
Context-sensitive Conditional Reduction Systems

Z. Khasidashvili and V. van Oostrom

Technical Report SYS-C95-06

UEA Norwich, UK

©

λ

π

1

2

Abstract

zurab@sys.uea.ac.uk

oostrom@cs.vu.nl

Context-sensitive Conditional Reduction Systems

Context-sensitive Conditional Expression Reduction Systems
(CERS)

orthogonality

Zurab Khasidashvili

School of Information Systems
University of East Anglia

Norwich NR4 7TJ, UK

Vincent van Oostrom

Department of Mathematics and Computer Science

Vrije Universiteit, De Boelelaan 1081a
1081 HV Amsterdam, The Netherlands

Technical Report SYS-C95-06

1

2

c Z. Khasidashvili, UEA Norwich, & V. van Oostrom, Vrije Universiteit, Amsterdam 1995

Supported by the Engineering and Physical Sciences Research Council of Great Britain under grant GR/H
41300

Work partially performed while at: NTT Basic Research Laboratories, Information Processing Principles
Research Group, 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa-ken, 243-01, Japan

We introduce
by extending and generalizing the notion of conditional TRS to the higher

order case.
We justify our framework in two ways. First, we define for CERSs

and show that the usual results for orthogonal systems (finiteness of developments,
confluence, permutation equivalence) carry over immediately. This can be used e.g.
to infer confluence from the subject reduction property in several typed -calculi
possibly enriched with pattern-matching definitions.

Second, we express several proof and transition systems as CERSs. In particu-
lar, we give encodings of Hilbert-style proof systems, Gentzen-style sequent-calculi,
rewrite systems with rule priorities, and the -calculus into CERSs. This last en-
coding is an important example of real context-sensitive rewriting.

∫

3

∈

3

λ
β

β

λ λ

x y z
σ n N

Definition 2.1

1 Introduction

2 Conditional Expression Reduction Systems

The distinction between ‘conditional’ and ‘context-sensitive’ is more a historical than a conceptual one.

freely
surroundings

Com-
binatory Reduction Systems

Expression Reduction System

term sub

rewrite rules
argument

conditional
context

context-sensitive
CERSs

Let be an comprising , denoted by , , and
(). A symbol can be either a () having an ,

A term rewriting system is a pair consisting of an alphabet and a set of rewrite rules. The
alphabet is used to generate the terms and the rewrite rules can be applied in any

(context), generating the rewrite relation. In the first order case (no variable
binding) one speaks of TRSs while in the higher order case (with variable binding) there exist
several conceptually similar, but notationaly often quite different proposals. Long ago, the
first general higher order format was introduced by Klop [Klo80] under the name of

. Since then, several other interesting formalisms have been in-
troduced [Kha92, Nip93, Wol93, OR94, Tak93, Lor93]. This paper is based on the notion of

introduced by the first author [Kha92], but our results also apply
to the other higher order formats.

Often it is of interest to have the possibility to put restrictions on the generation of either
the terms or the rewrite relation (or both). For example, many typed lambda calculi can be
viewed as untyped lambda calculus with restricted formation. Let’s call them -ERSs
(cf. [KOR93, Def. 12.9]). On the other hand, many rewrite strategies are naturally expressed by
restricting application of the . For example, the call-by-value strategy in -calculus
can be specified by restricting the second of the -rule to values. In general, restrict-
ing arguments gives rise to so-called ERSs (cf. [BK86]). The leftmost-outermost
strategy can be specified by restricting the in which the -rule may be applied. We
will call the latter kind of rules in which contexts are restricted . In Sec-
tion 2 we introduce (conditional context-sensitive ERSs) which allow all three kinds of
restriction.

In Section 3 we present a suitable notion of orthogonality and prove the standard results
for orthogonal CERSs (OCERSs) like the Finite Developments Theorem, confluence etc. by
adapting a method for unconditional higher order rewriting [Klo80, Kha92].

In Section 4 we show how some transition and proof systems can be expressed in a natural way
in CERSs. A very similar idea is present in the work of Meseguer [Mes92] who encodes many
systems in his Conditional Rewriting Logic [Mes92]. Nevertheless, our encoding of calculi with
bound variables seems to be more natural, since we don’t need to ‘code the bindings away’ into
a first order framework.

We present CERSs in the style of ERSs [Kha92]. Terms are formed as usual from the alphabet
as in the first order case, but for symbols having binding power (like in -calculus or
in integrals) which require some binding variables and terms as arguments (as specified by
their arity). Scope indicators are used to specify which variables have binding power in which
arguments. Note that one cannot substitute for binding variables. The variables for which one
can substitute are called metavariables (like in Klop’s CRSs).

Σ alphabet variables symbols
signs function symbol simple operator arity

∫ ∫ ∫

∈ ×

→
→ →

→ →

m

m

n n i

i

n n

n n

t
s

Definition 2.2

1

1

1 1 0

0

1 1 0

1 1 0

2 Context-sensitive Conditional Reduction Systems

UEA Norwich, UK Technical Report SYS-C95-06

m, n N N σ
m x x

σx . . . x σ
m n t s
e o

AT

A B t /x , . . . , t /x t t
x t

θ
θ t tθ t

θ t /x , . . . , t /x t
t t x x t

β λ Ap λx t, s Ap

λ ,
f x dx x s, t, f x ,

AT

AT
AA AC

AT

r t s t s

rθ tθ sθ r t s
θ θ

Aθ A

θ A

tθ sθ
C rθ C tθ C sθ rθ tθ sθ C

AA

AC

R
R

operator sign quantifier sign arity ()
binding quantifier compound operator

scope indicator
Terms

admissible

Metaterms metavariables
metasubstitutions ()

simple
assignment substitution

()

For example, a -redex in the -calculus appears as (), where is a function symbol
of arity 2, and is an operator sign of arity (1 1) and scope indicator (1). Integrals such as

() can be represented as (()) using an operator sign of arity (1 3) and scope
indicator (3). The predicate can be used to express sorting and typing constraints.

The specification of a CERS consists of an alphabet (generating a set of terms possibly restricted
by the predicate) as specified above and a set of rules (generating the rewrite relation
possibly restricted by the predicates and) as specified below. -ERSs (short for
substructure ERSs) in the same sense as Klop’s sub-CRSs (cf. [KOR93]) are CERSs where the
predicate is non-trivial.

