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Abstract

We present Agda code of a proof of confluence via the Z-property, of the untyped
λβ-calculus in De Bruijn’s λ-calculus notation with nameless dummies, based on the for-
malisation of that calculus in the book Programming Language Foundations in Agda.

1 Introduction

Preparing the FSCD 2021 presentation of [13] on establishing confluence of rewrite systems
by means of the Z-property for some given bullet function • (originating with Loader [12,
Section 4.1] for the λβ-calculus with the Gross–Knuth bullet map, and with Dehornoy [7] for
self-distributivity with the full distribution bullet map), I was looking for further applications
of the method, and in particular for further ways1 to test the hypothesis [13, Remark 52]2 that
a proof of confluence via the Z-property should be shorter than via the angle-property.3

Recalling that the book Programming Language Foundations in Agda [18] (PLFA) had
a section on confluence of the (untyped) λ-calculus, I had a closer look at it. As it turned
out, the λ-calculus considered in PLFA is De Bruijn’s λ-calculus with nameless dummies [5].
Moreover, the confluence proof formalised there is indeed based on the angle property with the
full development bullet map.4

The above, combined with that I had wanted to learn some Agda for a long time already,
that one of the PLFA authors5 challenged me to do so, and that I had some time on my hand
(in between jobs), made me decide in October 2021 to try to formalise a proof of confluence via
the Z-property in Agda, of De Bruijn’s λβ-calculus with nameless dummies, on the basis of the
formalisation of that calculus in PLFA. This resulted in the Agda code in Section A below.6

The code is only lightly commented. More comments are found in Section 2.

∗This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by/4.0/. The Agda 2.6.1.1 code is based on the book
Programming Language Foundations in Agda (version 20.07) [18], in particular on its chapters Untyped and
Substitution. We developed our code in the beginning of October 2021 on a MacBook Pro 2019 (2.3 GHz 8-Core
Intel Core i9, 32 GB), with Agda 2.6.1.1, Emacs 26.3 (9.0), and the snapshot of PLFA based on PLFA v20.07.

1Having corroborated it before for CL and the λβ-calculus with the full superdevelopment bullet map [9].
2Cf. the conclusions of [8].
3For the λ-calculus the latter property goes back to Gross, cf. [3, Section 3], for the function mapping a

λ-term to the target of, what is nowadays known as, a Gross–Knuth step contracting all redexes in it, and its
inductive pendant to Takahashi [16]. We isolated the property for abstract rewrite systems [17, Definition 1.1.8],
dubbing it the triangle property at the time. Later, cf. [8] and [13, Definition 4] we rebaptised it into the angle
property (already suggested to us by Marc Bezem in 2002) on the occasion of showing it equivalent to the
Z-property [13, Lemma 8], and adopted the bullet name and notation • for the (Skolem) function involved.

4The full development function is the obvious generalisation of the Gross-Knuth function to the class of all
orthogonal (first- and higher-order) term rewriting systems. For TRSs it is known as full substitution. See [13]

5Jeremy Siek, upon me contacting the authors of [18] in the summer of 2021.
6HTML source at http://www.javakade.nl/research/agda/plfa.part2.ConfluenceZ4.html (external hyperlinks

do not work; see PLFA) and pure Agda code at http://www.javakade.nl/research/agda/ConfluenceZ4.agda.

https://plfa.inf.ed.ac.uk/20.07/
https://plfa.inf.ed.ac.uk/20.07/
https://plfa.inf.ed.ac.uk/20.07/Untyped/
https://plfa.inf.ed.ac.uk/20.07/Substitution/
http://www.javakade.nl/research/agda/plfa.part2.ConfluenceZ4.html
http://www.javakade.nl/research/agda/ConfluenceZ4.agda
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2 On the formalisation

The first two paragraphs below describe the key ingredients of the Agda code from [18] we
took as the basis of our formalisation, the objects and steps of the term rewrite system, and
motivates why we did so. The last three paragraphs comment on what we formalised ourselves,
split into: (i) supplementary code (50 loc) showing the system to be a term rewrite system, (ii)
code (65 loc) for the Z-property, and (iii) code (25 loc) for inferring confluence from Z.

