of (typed) �. For example,

the conuence result of [BTG89] should be an easy consequence.

Corollary 4.22 Orthogonal HRSs are conuent.

Proof. Suppose we have two coinitial rewrites, s �

H

t

1

and s �

H

t

2

, we can lift them by

Theorem 4.10 to rewrites hsi �

C�

ht

1

i and hsi �

C�

ht

2

i. Because C is an orthogonal CRS we

can �nd by [Klo80, Thm. II.3.11] (or [Raa93]), convergent rewrites ht

1

i �

C

t

0

and ht

2

i �

C

t

0

, for

some t

0

. If we reduce t

0

to �-normal form r

0

, then Lemma 4.21 says that the resulting rewrites

can be simulated by rewrites ht

1

i �

C�

r

0

and ht

2

i �

C�

r

0

. Finally, by Theorem 4.13 we can

construct rewrites t

1

�

H

r and t

2

�

H

r, such that hri = r

0

. �

The proof is expressed by the following diagram.

t

0

�

�

�

�

�

�

�

�

�

�

C

>

>

�

�

�

�

�

�

�

�

�

�

�

�

C

�

�

4.21

ht

1

i

C�

--

hri

?

?

�!

�

�

�

�

�

C�

3

3

�

�

�

�

�

C�

3

3

hsi

C�

--

ht

2

i

4:10 4:13

t

1

H

--

r

�

�

�

�

�

H

3

3

�

�

�

�

�

H

3

3

s

H

--

t

2

In fact, the reduction sequence t

0

!

!

�

hri, can be shown to be empty, giving a somewhat

stronger result.

5. Discussion 21

5. Discussion

We have shown two extensions of �rst-order rewriting to higher order, CRSs and HRSs, to be

almost equivalent. The di�erence lies in the metalanguage used; they employ di�erent avours

of the �-calculus to generate their rewrite relations. For CRSs the underlined �-calculus is used,

while for HRSs the simply typed �-calculus is used.

The translations from one system to the other are relatively simple because both are based

on �-calculus. The situation would be di�erent for arbitrary meta-languages. But in fact it is

hard to imagine a meta-language essentially di�erent from �-calculus. The basic steps of a

rewrite (or redex-reaction) are: decomposing an object into a context and a redex, decomposing

a redex into a pattern and a substitution, replacing the pattern with some other pattern, and

then composing everything in the reverse order. The �-calculus can be viewed as a `calculus of

(de)composing', so seems to be basic to any meta-language. If we look at other higher order

rewrite formalisms, such as the Expression Reduction Systems of Khasidashvili [Kha90] and the

Conditional Lambda Calculi of Takahashi [Tak], this claim seems to be supported. The precise

interrelation is left to future work. We do note however that the similarities between these

systems are obfuscated by the surprisingly large syntactical di�erences.

The work in this paper seems to suggest that only two basic properties are required for the

avour of �-calculus one uses for the meta-language: conuence and termination. One can view

CRSs and HRSs then as special cases of such a unifying theory of Higher Order Rewrite Systems

(HORS). A large part of the syntactic rewrite theory should carry over to higher-order rewriting

with more powerful meta-languages such as higher-order �-calculi. This is left to future work.

6. Acknowledgements

We would like to thank Fer-Jan de Vries for comments on an earlier version of this paper. We

have bene�tted from discussions with and between Jan Willem Klop, Tobias Nipkow and Stefan

Kahrs on this subject.

References

[ACCL90] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit substitutions. In Proceed-

ings of the ACM Conference on Principles of Programming Languages, San Francisco,

1990.

[Acz78] P. Aczel. A general Church-Rosser theorem. Technical report, University of Manch-

ester, 1978.

[Bar84] H.P. Barendregt. The Lambda Calculus, its Syntax and Semantics, volume 103 of

Studies in Logic and the Foundations of Mathematics. North-Holland Publishing

Company, revised edition, 1984. (Second printing 1985).

[BG93] M. Bezem and J.F. Groote, editors. Proceedings of the International Conference on

Typed Lambda Calculi and Applications, volume 664 of Lecture Notes in Computer

Science, Utrecht, The Netherlands, March 1993. Springer-Verlag.