:
: :

redex contractum
[] : [] [] : []

admissibility
conditional

weakly similar

context-sensitive

CERS
simple

In the sequel when we speak about terms and redexes, we will always mean admissible terms
and admissible redexes, respectively.

or an () having . In the latter case needs
to be supplied with variables ,. . . , to form the ()

. If is an operator sign it also has a which is a vector of length
specifying for each variable in which of the arguments it has binding power. , ,

, are constructed from variables, function symbols and quantifiers in the usual first order
way respecting (the second component of the) arities. A predicate on terms specifies which
terms are .

are constructed like terms, but also allowing as basic constructions
, , . . . and , where each is an arbitrary metaterm

and the have binding effect in . Metaterms without metasubstitutions are called .
An () maps each metavariable to some term. The application of the
substitution to a term is written and is obtained from by replacing metavariables with
their values under , and by replacing metasubstitutions , in right to left
order, with the result of substitution of terms ,. . . , for free occurrences of ,. . . , in
(cf. Kahrs’ notion of substitute [KOR93]).

Sub

A rewrite rule is a (named) pair of metaterms , such that and do
not contain free variables. We close the rules under assignments: if
and is a substitution. For reasons of hygiene this is restricted to assignments such that

(a) each free variable occurring in a term assigned to a metavariable is either bound in
the -instance of each occurrence of in the rule or in none of them.

The term is then called a and its . Next, we close under contexts
, if and is a context (a term with one hole).

The rewrite relation thus obtained is the usual (unconditional, context-free) ERS-rewrite rela-
tion. If restrictions are put on assignments, via an predicate on rules and
assignments, the rewrite relation will be called . We call redexes that are instances
of the same rule (i.e., with the same admissibility predicate) . If restrictions are
put on contexts, via a predicate on rules, substitutions and contexts, the rewrite relation
will be called .

A is a pair consisting of an alphabet and a set of rewrite rules, both possibly restricted.
is if right-hand sides of all its rules are simple metaterms.

4

−

let

n
n n n n

n

n n
n

u

Notation 3.1

3 Orthogonal CERSs

1

4

+1
1 1 0 1 1 0

+1

1 1 0
+1

→
→ 6∈

→ ∃ ∈
→

→ →

→

⊆
∈ → → →→

| |

Z. Khasidashvili and V. van Oostrom 3

Technical Report SYS-C95-06 UEA Norwich, UK

It even seems to be prerequisite for syntactical studies of higher order rewriting.

λ
β Ap λxA,B B/x A, A B

η λxAp A, x A x Aθ
θ x Aθ λx Aθx

f A x A θ x Aθ
µ λxA µ λxA /x A

η A λxAp Ax f A g A,B

β

S

S x . . . x A . . . A A A /x , . . . , A /x A , n , , . . .

S n, n n
x , . . . , x A , . . . , A , A S

β S
β λ

a, b, c, d t, s, e, o u, v, w
N, P,Q s t s t

u t t s t s u P t s
P t s P P P Q
P Q

descendant

TRS
substitution

operator sign of substitution

We use for constants, for terms and metaterms, for
redexes, and for reductions. We write if is a subterm of . A one-step reduction
in which a redex is contracted is written as or or just . We write
if denotes a reduction of to . denotes the length of . denotes the concatenation
of and .

Our syntax is very close to the syntax of the -calculus and of First Order Logic. For example,
the -rule is written as () () where and can be instantiated by any
terms. The -rule is written as () , where it is required that for an
assignment , otherwise an occurring in and therefore bound in () would become
free. A rule like () () is also allowed, but in that case the assignment with
is not. The recursor rule is written as () (()) . Note that we allow metavari-
able-rules like : () and metavariable-introduction-rules like () (),
which are usually excluded a priori. This is only useful when the system is conditional.

We define orthogonal CERSs (OCERSs) and sketch our proof of Finite Developments for them,
implying confluence. The FD proof is based on Nederpelt & Klop’s method [Ned73, Klo80]
for reducing strong normalization to weak normalization. It is similar in structure to, but
simpler than Klop’s original confluence proof for orthogonal CRSs [Klo80] and we think not
more difficult than other existing confluence proofs [vR93, Nip93, OR94, Mel93].

The idea of orthogonality is that contraction of a redex does not destroy others (in whatever
way), but rather leaves a number of their residuals. A prerequisite for the definition of residual
is the notion of allowing to trace subterms during a reduction. Whereas this is
simple in the first order case, ERSs may exhibit very complex behaviour due to the possibility
of nested metasubstitutions thereby complicating the definition of descendants. Fortunately
each rewrite step can be decomposed into two parts: a -part replacing the left-hand side
by the right-hand side, but without evaluating the metasubstitutions, and a -part
evaluating the metasubstitutions. This point of view is profitable since the descendant relation
of a rewrite step can now be obtained by composing the descendant relation of the TRS-step,
which is trivial, and the descendant relations of the evaluation steps, which are a kind of -steps
(see [Kha92]).

To express substitution, we use the -reduction rules

() = 1 2 ,

where is the with arity (+ 1) and scope indicator (+ 1),
and and are pairwise distinct variables and metavariables. Thus
binds free variables only in the last argument. The difference with -rules is that -reductions
can only perform -developments of -terms [Kha92], so one can think of them as (simultaneous)

-expressions.

:
+

f

f

′

′

′ ′ ′ ′

′ ′

Remark 3.1

Definition 3.1

+1 +1

1 1 0
+1

1 1 0
2

2

+1
1 1 0 1 1 0

0 0

1 0

→
∪ → → →→

→→
→

→ →

→

→
→

→

→ ∈

→→ →→ ≈

≈

→ →
→→

→→ →→ →→ ≈
≈

→ ∈ ∈

f
n

f
n

n n
n

n n f

f fS def f def fS def

f
u

R S

fS S

β

β S

u
f

n
n n

u
n n i

i i

n

fS

st

st

u

4 Context-sensitive Conditional Reduction Systems

UEA Norwich, UK Technical Report SYS-C95-06

λ

R R S R
S R R S

t /x , . . . , t /x t S x . . . x t . . . t t β
β Ap λxA,B S xBA R R R R R

R S C tθ C sθ R P C tθ C s θ C sθ
R C s θ C sθ S

P u β Ap λxt, s s/x t
Ap λxt, s S xst s/x t R

t s R e u s o
u e u o

o
u e

u t f g a b s
f g x b f g a g a t s b

a s

S C S x . . . x t . . . t t C t /x , . . . , t /x t t
t x

t t

x , . . . , x t u
o Sxaf x f a e a o

x f x a e
f x o e
R P R P

P

P t s Q t e P
Q s e P Q t s

e P Q P Q s e

R

t s t o R s o R
P t s

Q t e P s o Q e o P P Q Q
P P Q Q

t s R v t w s

u v w u v u v
w v w u u
s s

t

descendant

TRS-part substitution-part

refinement

descendants
descendants descendant

descendants

descendants
descendant

descendant

descendant
descendants

ancestor

In the literature several slightly different notions of descendants appear, e.g.
in [Klo80] the contracted redex is defined not to have any descendants, while in our defini-
tion it has exactly one descendant.

strictly equivalent

equivalent

weakly Church-Rosser
confluent

Church-Rosser strictly Church-Rosser

Let in an OCERS , let be an admissible redex, and let be a
-descendant of . We call a of if (a) the patterns of and do not overlap; (b)
is a redex weakly similar to ; and (c) is admissible. (So itself does not have

in .) The notion of of redexes extends naturally to arbitrary reductions. A redex in
is called a redex or a redex if it is not a residual of a redex in .