Objects of the rewrite system, from [18] The objects of the rewrite system are the λ-
terms with nameless dummies of [5]. Instead of formalising these ourselves, we reused their
formalisation as given in the module Untyped of [18].

That formalisation employs a completely inductive definition of terms with bound variables.
The standard way to do so is to define them as pairs having a second component (the term)
whose free variables are in the first component (its environment). In De Bruin’s nameless
setting [5] variables are natural number-indices, which allows to replace the environment by
a single natural number that can be thought of as an upper bound on the free indices in the
term.7 This is the approach taken in the module Untyped of [18], and we reuse it.

We decided to do so as we recognised PLFA employing a particularly simple8 case of the
set-up of our [10]. In [10] environments are modelled as stacks of variables (allowing arbitrary
repetitions). From that perspective, De Bruijn’s λ-terms are not nameless but rather have a
single name. As a consequence, for De Bruijn’s λ-terms environments are single-name stacks,
allowing to reduce them to just their height, making stacks coincide with the natural-number-
upper-bound-environments of PLFA. Moreover, the inference system ⊢ for defining terms in the
module Untyped is a particularly simple9 case of the inference system for closed terms of [14],
Our intimate familiarity with these formal details of the formalisation of [18] made us decide
to adopt it, apart from that it is of course practical and good engineering practice to reuse.

Steps of the rewrite system, from [18] The steps of the rewrite system are generated
from the β-rule of [5]. Also here we reused their formalisation as given in the module Untyped
of [18], which in turn is based on the module Substitution of [18], since the definition of β-steps is
based on that of substitution (at meta-level). The main result of that module is subst-commute,
known in the literature as the Substitution Lemma [2].10 The proof of the Substitution Lemma
given in the module Substitution is quite long because it is niftily indirect.11

Although such a long proof was at variance with our goal, we decided to reuse it anyway,
because our development is modular in it, and because the Substitution Lemma is unavoidable

7Cf. the exercise in the module Untyped asking to prove that their formalisation of environments, called
Context, is isomorphic to the natural numbers N.

8In having no jumps, using the terminology of that paper.
9In having no end-of-scope operator, using the terminology of that paper.

10More precisely, subst-commute is the version for parallel substitutions corresponding to the single substi-
tution version of [2].

11To allow for an algebraic proof of subst-commute, the authors first define the basic substitution operations
corresponding to the substitution operators (known as explicit substitutions) of [1], or rather to those of [15],
having laws that are complete w.r.t. so-called De Bruijn algebras, in the sense that explicit substitution ex-
pressions are equivalent iff they are provably equal by means of the laws. Then these operations are linked
to substitutions, the algebraic laws are proven to hold for substitutions, and finally subst-commute is proven
using the algebraic laws. However, that is overkill. E.g. [11] employs only 2 operations (in our terminology:
maximal scope extrusion and substitution) and 6 laws governing their interaction to obtain the Substitution
Lemma for De Bruijn’s λβ-calculus. We recently adapted Huet’s result, in Coq, to the generalised local De
Bruin λβ-calculus with respect to minimal scope extrusion and substitution.
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in any proof of confluence, also in proofs via the Z-property, since the lemma captures for nested
redex-patterns (λy.(λx.M)N))L, the resolution of the critical peak of the β-rule:

(λy.M [x := N ])L← (λy.(λx.M)N))L→ ((λx.M)N)[y := L] = (λx.M [y := L])(N [y := L])

in a canonical way by means of the valley, having the Substitution Lemma in its middle:

(λy.M [x := N ])L→M [x := N ][y := L] =SL M [y := L][x := N [y := L]]← (λx.M [y := L])(N [y := L])

Proof that the rewrite system is a term rewrite system As a term rewrite system,
the (untyped) λβ-calculus is a higher-order term rewrite system over a signature having two
symbols, a unary (and binding) abstraction and a binary application, and a single rule β. In a
term rewrite system the rewrite steps are obtained from the term rewrite rules by closing the
latter under (unary term) contexts and substitutions simultaneously (in principle).

Since in the λβ-calculus contexts are built just from abstractions and applications, one
usually does not bother with formalising neither the concept of a signature nor that of a
context, instead giving the corresponding ad hoc compatibility clauses directly [2]. That is
manageable since they are only three, traditionally [2] called ζ for abstraction and ξ1 and ξ2
for (the arguments of) application. The formalisation in the module Untyped follows suit.