[BTG89] V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic strong

normalization and conuence. In Proceedings of the 16th International Colloquium on

Automata, Languages and Programming, volume 372 of Lecture Notes in Computer

Science, pages 137{150, 1989.

[Kah92] S. Kahrs. Context rewriting. In M. Rusinowitch and J.L. R�emy, editors, Proceedings

of the Third International Workshop on Conditional and Typed Rewriting Systems,

pages 21{35, 1992.

A. Induction Proofs of the CRS to HRS translation 22

[Kha90] Z.O. Khasidashvili. Expression reduction systems. In Proceedings of I. Vekua Institute

of Applied Mathematics, volume 36, pages 200{220, Tbilisi, 1990.

[Klo80] J.W. Klop. Combinatory Reduction Systems. Mathematical Centre Tracts Nr. 127.

CWI, Amsterdam, 1980. PhD Thesis.

[KOR93] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems,

introduction and survey. Theoretical Computer Science, 1993. To appear.

[Lan93] C. Laneve. Optimality and Concurrency in Interaction Systems. PhD thesis, diparti-

mento di informatica universit�a di pisa, March 1993.

[LIC91] Amsterdam, The Netherlands. Proceedings of the sixth annual IEEE Symposium on

Logic in Computer Science, Los Alamitos, July 1991. IEEE Computer Society Press.

[Mil] D. Miller. A logic programming language with lambda-abstraction, function variables,

and simple uni�cation. In [Sie91].

[Nipa] T. Nipkow. Higher-order critical pairs. In [LIC91].

[Nipb] T. Nipkow. Orthogonal Higher-Order Rewrite Systems are Conuent. In [BG93].

[NM88] G. Nadathur and D. Miller. An overview of �Prolog. In R.A. Kowalski and K.A.

Bowen, editors, Proc. 5th Int. Logic Programming Conference, pages 810{827. MIT

Press, 1988.

[Oos93] V. van Oostrom. Conuence by decreasing diagrams. Theoretical Computer Science,

1993. To appear.

[Pau90] L.C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic

and Computer Science, pages 361{385. Academic Press, 1990.

[Raa93] F. van Raamsdonk. Conuence and superdevelopments. In C. Kirchner, editor, Pro-

ceedings of the 5th International Conference on Rewrite Techniques and Applications,

1993.

[Sie91] J. Siekmann, editor. Extensions of Logic Programming, volume 475 of Lecture Notes

in Arti�cial Intelligence. T�ubingen, FRG, Springer-Verlag, December 1991.

[Tak] M. Takahashi. �-calculi with conditional rules. In [BG93].

[Wol93] D.A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 1993.

A. Induction Proofs of the CRS to HRS translation

This Appendix contains the `trivial but long' induction-proofs of the various propositions.

Proposition 3.4 Let s be a CRS metaterm, s

0

= hsi, then

a s

0

: 0, moreover there is a bijective correspondence between subterms of s and subterms of

type 0 of s

0

,

b s

0

is in long ��-normal form,

c if s satis�es the pattern-condition, then s

0

satis�es the pattern-condition w.r.t. translated

metavariables,

d hFvar(s)i = Fvar(s

0

).

Proof. The properties are proved simultaneously, by structural induction.

� If s = x, then s

0

= x, and we have

A. Induction Proofs of the CRS to HRS translation 23

a by de�nition,

x : 0

b because x : 0,

c obvious, x is not a metavariable,

d hfxgi = fxg = fhxig.

� If s = [x]t, then s

0

= ��x:hti, so

a by de�nition and induction hypothesis for t,

x : 0 hti : 0

� : (0! 0)! 0 �x:hti : 0! 0

��x:hti : 0

The correspondence is the one induced by the correspondence between t and hti and by

relating s to s

0

. Both the subterms � and �x:hti are not of type 0.

b by induction hypothesis for t. Both s

0

: 0 and �x:hti : 0! 0 are �-expanded.

c by induction hypothesis for t. No new metavariables do occur.

d hFvar(t)� fxgi = Fvar(hti)� fxg.