We now recall briefly but precisely the definition of of subterms as introduced
in [Kha88, Kha93, Kha92] for the -calculus, TRSs, and ERSs, respectively. First, we split an
ERS into a and the . For any ERS , which we assume
does not contain symbols , is the ERS obtained from by adding symbols in
the alphabet and by replacing in right-hand sides of the rules all metasubstitutions of the form
() by , respectively. For example, the rule would be

: () . If is simple, then = = . Otherwise =
. For each step [] [] in there is a reduction : [] [] []

in , where [] [] is the rightmost innermost normalizing -reduction. We call
the of . For example, the refinement of the -step () () would

be () () . The notion of refinement generalizes to -reductions with
0 or more steps.

Let be an -reduction step and let be the contractum of in . For each argument of
there are zero or more arguments of . We call them (-) of . Correspondingly,

subterms of have zero or more . The of each pattern-subterm (i.e., a
subterm rooted within the pattern) of is . It is clear what is to be meant by
of a subterm that is not in . For example, in the step = (()) = according to the
rule (()) , the descendant of both pattern-subterms (()) and () of in is , and

doesn’t have a descendant in .

In an -reduction step [] [()], the argument and
subterms in have the same number of as the number of free occurrences of in

. All subterms of have exactly one (the descendants of the free occurrences of
in are the substituted subterms). The of the contracted redex itself

is its contractum. For example, in the step = () () = , the descendant of ,
as well as of the bound occurrence of in (), is the occurrence of in . The descendant of

(), as well as of itself, is . The notion of extends by transitivity to arbitrary
-reductions. If is an -reduction, then - are defined to be the descendants

under the refinement of . The relation is converse to that of descendant.

Co-initial reductions : and : are called (written
) if = and -descendants and -descendants of any subterm of are the same in

and [Kha88]; and are (written) if = .

We recall that A CERS is (WCR) if for any two co-initial (admissible)
steps and in , and have a common reduct. is or equivalently

(resp.) if, for any co-initial reductions : and
: , there are reductions : and : such that + + (resp.
+ +).

-residual
-residuals

residual
new created

∈

→ →

∈
→→

→

→

Definition 3.2

fS

fS

fS
µ
fS

fS
µ
fS

µ
fS

fS
µ
fS

µ
fS

Z. Khasidashvili and V. van Oostrom 5

Technical Report SYS-C95-06 UEA Norwich, UK

u t
v t u

a b f A A
θA a f b f a a

θA b

R
F t F t

F P t s F
P F s F
R

R R R
R

R
R

R R
R

R

R

f A,B f A

f A,B µ B, f A

B f A µ
S R
R µ
R

µ
R

R
R

We call a CERS (OCERS) if:

1. the left-hand side of a rule is not a single metavariable,

2. the left-hand side of a rule does not contain metasubstitutions and its metavariables con-
tain those of the right-hand side,

3. in no term admissible redex-patterns can overlap,

4. all the descendants of an admissible redex in a term under the contraction of any other
admissible redex are residuals of .

development
-development

complete

Admissible

increases
increasing

weakly normalizing

orthogonal

The second condition ensures that rules exhibit deterministic behaviour when they can be
applied. The last condition can be thought of as imposing some closure conditions on arguments
and contexts of rules. For example, consider the rules and () with admissible
assignment = . The descendant () of the redex () after contraction of is not a redex
since the assignment = is not admissible, hence the system is not orthogonal (it should
not be, since it is not confluent). Note that unconditional non-left-linear rules (almost) never
satisfy (4).

We now present the main ideas of the proof of finiteness of developments in an OERS . Recall
that a of a set of non-overlapping (admissible) redexes in (notation) or an

is a reduction : in which only residuals of redexes in are contracted;
is a -development if doesn’t contain residuals of redexes in . A development in
can be conveniently visualized by underlining the head-symbols of the redexes in the set, only

allowing contraction of underlined redexes. We denote the corresponding underlined rewrite
system by (i.e., -redexes are -redexes with the head-symbols of left-hand sides underlined).

terms in are those which may contain underlined symbols only as head-symbols
of redexes. Thus, termination of developments in is equivalent to strong normalization (SN)
of .

can be refined into and surely strong normalisation of the latter implies strong nor-
malisation of the former. To prove strong normalisation of the ‘memory’ technique by
Nederpelt and Klop is useful. The idea is to transform the system into yet another orthog-
onal system where no erasure takes place, by ‘memorizing’ metavariables which might be
erased. We use a simplified version of Nederpelt & Klop’s technique, as developed in [Kha94].
For example

() ()

is transformed into
() (())

where the is ‘memorized’ since it did not have descendants in (). This -transformation is
also applied to the -rules. From the definition we immediately have that every -reduction
can be lifted to an -reduction of the same length, for which the number of ’s
in each step, i.e., is in the sense of [Klo80]. Note that the presence of the
‘memory’ () cannot prevent creation of redexes, since there is no creation of redexes possible
in . Therefore, the application of the techniques from [Kha94] is even simpler in this case.
Moreover, is as can be seen by considering the rightmost-innermost
strategy. Strong normalisation of now follows from the following lemma of Klop [Klo80].