Since in the λβ-calculus there is only a single rule β, one usually does not bother with
formalising the concept of a rule, giving the corresponding ad hoc rule scheme directly instead.
Since there is only one such rule scheme, traditionally [2] called β, this is manageable. Here, the
rule scheme β is obtained from the rule β by taking all its substitution instance, i.e. quantifying
over the latter (at meta-level). The formalisation in the module Untyped follows suit.

Combining both above design decisions taken in [18] leads naturally to the formalisation of
rewrite steps in Untyped as a data type —→ inductively defined from the rule scheme β and
the compatibility clauses: steps are represented as proof terms [17, Chapter 8] but instead of
them being based on a single β-rule-symbol (with arity the number of free variables in the rule)
as in [4], they are based on the infinitely many (nullary) rule-symbols of the rule scheme β.

Since such a set-up does not automatically guarantee steps being closed under substitu-
tions12, i.e. does not guarantee we in fact have a term rewrite system, we proved it as stp-subst
(after proving it for renamings stp-rename). We then proceeded with pointwise extending the
definition of many-step reduction —↠ to substitutions —↠s, and showing the latter to be
closed under term-contexts trm-subst, and reductions to be closed under them in rew-rew.

These basic and simple results constitute Part I of our formalisation (50 loc). That part
(c/sh)ould go to the module Untyped of [18] as it exclusively concerns showing that the rewrite
system is as intended, that it indeed is a term rewrite system closed under both contexts
(already covered in [18]) and substitutions (absent from it as far as we know). It belongs there,
since its results pertain neither to Z nor to confluence nor to any other rewrite property.

Proof of the Z-property We establish the Z-property for De Bruijn’s λ-calculus with name-
less dummies, based on the latter’s formalisation as a term rewrite system as outlined above,
where a rewrite system has the Z-property for a map • on its objects if for every step a→ b we
have b ↠ a• ↠ b• [13].

As the bullet map • we take the full development map [13, Definition 42], mapping a term M
to the target of the multistep contracting all redex-patterns in M . For the history of this bullet
map for the λ-calculus, going back to Gross, Knuth, and Takahashi among others, see [3, 13].

12Closing under substitutions first and then contexts might differ from closing under both simultaneously.

3

https://plfa.inf.ed.ac.uk/20.07/Untyped/
https://plfa.inf.ed.ac.uk/20.07/Untyped/
https://plfa.inf.ed.ac.uk/20.07/Untyped/
https://plfa.inf.ed.ac.uk/20.07/Untyped/


Confluence by Z in Agda V. van Oostrom

For this bullet map • we follow the approach for proving the Z-property for orthogonal term
rewriting as outlined in [13, Sections 3.3.1 and 3.4]: We successively establish the following
properties,13 with the Z-property being the conjunction of (upperbound) and (monotonic):

(extensive) M ↠β M•;

(upperbound) if M →β N then N ↠β M•;

(rhss) (M•)σ
•
↠β (Mσ)•; and

(monotonic) if M →β N then M• ↠β N•.

Typically, these properties may be shown either by induction on the term M (and then distin-
guishing cases on the stepsM → N possible fromM) or by induction on the proof termM → N
(and then distinguishing cases on the possible shapes of M). This choice is largely immaterial.
Here we found it convenient to prove the properties (extensive) and (rhhs) by induction on the
term M , and the properties (upperbound) and (monotonic) by induction on the step M → N .

This constitutes Part II (65 loc), the core of our formalisation.

Proof of confluence Confluence can be obtained from the Z-property in various ways [13, 6].
We randomly picked showing confluence via the so-called Strip Lemma [2], i.e. we picked the
first proof of [13, Lemma 51], with the proof of strip being an easy recombination of (extensive),
(upperbound) and (rew-monotonic), the lifting of (monotonic) from steps to reductions.

The formalisation of this final part is trivial (also in Agda), short (25 loc), and abstract in
that it depends on the rewrite system having the Z-property, but on nothing else, in particular
not on the concrete structure of the terms and steps of the λβ-calculus. Reusing the definition
of confluence of [18] here, allows our formalisation to replace the module Confluence of [18].