� If s = F (t

1

; : : : ; t

n

), then s

0

= F ht

1

i : : : ht

n

i

a by de�nition and by induction hypothesis for t

1

,: : : t

n

,

F : 0! : : :! 0! 0 ht

1

i : 0 : : : ht

n

i : 0

F ht

1

i : : : ht

n

i : 0

The correspondence is the one induced by the correspondence between t

1

,: : : ,t

n

and

ht

1

i,: : : ,ht

n

i, relating s to s

0

. Subterms F ht

1

i : : : ht

i

i, for i < n, are not of type 0.

b by induction hypothesis for t

1

,: : : ,t

n

. F ht

1

i : : : ht

n

i : 0 is �-expanded.

c by induction hypothesis for t

1

,: : : ,t

n

.

d

hFvar(F (t

1

; : : : ; t

n

))i = hFvar(t

1

) [� � � [Fvar(t

n

)i

= Fvar(ht

1

i) [� � � [Fvar(ht

n

i)

= Fvar(hF (t

1

; : : : ; t

n

)i)

� If s = Z(t

1

; : : : ; t

n

), then s

0

= zht

1

i : : : ht

n

i, hence

a by de�nition and induction hypothesis for t

1

,: : : t

n

,

z : 0! : : :! 0! 0 ht

1

i : 0 : : : ht

n

i : 0

zht

1

i : : : ht

n

i : 0

The correspondence is obtained as in the previous case.

b by induction hypothesis for t

1

,: : : ,t

n

. zht

1

i : : : ht

n

i : 0 is �-expanded.

c by induction hypothesis for t

1

,: : : ,t

n

. If Z(t

1

; : : : ; t

n

) satis�es the pattern-condition, then

zht

1

i : : : ht

n

i satis�es the pattern-condition, because distinctness of the variables is pre-

served by injectivity of h i.

d

hFvar(Z(t

1

; : : : ; t

n

))i = hfZg [Fvar(t

1

) [� � � [Fvar(t

n

)i

= fzg [Fvar(ht

1

i) [� � � [Fvar(ht

n

i)

= Fvar(hZ(t

1

; : : : ; t

n

)i)

A. Induction Proofs of the CRS to HRS translation 24

�

Proposition 3.6

a hC[t]i = hCi[hti]

Proof.

a The proof proceeds by induction on the structure of C[].

� If C[] = �, then it is obvious.

� If C[] = [x]C

0

[], then we have for every term t:

hC[t]i = h[x]C

0

[t]i

= ��x:hC

0

[t]i

= ��x:hC

0

i[hti] (by induction hypothesis)

= h[x]C

0

i[hti]

= hCi[hti]

� If C[] is of the form F (s

1

; : : : ; C

0

[]; : : : ; s

n

), then we have for every term t:

hC[t]i = hF (s

1

; : : : ; C

0

[t]; : : : ; s

n

)i

= hF ihs

1

i : : : hC

0

[t]i : : : hs

n

i

= hF ihs

1

i : : : hC

0

i[hti] : : : hs

n

i (by induction hypothesis)

= hCi[hti]

� If C[] is of the form Z(s

1

; : : : ; C

0

[]; : : : ; s

n

), then we proceed as in the previous case.

�

Proposition 3.7 For every metaterm t and assignment � we have ht

�

i = hti

h�i

#

�

.

Proof. The proposition is proved by induction on the structure of the metaterm t.

� If t = x, then we have

ht

�

i = hxi

= x

= x

h�i

= hxi

h�i

= hxi

h�i

#

�

= hti

h�i

#

�

� If t = [x]t

0

, then we have

ht

�

i = h([x]t

0

)

�

i

= h[x]t

0�

i

= ��x:ht

0�

i

= ��x:(ht

0

i

h�i

#

�

)

= (��x:ht

0

i

h�i

)#

�

= (��x:ht

0

i

h�i

)#

�

= (hti

h�i

)#

�

� If t = F (t

1

; : : : ; t

n

), then we have

ht

�

i = h(F (t

1

; : : : ; t

n

))

�

i

B. Induction Proofs of the HRS to CRS translation 25

= hF (t

�

1

; : : : ; t

�

n

)i

= F ht

�

1

i : : : ht

�

n

i

= F (ht

1

i

h�i

)#

�

: : : (ht

n

i

h�i

)#

�

= (F (ht

1

i

h�i

) : : : (ht

n

i

h�i

))#

�

= (F ht

1

i : : : ht

n

i

h�i

)#

�

= hti

h�i

#

�

� Finally the case that t = Z(t

1

; : : : ; t

n

) is considered. Suppose �(Z) = �(x

1

; : : : ; x

n

):s. Then

we have

ht

�

i = hs[x

1

:= t

1

: : : x

n

:= t

n

]i

= hsi[x

1

:= ht

1

i : : : x

n

:= ht

n

i]