−

∗

∗

∗

l l

k

k

j

0 1 0 1

1 1

1

1

0 0 0

0 1 0 1

0 1

1

1

1

1 1 0

0

0 1 1 0

0 0

0 1

0 0 1

∈ →→
{ } ∈

∈
→ → → →

∪
{ | }

= { → | }
= =

→ ∈

6∈

→ →
→ →

Lemma 3.1

Notation

Lemma 3.2

Proof

Definition 3.3

Lemma 3.3

Proof

Lemma 3.4

Proof

Lemma 3.5

6 Context-sensitive Conditional Reduction Systems

UEA Norwich, UK Technical Report SYS-C95-06

u u v v
i

i i i i

i i i

fS fS
µ
fS fS

n n n

n
n n

µ
fS µ

f

µ µ
µ
f

µ
f

µ
f µ m

m j j µ j j
µ

n n i
µ
fS

µ µ
i i

n n i i

i
µ
fS

µ
fS

µ
fS

µ
fS

µ
fS

µ µ
f

µ
fS

µ
fS

µ
fS

µ
fS

µ
fS

µ
fS

µ
fS

fS
µ
fS i µ i

µ
fS

fS

F t P t s F/P
F s u/P u /P F t F

F

t R F t t
F P t t . . . Q s s . . . R s

t F F/ u . . . u u
v t s i , , . . .

R R
µ n , , . . . µ n n µ

µ µ A . . .A A n , , . . .

t t
r t e R θ AA r

θ tθ R R
R v tθ C s , . . . , s C

s , . . . , s µs . . . s eθ s , . . . , s v
s S u Sx . . . x t . . . t t t

S S u µt . . . t t
t t /x , . . . , t /x t t , . . . , t u

t x FV t j , . . . , k
R R

S R

R

R R

R R
R

R R

R P t t . . . R
Q s t s . . . R s t i , , . . .

µ R

R R

We now make the above said more precise.

If and : , then denotes the set of all residuals of redexes from
in . We write for . If , then will also denote the leftmost innermost

complete -development.

: :
= (+)

= 0 1

Easy.

Σ Σ = Σ
= 0 1

= () = 1 2
Σ []

: ()
redex reduction

redex = = [] []

= Σ
reduction redex

= ()
() = 1 Admissible terms Σ Σ

reduction
Σ

descendant residual
development

It is routine to check that is weakly Church-Rosser. Further, is weakly nor-
malizing because clearly innermost -reductions are normalizing since there is no creation
of redexes in . To conclude strong normalization and confluence of , we can apply
Lemma 3.1.

:
: = [] = = 0 1

It is routine to check that -steps commute with -steps, and the lemma follows.

[Klo80] A locally confluent, increasing, weakly normalizing abstract rewriting sys-
tem is strongly normalizing (so confluent by Newman’s Lemma).

Let be a term in an OERS and be a set of redexes in . Then for
any -development there is a reduction in such that
is obtained from by underlining head symbols of redexes from , and
and are corresponding redexes in and for all

Let be an OERS, let be the alphabet of , and let
, where is a fresh simple operator with arity (we shall omit in).

By definition, the -rules have the form . We denote
the -nf of an -term by (is WCR and strongly normalising (SN), hence is CR by
Newman’s Lemma). Let be a rule in and let . Then, for any assignment

that satisfies the condition (a) of Definition 2.2, is an - . An - step
is a replacement of an - (with the pattern and arguments

) by , where are arguments of that do not have descendants
in . -redexes have the form , where are arbitrary terms over .
By definition, a step of - is a replacement of an - by , where

, and are all arguments of that do not have descendants
in (i.e., for). over are such -terms
that underlined symbols may appear only as head-symbols of -redexes. An -
step starting from an admissible term over is an -reduction step or an -reduction
step in any context (i.e., all contexts are admissible). The notions of , ,

, etc. are defined analogously for -reductions.

Let be an OERS. Then is strongly normalizing and Church-Rosser.

Let be an OERS and be a reduction in . Then there is a
reduction in such that for all

Let be an OERS. Then is strongly normalizing and Church-Rosser.

1 0

0 0

0 1 0 1 0

′

′ ′

′

′

′

′

′ ′ ′ ′

{ }

{ }

→ → → → → →

≈

≈

≈

fS

fS

n

i i i i

i

i

n n

j j

µ
fS

µ
fS

µ
fS

L

st

Z. Khasidashvili and V. van Oostrom 7

Technical Report SYS-C95-06 UEA Norwich, UK

R
R

R R

F u , . . . , u t
R r R u r r

i R r
R R

R

G R
R s t

u i i F
t t . . . t R s s . . . s s R
G s t

P Q
P Q P P Q Q

R
R R

P Q
P/Q P Q

P Q
Q P/Q P Q/P

P Q
Q P/Q P Q/P

Proof

Theorem 3.1

Proof

Theorem 3.2 (Finite Developments)

Theorem 3.3 (Church-Rosser)

Remark 3.2

Theorem 3.4 (Strong Church-Rosser)

Theorem 3.5 (Strict Church-Rosser)

Let be an OERS. Then all developments in are finite and all complete
co-initial developments end at the same term.

All developments in an OCERS are finite and all
complete co-initial developments end at the same term.

Orthogonal conditional ERSs are confluent.

The above proof of FD for OERSs follows closely the one in [Kha92], but is
simpler. The difference is that, since is increasing, here we use use Klop’s lemma to
conclude SN for from WN, while in [Kha92] we prove that every term in has exactly
one normal form, and SN follows from WN immediately (without using Klop’s lemma).

residual

For any co-initial reductions and in an OCERS,
.

strict

For any co-initial reductions and in an OCERS,
.

Strong normalisation for follows from Lemmas 3.3 and 3.4. Confluence follows by
Newman’s Lemma, since it is easy to check that is weakly Church-Rosser.

From Lemmas 3.2 and 3.5.

Let = be a set of admissible redexes of an admissible term , in an OCERS
. Let be the -rule for , and let be the rule obtained from by equipping each

function or a quantifier symbol in the LHS by the superscript . Obviously, = is an
orthogonal ERS; we assume that in all terms constructed using symbols from and the
indexed symbols are admissible, that all substitutions are admissible for all -rules, and that
all contexts are admissible for rewriting. Let associate to an -term the corresponding term
in without indexed symbols (they are admissible). Let be obtained from by equipping
every symbol in the pattern of with the superscript , for all . Then for any -development

in there is a development of in such that
() = . Therefore:

As a corollary, we get that for any co-initial developments and in an OCERS, there are
developments and such that + + , and confluence for OCERSs follows.

Since the Parallel Moves Lemma is a corollary of the Finite Developments theorem, one can in
a standard way (e.g., as in [HL91, Bar84]) define, for any co-initial reductions and , the
notion of the of under and prove the strong version of CR for OCERSs.

+ +

Using finiteness of developments, it is shown in [Kha92] that all co-initial complete developments
in OERSs are strictly equivalent (by showing that co-initial reduction steps ‘strictly commute’).
Clearly, this is valid for OCERSs too, and we can extend the CR theorem [Kha92] from
OERSs to OCERSs.