3 Conclusions and related work

The development confirmed our expectations.
Whether our formalisation is shortest and simplest we do not know,14 but its core (on

the Z-property) being only 65 loc, the development is definitely short and simple.15 It closely
follows the formal pen-and-paper proof.

Basing ourselves on [18] was a good choice, as the book was easily accessible and the code
was well-explained and modularised, allowing for easy reuse.

Despite lacking any prior knowledge of Agda, we found coding in it intuitive and its (emacs)
interface based on the idea of refining holes16 to be easy to get acquainted with.

13The (rhss) property here is the one which was intended in [13, Lemma 44(Rhs)]. The property (Rhs) given

there, that M(σ•) reduces to (Mσ)•, is correct in it being a trivial consequence of (extensive) and (rhss). However,

(Rhs) did not capture the idea that the result ((M•)(σ
•)) of applying the bullet map to the components (M

and σ) of the right-hand side of the term rewrite rule (Mσ) reduces to the result ((Mσ)•) of applying the bullet
map to right-hand side. Consequently, the property (Rhs) given there is too weak to be useful for establishing
(monotonic).

14Even if one could come up with objective measures for these, the formalised results are hard to compare
as they are almost never exactly the same. For instance, the proof of Z here is for De Bruijn’s λβ-calculus
with nameless dummies, whereas that of [9] is for a nominal λβ-calculus. Also, the proof of confluence in [18]
involves a formalisation of multisteps, which could be reused for obtaining standardisation results, whereas the
Z property shown here could be reused for obtaining hyper-normalisation results.

15It seems not longer than the extant PLFA code on confluence, even when including the 50 loc for showing
to have a (higher-order) term rewrite system.

16Instead of on a tactics language as I was used to from Coq.
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Our initial estimate was that the required effort would be fairly limited, with our lack of
Agda knowledge being compensated for by the reuse of the PLFA book. Still, the development
was surprisingly smooth, taking us a full week only.17 Both using the book [18] to base ourselves
on and prior experience with the theory and with formalisation, certainly helped a lot.18

Since our formalisation in October 2021, we have tried (in intervals of 6 months) to initiate a
discussion on this work and its relationship to their book with the authors of [18]. Unfortunately,
and despite multiple promises to do so on their behalf, this never materialised. We find that
surprising given that the direct incentive to work on this was a challenge by one of them.

Last year at IWC 2023, we learned from Riccardo Treglia that he had supervised a project
in 2019/2020 of Andrea Laretto on formalising the Church–Rosser theorem for the λβ-calculus
in Agda. Also there we have tried to initiate a discussion with the author on the relationship
between both, but also that hasn’t materialised yet.

The properties involved being shown by direct inductions on terms and steps (inductively
defined as proof terms), corroborates our earlier experience [9] and expectation [13] that proving
confluence via the Z-property is well-suited to formalisation in proof assistants.

We initially tried formalising the Z-property for the full superdevelopment [13, Definition 42]
bullet function as in [9], since we expected that to result in even (a bit) shorter code. However,
that requires reasoning by cases on the result of the bullet map, which, although supported in
Agda, eluded our skills.19 It should be of interest to see whether one can mimic the presentation
on paper and have single generic proof that can then be instantiated both to the full development
and to the full superdevelopment bullet map.
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A Formalisation

The following module ConfluenceZ4.agdamay replace plfa/src/plfa/part2/Confluence.lagda.md.

module plfa.part2.ConfluenceZ4 where

open import Relation.Binary.PropositionalEquality using ( ≡ ; refl; sym; cong; cong2)
open import Function using ( ◦ )
open import Data.Product using ( × ;

∑
;
∑

-syntax; ∃; ∃-syntax; proj1; proj2)
renaming ( , to 〈 , 〉)

open import plfa.part2.Substitution using (Rename; Subst; rename-subst-commute; subst-commute;
ren; cong-sub; extensionality)

open import plfa.part2.Untyped
using ( —→ ; β; ξ1; ξ2; ζ; —↠ ; begin ; —→〈 〉 ; —↠〈 〉 ; ■;
abs-cong; appL-cong; appR-cong; —↠-trans;
⊢ ; ∋ ; ‘ ; # ; , ; ⋆; λλ ; · ; [ ];
rename; ext; exts; Z; S ; subst; subst-zero)

{- Part I -}

{- basic facts on rewriting and substitution, in particular -}
{- we show that beta is apart from being ‘closed under contexts’ -}
{- as established in plfa, also closed under substitutions, -}
{- i.e. that we are in a (higher-order) term rewriting setting. -}
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{- (these results only depend on Untyped section of plfa) -}

{- ϕ ranges over steps; Ψ,X over many-steps; R over substitution many-steps -}

{- rewriting is a quasi-congruence for application -}
app-cong : ∀{Γ} {K L M N : Γ ⊢ ⋆} → K —↠ L → M —↠ N → K · M —↠ L · N
app-cong Ψ X = —↠-trans (appL-cong Ψ) (appR-cong X)

{- steps are closed under renaming -}
stp-rename : ∀{Γ ∆ A} {ρ : Rename Γ ∆} (M : Γ ⊢ A) {N : Γ ⊢ A}

→ M —→ N
------------------------

→ rename ρ M —→ rename ρ N
stp-rename (λλ M) (ζ ϕ) = ζ (stp-rename M ϕ)
stp-rename (M · ) (ξ1 ϕ) = ξ1 (stp-rename M ϕ)
stp-rename ( · M) (ξ2 ϕ) = ξ2 (stp-rename M ϕ)
stp-rename {ρ = ρ} ((λλ L) · M) β with β { } {rename (ext ρ) L} {rename ρ M}
... — G rewrite rename-subst-commute { }{ }{L}{M}{ρ} = G

{- steps are closed under substitution -}
stp-subst : ∀{Γ ∆ A} {σ : Subst Γ ∆} {M M′ : Γ ⊢ A}

→ M —→ M′

-----------------------

→ subst σ M —→ subst σ M′

stp-subst (ξ1 ϕ) = ξ1 (stp-subst ϕ)
stp-subst (ξ2 ϕ) = ξ2 (stp-subst ϕ)
stp-subst {σ = σ} (β { } {L} {M}) with β { } {subst (exts σ) L} {subst σ M}
... — G rewrite subst-commute { }{ }{L}{M}{σ} = G
stp-subst {σ = σ} (ζ ϕ) = ζ (stp-subst {σ = exts σ} ϕ)

{- parallel substitution many-step -}
—↠s : ∀{Γ ∆} → Subst Γ ∆ → Subst Γ ∆ → Set
—↠s {Γ}{∆} σ τ = ∀{A} → (x : Γ ∋ A) → σ x —↠ τ x

{- applying parallel substitution many-step to term yields many-step -}
trm-subst : ∀{Γ ∆ A} {σ τ : Subst Γ ∆}

→ σ —↠s τ
→ (M : Γ ⊢ A)

-----------------------

→ subst σ M —↠ subst τ M
trm-subst R (‘ x) = R x
trm-subst {σ = σ} {τ = τ} R (λλ M) = abs-cong (trm-subst exts-rews M) where
{- many-step closed under renaming -}
rew-rename : ∀{Γ ∆ A} {ρ : Rename Γ ∆} {M N : Γ ⊢ A}

→ M —↠ N
------------------------

→ rename ρ M —↠ rename ρ N
rew-rename {ρ = ρ} (M ■) = (rename ρ M) ■

rew-rename {ρ = ρ} (M —→〈 ϕ 〉 Ψ) = rename ρ M —→〈 stp-rename ϕ 〉 rew-rename Ψ
{- extension lemma for parallel substitution many-steps -}
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exts-rews : ∀{B} → exts σ {B = B} —↠s exts τ
exts-rews Z = (‘ Z) ■

exts-rews (S x) = rew-rename (R x)
trm-subst R (L · M) = app-cong (trm-subst R L) (trm-subst R M)

{- applying singleton substition many-step to many-step yields many-step -}
rew-rew : ∀{Γ} {M N : Γ , ⋆ ⊢ ⋆ } {K L : Γ ⊢ ⋆ }

→ M —↠ N
→ K —↠ L

--------------------

→ M [ K ] —↠ N [ L ]
rew-rew {Γ} {K = K} {L} Ψ X = rews-subst Ψ where
{- lifting many-step to a singleton substitution many-step -}
rews-zero : subst-zero K —↠s subst-zero L
rews-zero Z = X
rews-zero (S x) = (‘ x) ■

{- applying parallel substition many-step to many-step yields many-step -}
rews-subst : ∀{A} {M N : Γ , ⋆ ⊢ A} → M —↠ N

→ subst (subst-zero K) M —↠ subst (subst-zero L) N
rews-subst (M ■) = trm-subst rews-zero M
rews-subst ( —→〈 ϕ 〉 Ψ) = —→〈 stp-subst ϕ 〉 (rews-subst Ψ)

{- Part II -}

{- beta is shown to have the Z property, taking the function -}
{- mapping a term to the result of its maximal multi-step, -}
{- i.e. full development, as bullet and showing that -}
{- satisfies upperbound (condition 1) and monotonic (condition 2) -}
{- for beta steps. based on Loader 98 and van Oostrom 21. -}
{- (these results may replace the Confluence section of plfa) -}

{- take full developments for bullet map; gross/takahashi/loader -}
• : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A
(‘ x)• = ‘ x
(λλ M)• = λλ (M •)
((λλ M) · N)• = M • [ N • ]
(M · N)• = (M •) ·(N •)

{- bullet is extensive -}
extensive : ∀ {Γ A} → (M : Γ ⊢ A) → M —↠ M •
extensive (‘ ) = ■

extensive (λλ M) = abs-cong (extensive M)
extensive ((λλ M) · N) = —→〈 β 〉 rew-rew (extensive M) (extensive N)
extensive (‘ · N) = appR-cong (extensive N)
extensive (L · M · N) = app-cong (extensive (L · M)) (extensive N)

{- bullet gives upper bound to co-initial steps (first condition of Z) -}
upperbound : ∀ {Γ} → {M N : Γ ⊢ ⋆}

→ M —→ N
--------
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→ N —↠ M •
upperbound { } {λλ } (ζ ϕ) = abs-cong (upperbound ϕ)
upperbound { } {(‘ ) · } { } (ξ2 ϕ) = appR-cong (upperbound ϕ)
upperbound { } {(λλ ) · M} {((λλ ) · M)} (ξ1 (ζ ϕ)) = —→〈 β 〉 rew-rew (upperbound ϕ) (extensive M)
upperbound { } {(λλ L) · } {.((λλ L) · )} (ξ2 ϕ) = —→〈 β 〉 rew-rew (extensive L) (upperbound ϕ)
upperbound { } {(λλ L) · M} {.(subst (subst-zero M) L)} β = rew-rew (extensive L) (extensive M)
upperbound { } { · · M} {.( · M)} (ξ1 ϕ) = app-cong (upperbound ϕ) (extensive M)
upperbound { } {K · L · } {.( · · )} (ξ2 ϕ) = app-cong (extensive (K · L)) (upperbound ϕ)

{- bullet commutes with renaming -}
rename-bullet : ∀{Γ ∆} (ρ : Rename Γ ∆) {A} (M : Γ ⊢ A) → rename ρ (M •) ≡ rename ρ M •
rename-bullet (‘ x) = refl
rename-bullet ρ (λλ M) = cong λλ (rename-bullet (ext ρ) M)
rename-bullet ρ ((‘ x) · M) rewrite rename-bullet ρ M = refl
rename-bullet ρ ((λλ L) · M) rewrite sym (rename-subst-commute { } { } {L •} {M •} {ρ})
rewrite rename-bullet ρ M rewrite rename-bullet (ext ρ) L = refl

rename-bullet ρ (K · L · M) = cong2 · (rename-bullet ρ (K · L)) (rename-bullet ρ M)

{- bullet commutes with extension -}
exts-bullet : ∀{Γ ∆} {σ τ : Subst Γ ∆}

→ ((x : Γ ∋ ⋆) → τ x ≡ σ x •)
----------------------------------------

→ (x : Γ , ⋆ ∋ ⋆) → exts τ x ≡ exts σ x •
exts-bullet eq Z = refl
exts-bullet {σ = σ} eq (S x) rewrite (eq x) = rename-bullet S (σ x)

{- rhs lemma for parallel substitution -}
rhss : ∀{Γ ∆} (M : Γ ⊢ ⋆) {σ τ : Subst Γ ∆} → ((x : Γ ∋ ⋆) → τ x ≡ σ x •)

-----------------------------

→ subst τ (M •) —↠ (subst σ M)•
rhss (‘ x) eq rewrite (eq x) = ■

rhss (λλ M) eq = abs-cong (rhss M (exts-bullet eq))
rhss ((‘ x) · M) {σ} eq rewrite (eq x) = —↠-trans
(appR-cong (rhss M eq)) (app-bullet (σ x) (subst σ M)) where
{- auxiliary rhs/monotonicity lemma for application -}

app-bullet : ∀{Γ} (L M : Γ ⊢ ⋆) → L • · M • —↠ (L · M)•
app-bullet (‘ ) = ■

app-bullet (λλ ) = ( —→〈 β 〉 ■)
app-bullet ( · ) = ■

rhss ((λλ L) · M) {τ = τ} eq rewrite (sym (subst-commute {N = L •} {M •} {τ})) =
rew-rew (rhss L (exts-bullet eq)) (rhss M eq)

rhss (K · L · M) eq = app-cong (rhss (K · L) eq) (rhss M eq)

{- bullet monotonic for steps (second condition of Z) -}
monotonic : ∀{Γ} → {M N : Γ ⊢ ⋆}

→ M —→ N
----------

→ M • —↠ N •
monotonic (ζ ϕ) = abs-cong (monotonic ϕ)
monotonic { } {(‘ ) · } {(‘ ) · } (ξ2 ϕ) = appR-cong (monotonic ϕ)
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monotonic {Γ} {(λλ M) · N} {.(subst (subst-zero N) M)} β = rhss M bullet-zero where
{- bullet commutes with lifting terms to substitutions -}
bullet-zero : (x : Γ , ⋆ ∋ ⋆) → subst-zero (N •) x ≡ subst-zero N x •
bullet-zero Z = refl
bullet-zero (S x) = refl

monotonic { } {(λλ ) · } {(λλ ) · } (ξ1 (ζ ϕ)) = rew-rew (monotonic ϕ) ( ■)
monotonic { } {(λλ M) · } {.((λλ M) · )} (ξ2 ϕ) = rew-rew (M • ■) (monotonic ϕ)
monotonic { } { · · } {(λλ ) · } (ξ1 ϕ) = —↠-trans (appL-cong (monotonic ϕ)) ( —→〈 β 〉 ■)
monotonic { } { · · } {(‘ ) · } (ξ1 ϕ) = appL-cong (monotonic ϕ)
monotonic { } { · · } { · · } (ξ1 ϕ) = appL-cong (monotonic ϕ)
monotonic { } { · · } { · · } (ξ2 ϕ) = appR-cong (monotonic ϕ)

{- bullet is monotonic for rewrites (abstract from Z) -}
rew-monotonic : ∀{Γ} → {M N : Γ ⊢ ⋆}

→ M —↠ N
----------

→ M • —↠ N •
rew-monotonic ( ■) = ■

rew-monotonic ( —→〈 ϕ 〉 Ψ) = —↠-trans (monotonic ϕ) (rew-monotonic Ψ)

{- Barendregt’s Strip Lemma for beta (abstract from Z) -}
strip : ∀{Γ} {L M N : Γ ⊢ ⋆}

→ L —→ M
→ L —↠ N

-----------------------------------

→
∑

[ K ∈ Γ ⊢ ⋆ ] (M —↠ K) × (N —↠ K)
strip {L = L} {N = N} ϕ Ψ = 〈 N • ,

〈 —↠-trans (upperbound ϕ) (rew-monotonic Ψ) , extensive N 〉 〉

{- confluence of beta (abstract from Z) -}
confluence : ∀{Γ} {L M N : Γ ⊢ ⋆}

→ L —↠ M
→ L —↠ N

------------------------------------

→
∑

[ K ∈ Γ ⊢ ⋆ ] (M —↠ K) × (N —↠ K)
confluence ( ■) X = 〈 , 〈 X , ■ 〉 〉
confluence ( —→〈 ϕ 〉 Ψ) X =

〈 , 〈 proj1 d2 , —↠-trans (proj2 d1) (proj2 d2) 〉 〉 where
d1 = proj2 (strip ϕ X)
d2 = proj2 (confluence Ψ (proj1 d1))
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