= (�x

1

: : : x

n

:hsi)ht

�

1

i : : : ht

�

n

i#

�

=

�

(h�i(z))(ht

1

i

h�i

#

�

) : : : (ht

n

i

h�i

#

�

)

�

#

�

=

�

(h�i(z))(ht

1

i

h�i

) : : : (ht

n

i

h�i

)

�

#

�

= (zht

1

i : : : ht

n

i

h�i

)#

�

= hZ(t

1

; : : : ; t

n

)i

h�i

#

�

�

B. Induction Proofs of the HRS to CRS translation

Proposition 4.5 If t is a HRS term in long ��-normal form, then hti is well-de�ned as a CRS

term.

Proof. The proof proceeds by induction on the structure of a long ��-normal form. If t is in

long ��-normal form, then t is of the form �x

1

: : : x

m

:st

1

: : : t

n

with s a symbol standing for a

variable or an operator, and t

1

; : : : ; t

n

terms in long ��-normal form. If t = �x

1

: : : x

m

:xt

1

: : : t

n

,

then we have (since t is in long ��-normal form), that x : � with Ar(�) = n. Then,

hti = h�x

1

: : : x

m

:xt

1

: : : t

n

i

= [x

1

: : : x

m

]hxiht

1

i : : : ht

n

i

= [x

1

: : : x

m

]�y

1

: : : y

n

:@

n

(x; y

1

; : : : ; y

n

)ht

1

i : : : ht

n

i

= [x

1

: : : x

m

]@

n

(x; ht

1

i; : : : ; ht

n

i)

The terms t

1

; : : : ; t

n

are in long ��-normal form, so by induction hypothesis ht

1

i; : : : ; ht

n

i are

well-formed. This yields that hti is a well-formed CRS term. Second, if t = �x

1

: : : x

n

:F t

1

: : : t

n

,

then we have F : � with Ar(�) = n since t is in long ��-normal form. Then we have

hti = h�x

1

: : : x

m

:F t

1

: : : t

n

i

= [x

1

: : : x

m

]hF iht

1

i : : : ht

n

i

= [x

1

: : : x

m

]�y

1

: : : y

n

:F (y

1

; : : : ; y

n

)ht

1

i : : : ht

n

i

= [x

1

: : : x

m

]F (ht

1

i; : : : ; ht

n

i)

By induction hypothesis, this is a well-formed CRS term. �

Proposition 4.7 hC[t]i = hCi[hti].

B. Induction Proofs of the HRS to CRS translation 26

Proof. The proof proceeds by induction on the de�nition of C[]. If C[] = �, then it's trivial.

If C[] is an abstraction term, then we distinguish three possibilities. If C[] = �x

1

: : : x

m

:� then

again it's trivial. If C[] = �x

1

: : : x

m

:xt

1

: : : C

0

[] : : : t

n

, then

hC[t]i = h�x

1

: : : x

m

:xt

1

: : : C

0

[t] : : : t

n

i

= [x

1

: : : x

m

]@

n

(x; ht

1

i; : : : ; hC

0

[t]i; : : : ; ht

n

i)

= [x

1

: : : x

m

]@

n

(x; ht

1

i; : : : ; hC

0

i[hti]; : : : ; ht

n

i)

= hCi[hti]

If C[] = �x

1

: : : x

m

:F t

1

: : : C

0

[] : : : t

n

, then

hC[t]i = h�x

1

: : : x

m

:F t

1

: : : C

0

[] : : : t

n

i

= [x

1

: : : x

m

]F (ht

1

i; : : : ; hC

0

[t]i; : : : ; ht

n

i)

= [x

1

: : : x

m

]F (ht

1

i; : : : ; hC

0

i[hti]; : : : ; ht

n

i)

= hCi[hti]

�

Proposition 4.8

a Let s be a term in long ��-normal form, and u

1

; : : : ; u

n

terms that are �-equivalent to distinct

variables. Then hsi[z

1

:= u

1

#

�

: : : z

n

:= u

n

#

�

] = hs[z

1

:= u

1

: : : z

n

:= u

n

]#

�

i.

b hli

h�i

= hl

�

#

�

i.