+ +

λ

5

5

′ ′

′ ′

s

s

s

s

s

Subject Reduction

| | |

|

| | |

→

→

→

→

→

→

• →

• →

• →

call-by-need -calculus

3.1 Call-by-need -calculus

This so-called property is sometimes non-trivial to prove.

let

let in

let in

let in let in

let in

let in let in

let in let in

let let in in let in let in

let in

8 Context-sensitive Conditional Reduction Systems

UEA Norwich, UK Technical Report SYS-C95-06

β

λ
η

λ
λ

M x MM λx.M x M M

V λx.M

A V x M A

E EM x M E x E E x

λx.M M x M M

x V E x x V E V

x M A M x M AM

x y M A E x y M x A E x

M V A E y y

V

A V x M A

A E y y
A

Untyped lambda calculus [Bar84] is the prime example of an (unconditional) orthogonal higher-
order term rewriting system. If one restricts term formation in it, one arrives at the large class
of typed lambda calculi. Since the rewrite relation in these calculi is not restricted in any way,
and typed terms are closed under -reduction these sub-ERSs are orthogonal, hence confluent.

An emerging class of context-sensitive and conditional ERSs is the class of -calculi with re-
stricted expansion rules like ¯ (see e.g. [Aka93]). These calculi are not quite orthogonal, never-
theless their confluence can be shown by tampering with the confluence diagrams arising from
FD for the corresponding unconditional expansion rules.

We conclude this section with a somewhat larger example of an OCERS.

We will show that the as introduced and studied in [AFMOW94] is an
OCERS. Terms in this calculus are ordinary -terms possibly containing expressions, but
the rewrite rules have conditions on them as follows. Define the syntactic categories by the
following grammar

::= =

::=

::= =

::= [] = = []

The rules are

() =

= [] = []

(=) =

= (=) [] = = []

the rewrite relation is obtained from this by allowing arbitrary contexts.

By case analysis we show that each of the syntactic categories is closed under and that
there are no overlaps between rules, so the system is an orthogonal conditional ERS.

is obviously -closed and contains , , and [] for every .

is -closed by the previous item and the fact that no root-steps are possible.

is -closed since is so by the previous item and = is by considering
(root-)overlaps with the four rewrite rules.

1. Root-overlap with the first or third rule is syntactically not possible.

2. To show that root-overlap with the second rule and fourth rule is not possible it
suffices to show that no element in is in [] for any , which we prove by
induction on the definition of :

∗

1 1

s

s

s

s

s

n n i i

i i

4.1 Conditional TRSs

4 Expressive power of CERSs

6∈ 6≡

∈

6≡

6≡

6≡

6≡

• →

6≡ →

6≡ →

→

→

∧ · · · ∧ ⇒ →

→→ ↔

let in

let in

let in

let in let in

let in let in

let in

let in

Z. Khasidashvili and V. van Oostrom 9

Technical Report SYS-C95-06 UEA Norwich, UK

V E y E y λx.M

x M A / E y

x M A y

x M A E y N

x M A z N E y

x M A z E y E z

E y E

y

E y M E y λx.N E y M

x M E y x y M E y

x E y F x V E y

A G z E y F x

A E y

π

t s t s t s s t

t s tθ sθ
s θ t θ

(a) [] since [] .

(b) (=) [] since

i. (=) ,

ii. (=) [] ,

iii. (=) (= []) by induction hypothesis, and

iv. (=) (= [] []) by induction hypothesis.

[] is shown to be -closed by induction on the definition of

1. is a normal form.

2. [] cannot be root-rewritten since [] . [] and are -closed by
hypothesis.

3. = [] cannot be root-rewritten (!), and and [] are -closed
by hypothesis.

4. = [] [] cannot be root-rewritten since and [] are disjoint (second
rule), and and [] are disjoint (fourth rule). Both [] and [] are -closed
by hypothesis.

Because of -closedness of the syntactic categories, to show orthogonality we need only to
check for possible ‘critical pairs’ between the rules. These cannot occur as one easily verifies
by using the earlier observation that elements in are not in []. Even stronger, the system
is left-normal in the sense of [Klo80], hence standard reductions are normalizing.

In [Mes92], Meseguer gives encodings of labeled transition systems, several functional program-
ming languages, Chomsky grammars, and some concurrent languages (e.g. Chemical Abstract
Machine and CCS), into CTRSs. In this section, we give encodings of some other proof and
computation systems, to show that CERSs are even more expressive programming languages.
This is not always very useful to understand the original systems better (e.g, one doesn’t gain
any insight from encoded versions of Hilbert and Gentzen style proof systems), but it often
helps to understand the operational behaviour of a system (e.g., in the case of the -calculus).

Conditional term rewriting systems (CTRSs) were introduced by Bergstra & Klop in [BK86].
Their conditional rules have the form = = , where the and
may contain variables in and . According to such a rule can be rewritten to if all
the equations = are satisfied. CTRSs were classified depending on how satisfaction is
defined (‘=’ can be interpreted as , , etc.) As they remark this can be generalized by
allowing for arbitrary predicates on the variables as conditions (cf. also [DOS88, Toy88]).

Clearly, all these CTRSs are context-free CERSs since they only allow conditions on the ar-
guments not on the context of rewrite rules. For this reason sometimes results for them are

F

F

stable

→ →

{ → → }

∈ ∈

∈

∈
∈

F

F

F

F

F

F

F R

F R R

1 1

2 2 1 2 1 1 2 2

1 1 2 2

4.2 Encoding of strategies

10 Context-sensitive Conditional Reduction Systems

UEA Norwich, UK Technical Report SYS-C95-06

R F R

R F

F Ter T er t F t t
t F t

R f x a, b b t g b, f b t
b b

F t

t F t

LHS r θ u

LHS r θ r r θ AA r θ AA r

r , θ r , θ

F t, r, θ, C r
θ r C r, θ

t C LHS r θ

R F R R F R
R R R

R
r θ t, r, θ, C F C

r, θ R

R F

R
r, θ θ AA r R AA r

R AA r R θ AA r AA r
r θ R

a special case of general results which hold for all CERSs. In particular, CTRSs for
which the unconditional version is orthogonal as defined in [BK86] are orthogonal in our sense,
so confluent. Several confluence results were obtained in the above papers for non-orthogonal
CTRSs as well, which perhaps can also be generalized to the higher-order case.

More recently, the higher-order generalisation of (join) CTRSs was introduced by Loŕia-Sáenz
under the name of HCTRSs [Lor93]. Like in the first-order case these are context-free and fit
in our definition. The confluence results obtained by him are for strongly normalising systems,
and are incomparable to ours.