Proof.

a The proof proceeds by induction on the structure of s.

� If s = �x

1

: : : x

m

:xs

1

: : : s

k

with x a variable and x 6= z

j

for j = 1; : : : ; n, then

hsi[z

1

:= u

1

#

�

: : : z

n

:= u

n

#

�

] = [x

1

: : : x

m

]@(x; hs

1

i; : : : ; hs

k

i)[z

1

:= u

1

#

�

: : : z

n

:= u

n

#

�

]

= [x

1

: : : x

m

]@(x; hs

1

i[: : :]; : : : ; hs

k

i[: : :])

= [x

1

: : : x

m

]@(x; hs

1

[: : :]#

�

i; : : : ; hs

k

[: : :]#

�

i)

= h�x

1

: : : x

m

:x(s

1

[: : :]#

�

) : : : (s

k

[: : :]#

�

)i

= h�x

1

: : : x

m

:x(s

1

[: : :]) : : : (s

k

[: : :])#

�

i

= h�x

1

: : : x

m

:xs

1

: : : s

k

[: : :]#

�

i

= hs[z

1

:= u

1

: : : z

n

:= u

n

]#

�

i

� If s = �x

1

: : : x

m

:z

j

s

1

: : : s

k

, then

hsi[z

1

:= u

1

#

�

: : : z

n

:= u

n

#

�

] = h�x

1

: : : x

m

:z

j

s

1

: : : s

k

i[z

1

:= u

1

#

�

: : : z

n

:= u

n

#

�

]

= [x

1

: : : x

m

]@(z

j

; hs

1

i; : : : ; hs

k

i)[: : :]

= [x

1

: : : x

m

]@(u

j

#

�

; hs

1

i[: : :]; : : : ; hs

k

i[: : :])

= [x

1

: : : x

m

]@(u

j

#

�

; hs

1

[: : :]#

�

i; : : : ; hs

k

[: : :]#

�

i)

= h�x

1

: : : x

m

:u

j

(s

1

[: : :]) : : : (s

k

[: : :])#

�

i

= h�x

1

: : : x

m

:u

j

s

1

: : : s

k

[: : :]#

�

i

= h�x

1

: : : x

m

:z

j

s

1

: : : s

k

[: : :]#

�

i

= hs[z

1

:= u

1

: : : z

n

:= u

n

]#

�

i

Note that we must have u

j

= �y

1

: : : y

k

:(u

j

#

�

)y

1

: : : y

k

.

� If s = �x

1

: : : x

m

:F s

1

: : : s

k

with F an operator symbol, then

hsi[z

1

:= u

1

#

�

: : : z

n

:= u

n

#

�

] = h�x

1

: : : x

m

:F s

1

: : : s

k

i[z

1

:= u

1

#

�

: : : z

n

:= u

n

#

�

]

B. Induction Proofs of the HRS to CRS translation 27

= [x

1

: : : x

m

]F (hs

1

i; : : : ; hs

k

i)[: : :]

= [x

1

: : : x

m

]F (hs

1

i[: : :]; : : : ; hs

k

i[: : :])

= [x

1

: : : x

m

]F (hs

1

[: : :]#

�

i; : : : ; hs

k

[: : :]#

�

i)

= h�x

1

: : : x

m

:F (s

1

[: : :]#

�

) : : : (s

k

[: : :]#

�

)i

= h�x

1

: : : x

m

:F (s

1

[: : :]) : : : (s

k

[: : :])#

�

i

= h�x

1

: : : x

m

:F s

1

: : : s

k

[: : :]#

�

i

= hs[z

1

:= u

1

: : : z

n

:= u

n

]#

�

i

b The is proved by induction on the structure of a long ��-normal form, in which arguments

of free variables are �-equivalent to distinct bound variables.