Given an ERS and a strategy for it, we will construct a CERS where exactly the
-reductions performed according to the strategy are possible. To be more precise, we only

consider history-free strategies, i.e., the step chosen just depends on the term, not on the rewrite
sequence leading to it.

In the literature a strategy is a map : (Σ) (Σ) such that () if is not a
normal form, and = () otherwise. For our purposes the above definition of strategies is not
satisfactory. We need a strategy not just to specify what term to reach next, but also how to
do this.

First, in a term there may be disjoint redex occurrences yielding the same result if reduced,
e.g. take simply the TRS = () and the term = (()). Then rewrites
to itself by rewriting either the first or the second occurrence of in it. The leftmost is
needed [HL91], while the rightmost is not. Here the information that a strategy rewrites
to is not enough to know whether rewrites a needed redex in or a non-needed one. So a
strategy should specify which redex-occurrence must be contracted.

Second, a redex-occurrence can be an instance of more than one rule, i.e. () = =
() for some rules and and some assignments () and (). The

contracta of the redexes can be the same (for example in the parallel or rule), which shows that
even knowing the occurrence of the redex does not suffice to know which rule has been applied
(unless the context was only admissible for one of the pairs () or ()).

Thus, a strategy in our sense is a set of quadruples of the form ([]), where is a
rule, is an admissible substitution for , [] is an admissible context for (), such that

= [()].

Now, if is a CERS and a strategy for , then the encoding of the strategy in is
defined as follows. We take the signature of for the signature of ; we take the rules of
for -rules without changing the sets of admissible assignments for them; finally, for each rule

and admissible assignment , if and only if ([]) , we declare [] to be admissible
for () in .

Of course, our encoding is neither the only nor always the best way of encoding strategies. For
example, in the case of a CERS and the innermost strategy , it would be more natural to
define the corresponding system as having the same alphabet, the same rewrite rules, and
the same admissible contexts for the pairs () such that () in , but () in

should be a subset of () in such that () belongs to () iff the values
of all metavariables of under are in -nf. Recall that strategies are often given also by

6

′ ′

−

→ ∃
∃

× × →

→ →

→ → →
≥ →

→ ∃ ≥

6

1 2

1 2 3

1 1

0
1

1
+1

1
0 1

1

1
+1

1

1
+1

1

1

essentially regular

Modus Ponens -rule

F

m

i j

i

H
m

m
m

n

H
n

H

n
n

n
n

n

n
k k n

n
k k n

k k

n
k n

n
k n k

n

Z. Khasidashvili and V. van Oostrom 11

Technical Report SYS-C95-06 UEA Norwich, UK

4.3 Encoding of rewrite systems with priorities

4.4 Encoding of Hilbert style proof systems

The left-linearity condition in [BBKW89] is redundant, since it is implied by essential nonambiguity.

λ

F R R

R
< R

r u

r > r u r

H F , F , . . .
B A A B

x.A x A t H

G ,G ,G , . . . , G

G F
G , . . . , G H

H R
P P G , . . . , G P m
Bool . . . Bool Nat P m

R H P
R

P A , . . . , A P A , . . . , A , F n P P F
A , . . . , A

F

P A , . . . , A , . . . , A A, . . . , A P A , . . . , A , . . . , A A, . . . , A , A

n A A A

P A , . . . , A/x A , . . . , A P A , . . . , A/x A , . . . , A , aA n
θ A , . . . , A A

transition rules; examples are the lazy and call-by-value -calculus. This is just another way
of defining admissible contexts.

In general, for a strategy for some orthogonal CERS , need not be orthogonal again.
Examples are the innermost and needed strategies.

A priority rewrite system, or PRS for short is a pair consisting of a TRS and a partial
order on the set of rules of [BBKW89]. The partial order is meant as a judge in case of
conflict between rules. An -redex can be contracted iff it is a closed term, and there is no

such that can be rewritten to an -redex by means of an internal (i.e. taking place
below the headsymbol) reduction; such redexes are allowed to be contracted in any context.
Because of the negative condition in the definition of the rewrite relation, PRSs are not always
well-defined, but it is clear that those which are well-defined can be expressed as a conditional
ERS. In [BBKW89] some criteria sufficient for well-definedness as well as for ground confluence
are found. In particular, it is shown that RPSs are ground confluent. Such
PRSs are orthogonal in our sense, so this confluence result is covered by ours.

A Hilbert style system , as defined e.g. in [Sho67], has a number of axioms and two
rules: , allowing to infer when and are theorems, and the ,
allowing to infer [] if [] is a theorem. A proof in the axiomatic theory is a finite
sequence of formulas

(1)

such that is either an axiom (i.e., coincides with one of the) or is obtained from
by one of the above two rules. In order to model proofs in the system , to

each proof (1) in we associate a reduction sequence, in an appropriate CERS , starting
from the term and leading to the term (), where is an -ary operator
symbol of type . encodes a list of formulae. The alphabet of
the CERS consists of the alphabet of augmented by the symbols . The rules, more
precisely the rule-schemata, of are:

1. () (), for each . In particular (). Admissi-
ble assignments assign arbitrary formulae to the metavariables , and an axiom
to the metavariable .

2. () () for
each 2. The may also appear after in the sequence. Admissible
substitutions are the same as in the previous case.

3. (()) (()) for each 1.
An admissible assignment assigns arbitrary formulae to , and a term to .

`

`

` `

`

`

→ ∅

→

→

`
`

∀
`

` ∀

→
∀ ∀

1 1 1 1

1

1 2

1 1

1
+1

1

1 1

1

1

+ 1

1

1 1

1
+

1 1

0

4.5 Encoding of Gentzen style proof systems

′ ′ ′ ′ ′′ ′′

′ ′ ′ ′ ′ ′

′ ′ ′ ′′ ′′ ′′

′ ′ ′ ′′ ′′ ′′

′ ′′

′ ′

′ ′

k

n m n,m n m

n,m

i

k
k

k i

i

G

k
k

k
k

k
k

k
k

k
k

k
k

n

n

k
n,m n k

k
n,m n n,m n k

G

12 Context-sensitive Conditional Reduction Systems

UEA Norwich, UK Technical Report SYS-C95-06

A/x A

G

r , r
,

F , . . . , F G , . . . , G G P F , . . . , F ,G , . . . , G

P m n r sequ, pr
r sequ, pr , pr G r

sequ
G pr

G G

SPR , . . . , SPR PS pr , . . . , pr pr
SPR

R G

PS pr , . . . , pr PS pr , . . . , pr , ax axiom,

PS pr , . . . , r sequ , pr , . . . , pr PS pr , . . . , r sequ, r sequ , pr , . . . , pr

PS pr , . . . , r sequ , pr , r sequ , pr , . . . , pr

PS pr , . . . , r sequ, r sequ , pr , r sequ , pr , . . . , pr

axiom G sequ

sequ sequ
G

F , . . . , F y/x , . . . , F

F , . . . , xF, . . . , F

y

PS pr , . . . , r P , F , . . . , F y/x , . . . , F , pr , . . . , pr

PS pr , . . . , P , F , . . . , xF, . . . , F , r P , F , . . . , F , pr , . . . , pr

m y
G R PS

Note the presence of the metasubstitution () in the LHS of the 3-rules. This kind of rule
is allowed in our CERSs; the LHSs of the rules are not necessarily simple metaterms.