� If l = �x

1

: : : x

m

:xt

1

: : : t

n

with x a bound variable, then

hli

h�i

= h�x

1

: : : x

m

:xt

1

: : : t

n

i

h�i

= [x

1

: : : x

m

]@

n

(x; ht

1

i; : : : ; ht

n

i)

h�i

= [x

1

: : : x

n

]@

n

(x; ht

1

i

h�i

; : : : ; ht

n

i

h�i

)

= [x

1

: : : x

m

]@

n

(x; ht

�

1

#

�

i; : : : ; ht

�

n

#

�

i)

= h�x

1

: : : x

m

:x(t

�

1

#

�

) : : : (t

�

n

#

�

)i

= h�x

1

: : : x

m

:x(t

�

1

) : : : (t

�

n

)#

�

i

= h(�x

1

: : : x

m

:xt

1

: : : t

n

)

�

#

�

i

� If l = �x

1

: : : x

m

:F t

1

: : : t

n

with F an operator symbol, then

hli

h�i

= h�x

1

: : : x

m

:F t

1

: : : t

n

i

h�i

= [x

1

: : : x

m

]F (ht

1

i; : : : ; ht

n

i)

h�i

= [x

1

: : : x

m

]F (ht

1

i

h�i

; : : : ; ht

n

i

h�i

)

= [x

1

: : : x

m

]F (ht

�

1

#

�

i; : : : ; ht

�

n

#

�

i)

= h�x

1

: : : x

m

:F (t

�

1

#

�

) : : : (t

�

n

#

�

)i

= h�x

1

: : : x

m

:F (t

�

1

) : : : (t

�

n

)#

�

i

= h(�x

1

: : : x

m

:F t

1

: : : t

n

)

�

#

�

i

� If l = �x

1

: : : x

m

:zt

1

: : : t

n

with z a free variable, then z : � with Ar(�) = n. Suppose

�(z) = �y

1

: : : y

n

:s, then h�i(Z) = �(y

1

; : : : ; y

n

):hsi. Then we have

hli

h�i

= h�x

1

: : : x

m

:zt

1

: : : t

n

i

h�i

= [x

1

: : : x

m

]Z(t

1

#

�

; : : : ; t

n

#

�

)

h�i

= [x

1

: : : x

m

]hsi[y

1

:= t

1

#

�

: : : y

n

:= t

n

#

�

]

= [x

1

: : : x

m

]hs[y

1

:= t

1

: : : y

n

:= t

n

]#

�

i

= h(�x

1

: : : x

m

:zt

1

: : : t

n

)

�

#

�

i

�

Proposition 4.9

a Let s and u

1

; : : : ; u

n

be terms in long ��-normal form. Then we have hsi[z

1

:= hu

1

i : : : z

n

:=

hu

n

i]!

!

�

hs[z

1

:= u

1

: : : z

n

:= u

n

]#

�

i.

b hri

h�i

!

!

�

hr

�

#

�

i.

Proof.

a The proof proceeds by induction on the maximal length of the �- reduction of s[z

1

:=

u

1

: : : z

1

:= u

n

] to normal form. In the base case, the maximal length of the reduction

sequence is 0. In this case, there are three possibilities for the form of s:

B. Induction Proofs of the HRS to CRS translation 28

� s = �x

1

: : : x

m

:xs

1

: : : s

k

with x 6= z

i

for i = 1; : : : ; n,

� s = �x

1

: : : x

m

:F s

1

: : : s

k

,

� s = �x

1

: : : x

m

:z

j

Note that if s has a head-variable that is among the z

j

, the type of z

j

is a base type, because

otherwise a �-reduction for performing the substitution would be needed. The proof of the

base case proceeds by induction on the structure of s.

� In the �rst case, if s = �x

1

: : : x

m

:xs

1

: : : s

k

with x 6= z

i

for i = 1; : : : ; n, then we have

hsi[z

1

:= hu

1

i : : : z

n

:= hu

n

i] = h�x

1

: : : x

m

:xs

1

: : : s

k

i[: : :]

= [x

1

: : : x

m

]@

k

(x; hs

1

i; : : : ; hs

k

i)[: : :]

= [x

1

: : : x

m

]@

k

(x; hs

1

i[: : :]; : : : ; hs

k

i[: : :])

= [x

1

: : : x

m

]@

k

(x; hs

1

[: : :]#

�

i; : : : ; hs

k

[: : :]#

�

i)

= h�x

1

: : : x

m

:x(s

1

[: : :]#

�

) : : : (s

k

[: : :]#

�

)i

= h�x

1

: : : x

m

:x(s

1

[: : :]) : : : (s

k

[: : :])#

�

i

= h�x

1

: : : x

m

:xs

1

: : : s

k

[: : :]#

�

i

= hs[z

1

:= u

1

: : : z

n

:= u

n

]#

�

i

� If s = �x

1

: : : x

m

:F s

1

: : : s

k

, then the statement follows directly by induction hypothesis.