Thus, rewriting generates lists of theorems, the latest theorem derived always being the last
formula of the list. A list can be viewed as a proof of its last theorem, but it does not determine
a unique proof in the way it is encoded here. This can easily be overcome, when needed, by
coding the information which rule was applied and to which theorems, into the system (this is
done in the first encoding of Gentzen style proof systems into CERSs, in the next section).

Encoding a Gentzen style proof system (or a sequent calculus) is similar to a Hilbert style
system, the main idea being to translate inference rules into rewrite rules, proofs into terms
and deduction into reduction.

A sequent calculus has rules of one of the two following forms, where Γ and ∆ are lists of
formulas (we ignore structural rules, which do not cause problems for our encoding):

:
Γ ∆

Γ ∆
:

Γ ∆ Γ ∆

Γ ∆

We present a sequent from as a term (),
where is a function symbol of arity + . A proof is presented as () or
(), depending on the number of premises in the -rule, where is the name of

the last applied rule, considered as a binary or ternary function symbol, is the root of
the proof tree in , and are representations of the proofs whose roots have been used as
the premises in the last step of the -inference. In a stage of a -inference several subproofs

are constructed. We represent that stage as (), where is
the representation of .

The CERS that encodes has three kinds of rewrite rule-schemata, which correspond to
introduction of axioms, and to applications of one and two premise rules, respectively:

1. () (());

2. (()) ((()));

3.
(() ())

((() ()));

Here is the representation of an axiom of – a sequent of the form Γ Γ, represents
the sequent Γ ∆, and similarly for and . For example, the rewrite schema for the

-rule

:
Γ []

Γ

where doesn’t occur free in the lower sequent, has the form

(((Γ [])))
(((Γ) ((Γ))))

where is the number of formulas in the list Γ and the same condition on is required. Now
a -inference is encoded as an -reduction starting from the constant . From each term

π

′

′ ′′

→

→

→

| | | | | |

| → |

|

| → |

1

1

1
+1

1

+1
1 1

1 1

0

1 2 1 2

k
k

k i

i

k
k

k
k

k
k

k
k

k
k

k
k

π π π

π

π

4.6 Encoding of the -calculus

Z. Khasidashvili and V. van Oostrom 13

Technical Report SYS-C95-06 UEA Norwich, UK

G
SPR , . . . , SPR

G PS sequ , . . . , sequ sequ
SPR

PS sequ , . . . , sequ PS sequ , . . . , sequ , axiom

PS sequ , . . . , sequ , . . . , sequ PS sequ , . . . , sequ, . . . , sequ

PS sequ , . . . , sequ , sequ , . . . , sequ PS sequ , . . . , sequ, . . . , sequ

G PS
G

λ
F t F

t T F, t

π
π P Q

P xy.P x y .P P P P x P

x y .P xz.Q z/y P Q

π ,R
, , , O , , , I R

, , I π
T er

x y .P Iy x, P xz.Q O x, z, Q x P Rx P

R

C Iy X, P C O X,Z,Q C Z/y P C Q

P,Q,X, Z X,Z

in the reduction sequence one can recover the whole history of the corresponding -inference.
When this is not necessary, one can use a simpler encoding, where subproofs
in are represented as (), and is the above representation of the
root sequent of . In this encoding, we need the following rewrite rule-schemata:

1. () ();

2. () ();

3. () ();

A -inference is again encoded as a reduction starting from the constant , and one can
again recover the history of the -inference now using the whole reduction sequence.

We can similarly translate other sequent calculi such as classical or intuitionistic linear logic,
natural deduction systems (since they can be given in the form of sequent calculi (see Pra-
witz [Pra71]), etc. Further, in order to translate say Curry’s typed -calculus the same method
can be applied – it is enough to represent a statement : (meaning that a formula has the
type) e.g., by (); as mentioned above, expressions that require many sorted alphabets
can be written in CERSs using the notion of admissible terms.

Differently from the Curry-Howard correspondence where reduction corresponds to proof-
simplification (cut-elimination), we have chosen to encode the proof process, i.e. reduction
corresponds to proof-search.

In this section, we will encode the version of -calculus as described in [Mil92] as a CERS.
Recall that -calculus agents , , . . . are defined as follows:

::= () 0 ! ()

Basic interaction is generated from the rule

() []

by closing under unguarded contexts and working modulo structural congruence (see [Mil92]).

To -calculus a CERS (Σ) can be associated as follows. The alphabet Σ consists of the
function symbols 0 ! with respective arities 0 1 2 3, and the quantifier symbols and
with arities (1 2) and (1 1). binds only in its last argument. The map [] transforms -terms
into terms in (Σ). The only non-obvious cases are input, output and restriction:

[()] = ([]) ; [] = ([]) ; [()] = ([])

Combining the transformation [] with the closing under unguarded contexts and the structural
congruence leads to rules of the form

[()] [()] [()] [], where

1. are metavariables, and admissible assignments for are variables.

1 2

| 6

π

π

st

th

C C RX
Rx x X

R
λ

π R

β β λ

5 Conclusions

References

14 Context-sensitive Conditional Reduction Systems

UEA Norwich, UK Technical Report SYS-C95-06

2. The indicated subterms must be unguarded in [] and [] and not in the scope of
(among the symbols above them only the operators , ! and with = can occur).

3. Only (all) unguarded contexts are admissible, for any redex.

Obviously, the ‘critical pairs’ for the interaction rule are preserved by the translation, so
is not orthogonal. Nevertheless, we expect results like: for the standard translation of - into

-calculus, is orthogonal hence confluent modulo the structural congruence.

We have introduced context-sensitive conditional ERSs. These are a natural generalisation of
unconditional ERSs what we have shown by presenting a smooth generalisation of the theory
of orthogonality to the context-sensitive conditional case. Furthermore, we have shown the
expressive power of the framework by encoding several rewriting systems occurring in computer
science in it. An expressive framework allowing for natural encodings of interesting systems
provides a means for comparing these systems. We think CERSs can have a purpose in this.

[Aka93] Akama Y. On Mints’ reduction for ccc-calculus. In: Proc. of the 1 International con-
ference on Typed Lambda Calculus and Applications, TLCA’93, Springer LNCS, vol. 664,
Bezem M., Groote J.F., eds., 1993, p. 1–12.

[AFMOW94] Ariola Z.M., Felleisen M., Maraist J., Odersky M., Wadler P. A Call-By-Need
Lambda Calculus. In: Proc. ACM Conference on Principles of Programming Languages,
1995.

[BBKW89] Baeten J.C.M., Bergstra J.A., Klop J.W., Weijland W.P. Term Rewriting Systems
with rule priorities. Journal of TCS 67, 1989, p. 283–301.

[Bar84] Barendregt H.P. The Lambda Calculus, its Syntax and Semantics. North-Holland,
1984.

[BK86] Bergstra J. A., Klop J. W. Conditional Rewrite Rules: confluence and termination.
JCSS vol. 32, n. 3, 1986, p. 323–362.

[DOS88] Dershowitz N., Okada M., Sivakumar G. Canonical conditional rewrite systems.
In: Proc. of the 9 International Conference on Automated Deduction, Springer LNCS,
vol. 310, p. 538–549.

[HL91] Huet G., Lévy J.-J. Computations in Orthogonal Rewriting Systems. In Computational
Logic, Essays in Honour of Alan Robinson, ed. by J.-L. Lassez and G. Plotkin, MIT Press,
1991.

[Kha88] Khasidashvili Z. -reductions and -developments of -terms with the least number
of steps. In: Proc. of the International Conference on Computer Logic COLOG’88, Tallinn
1988, Springer LNCS, v. 417, P. Martin-Löf and G. Mints, eds. 1990, p. 105–111.

th

rd

st

rd

Z. Khasidashvili and V. van Oostrom 15

Technical Report SYS-C95-06 UEA Norwich, UK

[Kha92] Khasidashvili Z. The Church-Rosser theorem in Orthogonal Combinatory Reduction
Systems. Report 1825, INRIA Rocquencourt, 1992.

[Kha93] Khasidashvili Z. Optimal normalization in orthogonal term rewriting systems. In:
Proc. of the 5 International Conference on Rewriting Techniques and Applications,
RTA’93, Springer LNCS, vol. 690, C. Kirchner, ed. Montreal, 1993, p. 243-258.

[Kha94] Khasidashvili Z. The longest perpetual reductions in orthogonal expression reduction
systems. In: Proc. of the 3 International Conference on Logical Foundations of Com-
puter Science, LFCS’94, Springer LNCS, vol. 813, Nerode A., Matiyasevich Yu. V. eds.
St. Petersburg, 1994. p. 191–203.

[Klo80] Klop J.W. Combinatory Reduction Systems. Mathematical Centre Tracts 127. Centre
for Mathematics and Computer Science, Amsterdam, 1980.

[Klo90] Klop J.W. Term Rewriting Systems. Report CS-R9073, Centre for Mathematics and
Computer Science, 1990.

[Klo92] Klop J.W. Term Rewriting Systems. In: S.Abramsky, D.Gabby, and T.Maibaum eds.
Handbook of Logic in Computer Science, vol. II, Oxford University Press, 1992.

[KOR93] Klop J. W., van Oostrom V., van Raamsdonk F. Combinatory reduction systems:
introduction and survey. In: To Corrado Böhm, J. of Theoretical Computer Science 121,
1993, p. 279–308.

[Lor93] Loŕıa-Sáenz C.A. A Theoretical Framework for Reasoning about Program Construction
Based on Extensions of Rewrite Systems. Ph. D. Thesis, Universität Kaiserslautern, 1993.

[Mel93] Melliès P.-A. An abstract theorem of finite developments. Talk presented at CONFER-
meeting, september 1993, Amsterdam.

[Mes92] Meseguer J. Conditional Rewriting Logic as a unified model of concurrency. Journal
of TCS 96, 1992, p. 73–155.

[Mil92] Milner R. Functions as processes. In: Journal of Mathematical structures in Computer
Science. 2(2): 1992, p. 119–141.

[Ned73] Nederpelt R.P. Strong normalization for a typed lambda-calculus with lambda struc-
tured types. Ph.D. Thesis, Eindhoven, 1973.

[Nip93] Nipkow T. Orthogonal higher-order rewrite systems are confluent. In: Proc. of the 1
International conference on Typed Lambda Calculus and Applications, TLCA’93, Springer
LNCS, vol. 664, Bezem M., Groote J.F., eds., 1993, p. 306-317.

[Oos94] Van Oostrom V. Confluence for Abstract and Higher-Order Rewriting. Ph. D. Thesis,
Free University of Amsterdam, 1994.

[OR94] Van Oostrom V., van Raamsdonk F. Weak orthogonality implies confluence: the higher-
order case. In: Proc. of the 3 International Symposium on Logical Foundations of Com-
puter Science, LFCS’94, Springer LNCS, vol. 813, Nerode A., Matiyasevich Yu. V., eds.
St. Petersburg, 1994, p. 379-392.

λ

nd

th

st

st

16 Context-sensitive Conditional Reduction Systems

UEA Norwich, UK Technical Report SYS-C95-06

[Pra71] Prawitz D. Ideas and results in proof theory. In: Proc. of the 2 Scandinavian Logic
Symposium, Fenstad L.E. ed. 1971, p. 235-307.

[vR93] Van Raamsdonk F. Confluence and superdevelopments. In: Proc. of the 5 Interna-
tional Conference on Rewriting Techniques and Applications, RTA’93, Springer LNCS,
vol. 690, C. Kirchner, ed. Montreal, 1993, p. 168-182.

[Sho67] Shoenfield J. R. Mathematical Logic. Addison Wesley, 1967.

[Tak93] Takahashi M. -Calculi with Conditional Rules. In: Proc. of the 1 International con-
ference on Typed Lambda Calculus and Applications, TLCA’93, Springer LNCS, vol. 664,
Bezem M., Groote J.F., eds., 1993, p. 406–417.

[Toy88] Toyama Y. Confluent term rewriting systems with membership conditions. In: Proc. of
the 1 International Workshop on Conditional Term Rewriting Systems, Springer LNCS,
vol. 308, 1988, p. 128–141.

[Wol93] Wolfram D. The clausal theory of types. Cambridge Tracts in Theoretical Computer
Science, vol. 21, Cambridge University Press, 1993.