� If s = �x

1

: : : x

m

:z

j

, then we have

hsi[z

1

:= hu

1

i : : : z

n

:= hu

n

i] = h�x

1

: : : x

m

:z

j

i[z

1

:= hu

1

i : : : z

n

:= hu

n

i]

= [x

1

: : : x

m

]z

j

[z

1

:= hu

1

i : : : z

n

:= hu

n

i]

= [x

1

: : : x

m

]hu

j

i

= h�x

1

: : : x

m

:z

j

[z

1

:= u

1

: : : z

n

:= u

n

]#

�

i

In the induction step we will consider the case that the length of the maximal �-reduction

sequence of s[z

1

:= u

1

: : : z

1

:= u

n

] to normal form is greater than 0. Again there are three

di�erent possibilities for the form of s:

� s = �x

1

: : : x

m

:z

j

s

1

: : : s

k

for some j 2 f1; : : : ; ng

� s = �x

1

: : : x

m

:xs

1

: : : s

k

with x 6= z

j

for j = 1; : : : k

� s = �x

1

: : : x

k

:F s

1

: : : s

k

Like the proof in the base case, the proof of the induction step proceeds by induction on the

structure of s.

� If s = �x

1

: : : x

m

:z

j

s

1

: : : s

k

, then we have

hsi[z

1

:= hu

1

i : : : z

n

:= hu

n

i] = h�x

1

: : : x

m

:z

j

s

1

: : : s

k

i[: : :]

= [x

1

: : : x

m

]@

k

(z

j

; hs

1

i; : : : ; hs

k

i)[: : :]

= [x

1

: : : x

m

]@

k

(hu

j

i; hs

1

i[: : :]; : : : ; hs

k

i[: : :])

= [x

1

: : : x

m

]@

k

(h�y

1

: : : y

k

:u

0

j

i; hs

1

i[: : :]; : : : ; hs

k

i[: : :])

�

�

[x

1

: : : x

m

]@

k

(h�y

1

: : : y

k

:u

0

j

i; hs

1

[: : :]#

�

i; : : : ; hs

k

[: : :]#

�

i)

= [x

1

: : : x

m

]@

k

([y

1

: : : y

k

]hu

0

j

i; hs

1

[: : :]#

�

i; : : : ; hs

k

[: : :]#

�

i)

!

�

[x

1

: : : x

m

]hu

0

j

i[y

1

:= hs

1

[: : :]#

�

i : : : y

k

:= hs

k

[: : :]#

�

i]

!

!

�

[x

1

: : : x

m

]hu

0

j

[y

1

:= s

1

[: : :]#

�

: : : y

k

:= s

k

[: : :]#

�

]#

�

i

= [x

1

: : : x

m

]hu

0

j

[y

1

:= s

1

[: : :] : : : y

k

:= s

k

[: : :]]#

�

i

= [x

1

: : : x

m

]h(�y

1

: : : y

k

:u

0

j

)s

1

[: : :] : : : s

k

[: : :]#

�

i

= [x

1

: : : x

m

]hz

j

s

1

: : : s

k

[: : :]#

�

i

= h�x

1

: : : x

m

:z

j

s

1

: : : s

k

[: : :]#

�

i

B. Induction Proofs of the HRS to CRS translation 29

= hs[: : :]#

�

i

� If s = �x

1

: : : x

m

:xs

1

: : : s

k

with x 6= z

j

for j = 1; : : : k, then the statement follows by

induction hypothesis:

hsi[z

1

:= hu

1

i : : : z

n

:= hu

n

i] = h�x

1

: : : x

m

:xs

1

: : : s

k

i[: : :]

= [x

1

: : : x

m

]@

k

(x; hs

1

i; : : : ; hs

k

i)[: : :]

= [x

1

: : : x

m

]@

k

(x; hs

1

i[: : :]; : : : ; hs

k

i[: : :])

!

!

�

[x

1

: : : x

m

]@

k

(x; hs

1

[: : :]#

�

i; : : : ; hs

k

[: : :]#

�

i)

= h�x

1

: : : x

m

:x(s

1

[: : :]#

�

) : : : (s

k

[: : :]#

�

)i

= h�x

1

: : : x

m

:x(s

1

[: : :]) : : : (s

k

[: : :])#

�

i

= h�x

1

: : : x

m

:xs

1

: : : s

k

[: : :]#

�

i

= hs[: : :]#

�

i

� If s = �x

1

: : : x

m

:F s

1

: : : s

k

, then we have by induction

hsi[z

1

:= hu

1

i : : : z

n

:= hu

n

i] = h�x

1

: : : x

m

:F s

1

: : : s

k

i[: : :]

= [x

1

: : : x

m

]F (hs

1

i; : : : ; hs

k

i)[: : :]

= [x

1

: : : x

m

]F (hs

1

i[: : :]; : : : ; hs

k

i[: : :])

!

!

�

[x

1

: : : x

m

]F (hs

1

[: : :]#

�

i; : : : ; hs

k

[: : :]#

�

i)

= h�x

1

: : : x

m

:F (s

1

[: : :]#

�

) : : : (s

k

[: : :]#

�

)i

= h�x

1

: : : x

m

:F (s

1

[: : :]) : : : (s

k

[: : :])#

�

i

= h�x

1

: : : x

m

:F s

1

: : : s

k

[: : :]#

�

i

= hs[: : :]#

�

i

b The proof proceeds by induction on the structure of r.

� If r = �x

1

: : : x

m

:zt

1

: : : t

n

, then we have

hri

h�i

= [x

1

: : : x

m

]Z(ht

1

i; : : : ; ht

n

i)

h�i

= [x

1

: : : x

m

]hsi[z

1

:= ht

1

i

h�i

: : : z

n

:= ht

n

i

h�i

]

�

�

[x

1

: : : x

m

]hsi[z

1

:= ht

�

1

#

�

i : : : z

n

:= ht

�

n

#

�

i]

!

!

�

[x

1

: : : x

m

]hs[z

1

:= t

�

1

#

�

: : : z

n

:= t

�

n

#

�

]#

�

i

= [x

1

: : : x

m

]hs[z

1

:= t

�

1

: : : z

n

:= t

�

n

]#

�

i

= h�x

1

: : : x

m

:s[z

1

:= t

�

1

: : : z

n

:= t

�

n

]#

�

i

= h(�x

1

: : : x

m

:zt

1

: : : t

n

)

�

#

�

i

= hr

�

#

�

i

� If r = �x

1

: : : x

m

:xt

1

: : : t

n

, then we have

hri

h�i

= [x

1

: : : x

m

]@

n

(x; ht

1

i; : : : ; ht

n

i

h�i

)

= [x

1

: : : x

m

]@

n

(x; ht

1

i

h�i

; : : : ; ht

n

i

h�i

)

!

!

�

[x

1

: : : x

m

]@

n

(x; ht

�

1

#

�

i; : : : ; ht

�

n

#

�

i)

= h�x

1

: : : x

m

:x(t

�

1

#

�

) : : : (t

�

n

#

�

)i

= h�x

1

: : : x

m

:x(t

�

1

) : : : (t

�

n

)#

�

i

= h(�x

1

: : : x

m

:xt

1

: : : t

n

)

�

#

�

i

= hr

�

#

�

i

� If r = �x

1

: : : x

m

:F t

1

: : : t

n

, then we have

hri

h�i

= [x

1

: : : x

m

]F (ht

1

i; : : : ; ht

n

i)

h�i

= [x

1

: : : x

m

]F (ht

1

i

h�i

; : : : ; ht

n

i

h�i

)

B. Induction Proofs of the HRS to CRS translation 30

!

!

�

[x

1

: : : x

m

]F (t

�

1

#

�

; : : : ; t

�

n

#

�

)

= h�x

1

: : : x

m

:F (t

�

1

#

�

) : : : (t

�

n

#

�

)i

= h�x

1

: : : x

m

:F (t

�

1

) : : : (t

�

n

)#

�

i

= h(�x

1

: : : x

m

:F t

1

: : : t

n

)

�

#

�

i

= hr

�

#

�

i

�

