
α-avoidance1

Samuel Frontull #2

University of Innsbruck, Austria3

Georg Moser #4

University of Innsbruck, Austria5

Vincent van Oostrom6

Independent researcher, Netherlands7

Abstract8

When substitutions and bindings interact, there is a risk of undesired side effects if the substitution9

is applied naïvely. The λ-calculus captures this phenomenon concretely, as β-reduction may require10

the renaming of bound variables to avoid variable capture. In this paper we introduce α-paths as11

an estimation for α-avoidance, roughly expressing that α-conversions are not required to prevent12

variable capture. These paths provide a novel method to analyse and predict the potential need13

for α in different calculi. In particular, we show how α-path characterises α-avoidance for several14

sub-calculi of the λ-calculus like (i) developments, (ii) affine/linear λ-calculi, (iii) the weak λ-calculus,15

(iv) µ-unfolding and (iv) finally the safe λ-calculus. Furthermore, we study the unavoidability16

of α-conversions in untyped and simply-typed λ-calculi and prove undecidability of the need of17

α-conversions for (leftmost–outermost reductions) in the untyped λ-calculus. To ease the work with18

α-paths, we have implemented the method and the tool is publicly available.19

2012 ACM Subject Classification Theory of computation → Program analysis20

Keywords and phrases λ-calculus, variable capture, α-conversion, developments, safe λ-calculus,21

undecidability22

Digital Object Identifier 10.4230/LIPIcs.FSCD.2023.1823

Supplementary Material Software (Alpha Avoidance Tool): https://tcs-informatik.uibk.ac.at/24

tools/alpha/25

1 Introduction26

Substitution is a fundamental concept in computer science. It is, for example, a core operation27

for computation in the λ-calculus, applied by compilers to optimise programs and, in general,28

key for reasoning with logical expressions. As is well-known, undesired side effects may arise29

when substitution and bindings interact, if the substitution is naïvely applied. Here, we study30

substitution and in particular the need for α-conversion in the context of the λ-calculus. We31

emphasise, however, that the same idea could be applied in different fields, see below.32

In the λ-calculus, the contraction of a redex by means of naïve substitution may cause33

variable capture where a variable originally occurring free ends up being bound in the resulting34

term due to a name collision. Variable captures may lead to inconsistent results and invalidate35

the confluence property. Such fallacies have occurred already quite early in the literature, for36

example in work from the 1940s by Newman [29]. As discovered by Schroer, and as presented37

by Rosser in his review [33], Newman’s proof that the projection axioms were satisfied for38

the λI-calculus was erroneous. The purported proof contained an α-problem; cf. [30], [29,39

Remark 6.14(ii)] and [13, Sect. 5.2].140

1 As far as we know this problem is the α-α-problem, that is, this is the first α-problem in the literature
on the λ-calculus.

© Samuel Frontull and Georg Moser and Vincent van Oostrom;
licensed under Creative Commons License CC-BY 4.0

8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023).
Editors: Marco Gaboardi and Femke van Raamsdonk; Article No. 18; pp. 18:1–18:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Samuel.Frontull@uibk.ac.at
https://orcid.org/0009-0004-1230-4666
mailto:Georg.Moser@uibk.ac.at
https://orcid.org/0000-0001-9240-6128
https://orcid.org/0000-0002-4818-7383
https://doi.org/10.4230/LIPIcs.FSCD.2023.18
https://tcs-informatik.uibk.ac.at/tools/alpha/
https://tcs-informatik.uibk.ac.at/tools/alpha/
https://tcs-informatik.uibk.ac.at/tools/alpha/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 α-avoidance

Since the specific variable names are actually irrelevant (cf. [12]), the result of an evaluation41

should also not be influenced by the specific names. An option is to work with some kind42

unique representatives of α-equivalence classes of λ-term, e.g. with De Bruijn’s λ-terms with43

nameless dummies [12] (see below for more). Though that certainly is a possibility, here we44

stick to Church’s original proposal and work with explicit α-conversion steps, enabling to45

state the main questions addressed in this paper: can α-conversion steps be avoided for a46

λ-term M , by suitably α-converting it up front, say to a term M ′ such that no α-conversion47

step needs to be invoked along any reduction from M ′. Such a characterisation should allow48

for a more efficient reduction, based on naïve substitutions, that applies α-conversion (if at49

all) only on the initial term. In the sequel, by “avoiding α” we mean that we can α-convert50

a λ-term M to some λ-term M ′ so that subsequent α-conversions are not needed in any51

computation from M ′.52

Before proceeding let us relate the question addressed here to the so-called Variable53

Convention [6] stating that variables may be assumed to be suitably renamed apart in a54

given context. On the one hand, this convention has been widely adopted in the literature.55

On the other hand, examples as in Figure 1, where renaming apart in the initial term does56

not suffice, abound. From that perspective our investigation addresses the question in what57

contexts exactly does the Variable Convention work?58

In the examples presented in Figure 1, α cannot be avoided, no matter how the variables59

are (re)named initially. Without the explicit α-conversion steps and substituting naïvely,60

would lead to variable capture and give rise to the λ-terms λzz.z z and λcxy.c x x respectively,61

which do not have the intended semantics. (Hence omitting the α-conversion steps would62

break the Church–Rosser property.) Note that though the example on the left in Figure 163

cannot be (simply) typed, the example on the right can, showing that type regimes in general64

do not guarantee that α can be avoided.65

Contributions.66

As already indicated in Figure 1, α-conversion may be unavoidable in the (untyped)67

λ-calculus. This motivates the question about the algorithmic feasibility of the problem.68

We establish that (for leftmost–outermost reductions) the problem is undecidable.69

We present a sound characterisation for α-avoidance via α-paths. A-paths give a novel70

perspective on α; they can be utilised as a tool to predict for a given λ-term M the71

potential need for α-conversion, i.e. the need for α-conversion in any step N →β L after72

any β-reduction M →∗
β N . To that end, α-paths combine two known ideas.73

Foremost, α-paths build on the notion of legal path, cf. [3], characterising the so-called74

virtual redexes of a term M , where a virtual redex of M is a redex that can arise in any75

term N along any reduction M →∗
β N . Legal paths arose from Girard’s geometry of76

interaction; see [2] for various characterisations of them attesting to their canonicity. The77

intuition for them employed here, is that a redex R in N is represented in the graph of N78

by a single-edge-path from an application node to an abstraction node, and that pulling79

that path back along the reduction M →∗
β N gives rise to a path in M , the legal path80

representing the redex R in N as a virtual redex in M .81

The intuition then is that α-conversion is potentially needed in M when there is a virtual82

redex in M , that is, a redex in N , whose contraction needs α-conversion. Since also83

the need for α-conversion can be characterised by means of paths, namely by so-called84

binding-capturing chains [17, 7], we arrive at our notion of α-path, combining legal paths85

with binding-capturing chains.86

To ease work with α-paths, we have implemented the method; the tool is publicly available.87

S. Frontull et al. 18:3

(λx.x x) (λyz.y z)
→β (λyz.yz) (λyz.y z)
→β λz.(λyz.y z) z

→α λz.(λyz′.y z′) z

→β λzz′.z z′

(λfc.f (f c)) (λzxy.z y x)
→β λc.(λzxy.z y x) ((λzxy.z y x) c)
→β λc.(λzxy.z y x) (λxy.c y x)
→β λc.(λxy.(λxy.c y x) y x)
→α λc.(λxy.(λxy′.c y′ x) y x)
→β λcxy.(λy′.c y′ y) x

→β λcxy.c x y

A A

B

B

C

C

A...duplication B...redex creation C...open redex contraction

Figure 1 α is needed in the λ-calculus.

We exemplify the versatility of α-paths through various important sub-calculi of the88

λ-calculus, listed below. The first three calculi arise from a careful analysis of the89

canonical example illustrating why α-conversion is unavoidable in the λ-calculus, the λ-90

term (λx.x x) (λyz.y z). As illustrated in Figure 1, its reduction to normal form comprises91

first a duplicating step A (the subterm λyz.y z is duplicated), then a creating step B92

(creating the redex (λyz.y z) z), and finally a non-closed step C (contracting an open93

redex (λyz.y z) z, containing the free variable z bound outside). Somewhat surprisingly,94

forbidding one of these three types of steps suffices for α-avoidance.95

1. Developments [14] are reductions in which no created redexes are contracted. Stated96

differently, in a development from M only residuals of redexes in M (no virtual redexes)97

are contracted. Intuitively, α can then be avoided since all residuals of a given redex98

are disjoint along a development.99

Developments [14, 6] feature prominently in the λ-calculus since its inception. They100

form the basis for the proof that β-reduction has the Church–Rosser property, more101

precisely, that parallel β-reduction has the diamond property and satisfies the cube102

law, using that all developments are finite (unlike arbitrary reductions).103

2. The linear (affine) λ-calculus [21], forbids duplication. That is achieved formally by104

restricting term-formation, requiring the variable x to occur free exactly (at most) once105

in M in an abstraction term λx.M . Intuitively, α can then be avoided since variables106

persist linearly along reductions.107

Though the linear λ-calculus [21, 23, 27, 38] had been studied before, it rose to108

prominence after the introduction of linear logic, via the conntection between linear109

λ-terms and MLL-proofnets, with abstractions and applications corresponding to pars110

and tensors. Linearity affords nice properties, e.g. termination and simple typability.111

3. The weak λ-calculus [39] forbids to contract open redexes. Intuitively, α is then avoided112

since when substituting by closed terms only, there’s no risk of variable capture either.113

Weak reduction [37, 31, 1, 39, 8, 5] forms the basis of functional programming languages114

such as Haskell that evaluate to weak head normal form. Indeed, the fact that α-115

conversion can then be avoided was stated as an explicit motivation in [31], and makes116

that functional programs can be represented as orthogonal term rewrite systems and117

weak reduction can be optimally implemented via Wadsworth’s graph reduction. (Weak118

reduction is often paraphrased as ‘no reduction under a λ’, but that restriction is119

undesirable as it breaks the Church–Rosser property.)120

These three examples are mainly methodological, since the fact that α can be avoided for121

them is well-known. We also present two important but less well-known examples.122

4. The modal µ-calculus [25] has unfolding rules for least (µ) and greatest (ν) fixed-points123

in its formulas. Intuitively, α can then be avoided for the same reason it can for124

developments, namely that unfolding does not create new redexes [17, 7]. Here we show125

FSCD 2023

18:4 α-avoidance

that this can be obtained via α-paths, under a standard embedding of modal µ-formulas126

in the λ-calculus, representing unfolding using Turing’s fixed-point combinator.127

Though the literature on the modal µ-calculus is rich, only recently issues related128

to α-conversion seem to have been addressed [26]. The main point of this example129

is to suggest that the technology developed here for avoiding α in the λ-calculus,130

can be transferred to other calculi with binding, in mathematics, logic, programming131

languages, linguistics, music theory, etc..132

5. In the safe λ-calculus [10, 9, 11] the occurrences of (free) variables are restricted133

according to the order of their type. Intuitively, this restriction on the order of the134

types of the variables can be transferred to the variables, guaranteeing that α can be135

avoided. (Note that as observed above, typing disciplines, say simple typing, in general136

do not suffice to be able to avoid α.)137

Analysing the safe λ-calculus as presented in [9, 11] using our tools, we found that the138

claim that α could be avoided in it, was not entirely correct, provoking the further139

analysis, and a proposal for slight amendations, presented below.140

Related Work.141

In the classical literature on the λ-calculus the focus was not on α-conversion. However,142

when the λ-calculus started being used as a tool, α-conversion had to be addressed. We143

briefly discuss two important strands of research. One approach is to abstract α away144

and to exclusively work with (representatives of) α-equivalence classes of λ-terms.2 De145

Bruijn’s lambda notation with nameless dummies [12] are an example widely adopted in146

implementations. This typically side-steps the issue but does not resolve it: the cost of α147

is now inextricably hidden in the cost of β, and α-conversion disappears in the notation148

with nameless dummies only to resurface in the form of reindexing. Moreover, any such149

representation runs the risk of creating a gap between the theory in the literature and the150

representation.3 Another approach is to bring α-conversion about in another way. The151

nominal approach [19] is a prominent exponent of this, recasting the notion of variable being152

bound via the dual notion of a variable being free for, allowing to recast α-conversion via153

the classical notion of permutation. We stress that α-conversion resurfaces in this setting,154

but unlike the modulo-approach now in an explicit form as in our case, making it interesting155

to study our question for it (and then compare both). We leave that to further research.156

Finally, we mention that several other decision problems about α have been considered157

by Statman, which were reported in [35]. This work is based on [18].158

Outline.159

This paper is structured as follows. In the next section, we recall fundamental concepts160

and notions. In Section 3, we motivate the definition of α-paths and provide a syntactic161

proof that developments can avoid α by using of a restricted form of α-paths. The latter162

are generalised in Section 4, where we establish the main contribution of this work, a sound163

characterisation of α-avoidance via α-paths. Section 5 applies this characterisation to affine,164

weak and the safe λ-calculus. Finally, we conclude in Section 6.165

2 Higher-Order Abstract Syntax goes one (big) step further by working with simply typed αβη-equivalence
classes of terms.

3 The same holds for programming; everyone will have encountered inscrutable error-messages on De
Bruijn-indices representing variables.

S. Frontull et al. 18:5

Table 1 Capture-avoiding and capture-permitting substitution.

M Jx := NK (capture-avoiding) [x := N] (capture-permitting)
x N N

y y y

e1 e2 e1Jx := NK e2Jx := NK e1[x := N] e2[x := N]
λx.e λx.e λx.e

λy.e λy.eJx := NK if y ̸∈ FV (N) λy.e[x := N]
λz.eJy := zKJx := NK else with z fresh for e and N .

2 Preliminaries166

We assume acquaintance with the standard definitions of the λ-calculus, cf. [6], but recall167

relevant concepts and notations. We use = to denote syntactic equality of λ-terms, and ≡α168

for equality modulo α. We write FV (M) for the set of free variables in a λ-term M and169

BV (M) for the set of bound variables. We distinguish between a capture-avoiding and a170

capture-permitting substitution, cf. Table 1. The capture-avoiding substitution, denoted171

as MJx := NK, deals with a potential variable capture, whereas the capture-permitting172

substitution, denoted as M [x := N], naïvely substitutes. If MJx := NK ≡α M [x := N]173

then we say that the substitution of N for x in M is α-free. The single-step β-reduction174

contracting a redex (λx.M)N in some arbitrary context, is said to be α-free, if the applied175

substitution is α-free.176

▶ Definition 1. A reduction sequence starting from a λ-term M is said to be α-free, if each177

β-reduction step is α-free. A λ-term M has α-free simulations, if there exists an α-equivalent178

λ-term N such that every reduction sequence starting from N is α-free. In such case we say179

that N avoids α. We say that we can avoid α in a calculus, if every term in this calculus has180

α-free simulations.181

The reduction sequence illustrated in Figure 1 is not α-free. The λ-term (λx.x x) (λyz.y z)182

does not have α-free simulations, which shows that α cannot be avoided in the pure λ-calculus.183

The λ-term (λfx.f (f x)) (λfx.f (f (f x))), denoting the exponentiation 32 via Church numer-184

als, has α-free simulations as the α-equivalent λ-term (λfy.f (f y)) (λfx.f (f (f x))) avoids185

α. (This can also be checked with our tool, see Listing 1 in Section 4 below).186

The position in a λ-term is a finite sequence of 1s and 2s. The set of positions of a λ-term187

M is denoted as Pos(M). We write M |p for the subterm at position p in M and M(p) for188

the symbol at position p (the head-symbol of M |p), where M(p) ∈ {x,@, λx} for some x. In189

the following we may write sp when we depict a specific symbol s of a λ-term M at position190

p, s = M(p), whenever both the position and the symbol are of interest.191

M |p :=

M if p = ϵ

N |p′ if M = λx.N and p = p′1
Ni|p′ if M = N1 N2 and p = p′i

192

A position p is a prefix of a position q, if q = pq′ for some position q′. We use the notation193

p ⪯ q to denote that p is a prefix of q and p ≺ q to denote that p is a strict prefix of q (q′ is194

non-empty). Two positions p, q are said to be parallel, denoted by p ∥ q, if p ⪯̸ q ∧ q ⪯̸ p. A195

position p is set to be left of a position q, written as p ∥l q, if p = s · 1 · p′ and q = s · 2 · q′.196

We define the trace relation ▶ to be the relation between positions in the source and in the197

target of a β-step s →β t contracting a redex at position o (cf. [36, Section 8.6.1]):198

FSCD 2023

18:6 α-avoidance

M
N

@p

λxp1

λy

@

x y

y

xp1s1t

yp2q

λyp1s

1

3

2

4

Figure 2 Substitution dynamics leading to variable capture.

(context) p ▶ p if o is not prefix of p,199

(body) o11p ▶ op if p ̸= ϵ and p ̸= q,200

(arg) o2p ▶ oqp for all positions q, such that o11q is bound by o1.201

A redex in a term t at position q is called a residual of a redex in some origin s (s →β . . . →β t),202

if p ▶ . . . ▶ q and s|p is a redex (cf. [15, Chapter 4, Section 4]).203

A path σ = (p1, p2, . . . , pn) in a λ-term M is a sequence of positions in Pos(M). The204

length |σ| of a path σ is the number of positions minus 1. An edge is a path of length 1.205

The reversal of a path σ is denoted by (σ)r. Two paths σ = (p1, p2, . . . , pn) and206

ψ = (q1, q2, . . . , qn) are said to be composable, if pn = q1. We write σ · ψ to denote the207

composition of two (composable) paths σ, ψ resulting in (p1, p2, . . . , pn, q2, . . . , qn).208

A path in M starting at position p and ending at position q is of type:209

1) @–v, if M(p) = @ and M(q) = x for some x.210

2) @–λ, if M(p) = @ and M(q) = λx for some x.211

3) @–@, if M(p) = @ and M(q) = @.212

4) v–v, if M(p) = x and M(q) = y for some x, y.213

5) v–λ, if M(p) = x and M(q) = λy for some x, y.214

To illustrate, let M = (λx.x x) (λyz.y z). σ = (ϵ, 2, 2112) is a @–v-path in M with |σ| = 2.215

σ and (σ)r are composable and the path (ϵ, 2, 2112, 2, ϵ) resulting from their composition216

σ · (σ)r is of type @–@.217

3 Developments are α-avoiding218

Recall that reductions of residuals, also known as developments, are finite. This was proved219

already in 1936 by Church–Rosser for the λI-calculus [14] and then generalised to the full220

λ-calculus by Schroer [34] and independently by Hindley [20]. It is well known that in finite221

developments α-renaming can be avoided, cf. [24]. Intuitively, this is due to the fact that222

in developments the residuals of a redex-pattern remain disjoint [22]. Thus, if all binders223

are initially properly renamed apart, α can be avoided. To prepare the ground for our main224

contribution—α-paths—we sketch a purely syntactic proof of this result in this section.225

We start by giving an intuition for how a capturing-potential can be characterised by226

paths. A naïve substitution leads to a variable capture whenever we227

(i) naïvely contract a redex (λx.M) N where228

(ii) some variable y occurring free in N229

(iii) is moved into M , where some x free in M230

S. Frontull et al. 18:7

(iv) is in the scope of a λy.231

Each of these conditions can be represented via edges in the abstract syntax tree (AST),232

as formalised below and illustrated in Figure 2 for the redex (λx.M)N . More precisely, we233

have an a-edge (p2q, p), an r-edge (p, p1), a b-edge (p1, p1s1t) and a c-edge (p1s1t, p1s).234

Let M be a λ-term. We conceive the AST of M as a graph and define four additional235

types of edges for M :236

1. (r-edge) A redex-edge (p, p1) connects an @-node at position p to its left son at237

position p1, if M(p1) = λx for some x.238

2. (a-edge) An application-edge (p2q, p) connects a variable x at position p2q to an239

@-node at position p, if x is free in M |p2.240

3. (b-edge) A binding-edge (p, p1q) connects a λx at position p to a variable y at241

position p1q, if x = y and y is free in M |p1.242

4. (c-edge) A capturing-edge (p1q, p) connects a variable y at position p1q to a λx243

at position p to, if x ̸= y and y is free in M |p1.244

We add the a-, r-, b- and c-edges as actual edges to the graph of M in the standard way.245

We call such a graph the α-graph of a λ-term M , denoted as Gα(M). From the definition of246

an r-edge, we immediately obtain that for any r-edge in Gα(M) with the source at position247

p, M |p is a redex.248

▶ Definition 2. Let M be a λ-term, a an a-edge, r an r-edge and b a b-edge in Gα(M) with249

a, r and r, b composable. We call the v–v-path σarb = a · r · b an arb-path of M .250

yp

a-edge

@ @

r-edge

λx λx

b-edge

xq

251

Let p be the position of the starting v-node y and q the position of the ending v-node of252

an arb-path φ. Then we have q ∥l p.253

The example term from Figure 3 illustrates an example where an outermost reduction254

strategy needs α in the second reduction step. To characterise the need for α after the255

contraction of one or multiple redexes, arbic-paths are introduced next.256

▶ Definition 3. The set of arbic-paths of a λ-term M is inductively defined as follows.257

(base case) Let σarb be an arb-path of M and c a c-edge in Gα(M) with σarb, c composable.258

Then the v–λ–path σarb · c is an arbic-path of M .259

(arb-composition) Let σarb be an arb-path and ψ an arbic-path of M with σarb, ψ com-260

posable. Then the v–λ–path σarb · ψ is an arbic-path of M .261

x

a-edge r-edge b-edge

(
a-edge r-edge b-edge

)∗

c-edge

λy

262

From Definition 3 we see that arbic-paths are non-empty sequences of arb-paths followed263

by a c-edge (σ+
arb · c). As already remarked, an arb-path connects the occurrence of a variable264

to the occurrence of another variable at its left. By consequence arbic-paths are acyclic and the265

set of arbic-paths of a λ-term M is finite. The paths σ0 = 112 → 11 → 111 → 111111 → 11111266

and σ1 = 2 → ϵ → 1 → σ0 are arbic-paths for the λ-term illustrated in Figure 3. Specialising267

arbic-paths such that the names of the initial variable and of the final abstraction are equal,268

we obtain a characterisation of the need for α in some reduction sequence.269

▶ Definition 4 (arbic α-path). Let M be a λ-term and ψ an arbic-path of M . If ψ starts270

with a variable x and ends with a λ-node λy where x = y, then ψ is called an arbic α-path.271

FSCD 2023

18:8 α-avoidance

@ϵ

λz1

@11

λx111

@1111

λy11111

x111111

x11112

z112

y2

leftmost–outermost reduction
(λz.(λx.(λy.x) x) z) y

→β (λx.(λy.x) x) y

→β (λy′.y) x

→β y

leftmost–innermost reduction
(λz.(λx.(λy.x) x) z) y

→β (λz.(λx.x) z) y

→β (λz.z) y

→β y

Figure 3 Leftmost–outermost needs α.

The path σ1 as defined above is an arbic α-path for the λ-term illustrated in Figure 3.272

Now, essentially by construction, we can see that if there is no arbic α-path in Gα((λx.M)N)273

starting at a free variable in N and ending in M , then MJx := NK ≡α M [x := N]. We274

emphasise, that we only claim α-equivalence and not syntactic equivalence (=) of MJx := NK275

and M [x := N]. To clarify, let (λx.M)N be a redex with M = λy.y and N = y. Then276

MJx := NK = λz.z and M [x := N] = λy.y. We have MJx := NK ≡α M [x := N], but277

MJx := NK ̸= M [x := N]. Hence, α-equivalence is the strongest property that we can278

conclude.4279

▶ Lemma 5. Let s →β t. If Gα(s) contains no arbic α-path, then Gα(t), where the set of280

r-edges is restricted to those denoting residuals, also does not.281

Proof. We write ⟨Gα(t)⟩ for the sub-graph of Gα(t), where the set of r-edges is restricted282

to those denoting residuals of s. Since there are no arbic α-paths in Gα(s), the β-step can283

be performed by means of capture-permitting substitution (no variable capture). We have284

s = C[(λx.M)N] and t ≡α C[M [x := N]] for some context C, body M and argument N ,285

with (λx.M)N being the contracted redex at position o. We prove the lemma by relating286

the edges in ⟨Gα(t)⟩ to edges and paths in Gα(s) and making a distinction according to the287

components as they appear in the source and the target. As done in [17], we use primed288

variables (p′, q′) to range over positions in the target term t, indicating the positions they289

trace back to in the source term s, by unpriming (p, q).290

Consider an a- or a c-edge from p′ to q′ in ⟨Gα(t)⟩ where p′ denotes the position of a291

variable y and q′ the position of an application (in the case of an a-edge) or an abstraction292

(in the case of a c-edge). We have q′ ≺ p′ and the variable y at t(p′) occurs free in t|q′ . We293

distinguish following cases:294

p′, q′ in the same component: we have the same edge from p to q in Gα(s).295

q′ in the context and p′ in the body: then x ̸= y (otherwise the y would have been296

replaced by N) and we have the same edge in Gα(s) with 11 inserted at o.297

q′ in the context and p′ in the argument: there is no variable capture so s(p) must occur298

free in s|q. Therefore, we have the same edge from p to q in Gα(s).299

4 We stick to the standard definition of substitution MJx := NK, which renames even if the variable x to
be replaced does not occur in the body M [6]. We note that, if we were to adapt the substitution so that
it is not applied when the argument is erased (x ̸∈ FV (M)), then we could claim syntactic equivalence.

S. Frontull et al. 18:9

@ϵ

x11 @12

λy121

λz1211

@12111

y121111 z121112

z122
naïve →β

context

body

argument

@ϵ

x11 λz12

@121

z1211 z1212

context

body

argument

Figure 4 A b-edge that traces back to an arbic α-path.

q′ in the body and p′ in the argument: the origin of the a-edge/c-edge is an arb-path300

from p to qq1, for some q1, followed by an a-edge/c-edge from qq1 to q in Gα(s).301

Given a b-edge from q′ to p′ in ⟨Gα(t)⟩. p′ denotes the position of the bound variable y, q′
302

the position of the binder λy. We have q′ ≺ p′ and distinguish following cases:303

p′, q′ in the same component: then we have a b-edge from q to p in Gα(s).304

q′ in the context and p′ in the body: we have x ̸= y and a b-edge in Gα(s) with 11305

inserted at o.306

q′ in the context and p′ in the argument: there is no variable capture so s(p) must occur307

free in s|q. Therefore, we have a b-edge from q to p in Gα(s).308

q′ in the body and p′ in the argument: such a b-edge would map back to an arbic α-path309

from p to q in Gα(s), which is excluded by the assumption (Figure 4 illustrates an310

example).311

For the r-edges (p′, p′1) in ⟨Gα(t)⟩ we make the following case distinction:312

p′ and q′ are in the same component: then we have an r-edge from p to q in Gα(s).313

in all other cases: such an r-edge would denote a created redex in t. We have no such314

r-edge in ⟨Gα(t)⟩.315

We have seen that a r-edges and b-edges in ⟨Gα(t)⟩ map back to an edge of the same type316

in Gα(s). a-edges and c-edges map back to a path of shape σ∗
arb · e, where e denotes an317

edge of the same type and σarb an arb-path in Gα(s). An arbic α-path in Gα(t) has the318

following shape (a′
1, r

′
1, b

′
1, . . . , a

′
n, r

′
n, b

′
n, c

′), where xi denotes an x-edge (pi, qi). If we replace319

the edges in this path by the edges and paths they map back to we get a path of the shape320

(σ∗
arb1

· a1, r1, b1, . . . , σ
∗
arbn

· an, rn, bn, σ
∗
arb · c), which would be an arbic α-path in Gα(s). ◀321

Based on the lemma, we obtain the characterisation of α-freeness via arbic α-paths. Let322

M be a λ-term. If M contains no arbic α-path, then every development from M is α-free.323

Arbic α-paths can also witness to the capture-potential for the term shown in Figure 3, where324

α is needed in the second reduction step. Note that with these arbic α-paths we do not yet325

characterise variable captures that result from the contraction of created redexes. This we326

will take up in Section 4 below, where we make use of legal paths, cf. [3].327

In sum, α-paths allow us to reprove the well-known result that in finite developments328

α-conversions potentially only need to be performed on the initial term (and are thus cheap).329

▶ Theorem 6. In finite developments α can be avoided.330

FSCD 2023

18:10 α-avoidance

(a) Base case (b) @-composition (c) λ-composition

Figure 5 Well-balanced paths [3].

Proof. Let M be a λ-term. By the above, if M contains no arbic α-path, then every331

development from M is α-free. Thus, it remains to observe that for every λ-term M there332

exists a λ-term N where M ≡α N , such that N does not contain any arbic α-paths. The333

latter follows as all binders in M can trivially be renamed apart. ◀334

This result is not new, as noted above, but illustrates how α-paths give a new perspective335

on this problem and therefore offer a different way to reason about α.336

4 α-paths—A Sound Characterisation For α337

In this section, we generalise arbic α-paths so that the thus obtained α-paths reflect the338

conditions that necessitate the application of α. For that we also have to characterise the339

need for α that may arise for created redexes. A (sub)term, which is not a redex yet, but340

might become one along reduction, is called a virtual redex, which in turn is characterised341

by legal paths, cf. [3].342

Legal Paths.343

In the following, to keep this paper self-contained, we briefly recall the formal definition of344

legal paths as established in [3]. For motivation and underlying intuitions, we kindly refer345

the reader to [3] and to [4], where the legal paths have been introduced. Legal paths start346

at an @-node and connect via a path the @-node with all the subterms with which it can347

interact in some reduction sequence. Legal paths ending at a λ-node therefore characterise a348

virtual redex. Legal paths are defined via the well-balanced paths.349

The set of well-balanced paths (abbreviated as wbp) of a term M is inductively defined350

on Gα(M) as described in the following and illustrated in Figure 5.351

(base case) The path (p, p1) with M(p) = @ is a wbp.352

(@-composition) let ψ,φ be two composable wbps of type @–@ and @–λ, respectively. Then353

ψ · φ · u is a wbp, where u = (p, p1) with p the position of the final abstraction of φ.354

(λ-composition) Let φ = (p, . . . , pn) a wbp of type @–λ and ψ = σa · (σb)r with σa a wbp355

of type @–v ending at position q and σb = (pn, q) a b-edge in Gα(M). Then ψ · (φ)r · u,356

where u = (p, p2), is a wbp.357

Legal paths impose a legality constraint on the well-balanced paths, restricting the call358

and return paths of cycles. Next, we recall the definition of a cycle. Let φ be a wbp. A359

subpath ψ of φ is an elementary @-cycle of ψ (over an @-node) when (i) it starts and ends360

with the argument edge of the @-node and (ii) is internal to the argument N of the application361

corresponding to the @-node (i.e., does not traverse any variable that occurs free in N). The362

set of @-cycles of φ (over an @-node) and of the v-cycles of φ (over the occurrence v of a363

S. Frontull et al. 18:11

variable) is defined inductively, as follows: (i) every elementary @-cycle of ζ is an @-cycle; (ii)364

v-cycle: every cyclic subpath of ζ of the form (v)r · (ϕ)r · ψ · ϕ · v, where ϕ = (p2, . . . , qn) is a365

wbp, ψ is an @-cycle and v = (p1, p2) a b-edge, is an v-cycle; (iii) @-cycle: every subpath ψ366

of ζ that starts and ends with the argument edge of a given @-node, and that is composed of367

subpaths internal to the argument N of @- and v-cycles over free variables of N is an @-cycle368

(over the @-node). As stated by the following proposition @-cycles are always surrounded by369

two wbps of type @–λ, cf. [3].370

▶ Proposition 7 ([3, Corollary 6.2.26]). Let ψ be an @-cycle of ϕ over an @-node. The wbp371

ϕ can be uniquely decomposed as: ϕ = ζ1 λ (ζ2)r @ ψ @ ζ3 λ ζ4,5 where ζ2 (call-path) and ζ3372

(return-path) are wbps of type @–λ.373

Considering the statement of the proposition, the last label of ζ1 and the first label of374

ζ4 are called discriminants. Finally, the legality constraint ensures that the call- and the375

return-path of such cycles coincide.376

▶ Definition 8 ([3, Definition 6.2.27]). A wbp is a legal path if the call and return paths of377

any @-cycle are one the reverse of the other and their discriminants are equal.378

▶ Proposition 9 ([3, Section 6.2.5]). For all (virtual) redexes of a λ-term M there is a legal379

path of type @–λ in M .380

It follows that for any (created) redex along a reduction sequence starting from a λ-term381

M , we have a legal path in M characterising the redex. This path also encodes the reduction382

sequence that leads to its creation, if it is not already a redex in M .383

Characterisation of α-avoidance via α-paths.384

In Section 3, we have seen how arbic α-paths characterise the need for α for developments385

with no redex creation. The α-paths presented in this section are an extension of them and386

allow to characterise the need for α in λ-calculi with redex creation. α-paths are defined on387

the so-called albic-paths that rely on legal paths.6 First, we define alb-paths.388

▶ Definition 10. Let M be λ-term, a an a-edge, l a legal path and b a b-edge in Gα(M)389

with a, l and l, b composable and b, a not composable. We call the v–v-path σalb = a · l · b an390

alb-path of M .391

Second, essentially iterating alb-paths, we obtain the definition of albic-paths. Note that392

each arbic-path is also an albic-path, as each r-edge constitutes a legal path.393

▶ Definition 11. The set of albic-paths of M is inductively defined:394

(base case) let σalb be an alb-path and c a c-edge with σalb, c composable; Then the395

v–λ–path σalb · c is an albic-path.396

(alb-composition) let σalb be an alb-path and ψ an albic-path with σalb, ψ composable.397

Then the v–λ–path σalb · ψ is an albic-path.398

x

a-edge l-path b-edge

(
a-edge l-path b-edge

)∗ . . .

c-edge

λy

399

5 We use the λ- and @-symbol to point out the start- and end-nodes of the different wbps.
6 We call them albic, or (alb)ic, because they consist of i (with i ≥ 1) sequences of alb-paths and a final

c-edge.

FSCD 2023

18:12 α-avoidance

@ϵ

λx1

@11

x111 x112

λy2

λx21

@211

y2111 z2112

(λx.x x) (λyx.y z)
→β (λyx.y z) (λyx.y z)
→β λx.(λyx.y z) z

→β λx.(λx.z z)

(λx.x x) (λyx.y z) is α-free

Figure 6 α-paths overapproximate the need for α.

Finally, based on Definitions 10 and 11 we can define α-paths.400

▶ Definition 12 (α-path). Let ψ be an albic-path of λ-term M . If ψ starts at a variable x401

and ends at a λ-node λy, where x = y, then the v–λ–path ψ is called an α-path.402

Inductively, we can conclude that the absence of α-paths implies that α-avoidance.403

▶ Lemma 13 (α-free). Suppose that there is no α-path in Gα((λx.M)N) starting at a free404

variable in N and ending in M . Then MJx := NK ≡α M [x := N].405

Proof. If there is no α-path, then by Definition 12 there is no albic α-path hence also no406

arbic α-path, as observed above. From this we conclude MJx := NK ≡α M [x := N] by using407

the observation below Definition 4. ◀408

Further, α-path freeness is preserved by β-reduction.409

▶ Lemma 14 (β-invariance). →β preserves α-path-freeness.410

Proof. The proof proceeds the same way as the proof of Lemma 5. We restrict ourselves411

to the most interesting parts here. Again, we use primed variables (p′, q′) to range over412

positions in the target term t, indicating the positions they trace back to in the source413

term s, by unpriming (p, q). Let s →β t. r-edges and b-edges in ⟨Gα(t)⟩ map back to414

an edge of the same type in Gα(s). a-edges and c-edges map back to a path of shape415

σ∗
alb · e, where e denotes an edge of the same type and σalb an alb-path in Gα(s). An α-path416

in t has the following shape (a′
1, l

′
1, b

′
1, . . . , a

′
n, l

′
n, b

′
n, c

′), where xi denotes an x-edge/legal417

path from pi to qi. If we replace a-edges and c-edges by the path the map back to we get418

(σ∗
alb1

· a1, l1, b1, . . . , σ
∗
albn

· an, ln, bn, σ
∗
alb · c), where σ∗

albi
· xi in s connects the same positions419

as the corresponding x-edge in t. It follows that if we have an α-path in t, then we have an420

α-path s. ◀421

▶ Theorem 15. Let M be a λ-term. If M contains no α-path, then M avoids α.422

Proof. Assume M contains no α-path. Due to Lemma 14, α-path freeness is preserved by423

β-reduction. Then it follows by Lemma 13 that capture-permitting substitutions can be424

employed in place of capture-avoiding ones. Thus M avoids α. ◀425

Not every α-path is problematic in the sense that it characterises a variable capture.426

An α-path may predict name collisions that will never occur if the starting variable gets427

substituted before the characterised redex will be contracted. This is the case for the term428

depicted in Figure 6. The α-path 112 → 11 → 111 → 1 → ϵ → 2 → 2111 → 21 is harmless, as429

S. Frontull et al. 18:13

@ϵ

λx1

@11

x111 x112

λy2

λz21

@211

y2111 z2112

(a) Gα((λx.x x) (λyz.y z)).

@ϵ

λx1

@11

x111 λy112

@1121

x11211 y11212

λf2

λz21

@211

f2111 z2112

(b) Gα((λx.x (λy.x y)) (λfz.f z)).

Figure 7 Unremovable α-paths.

the variable x112 gets substituted by the argument λyx.y z before the redex characterised by430

the legal path 11 → 111 → 1 → ϵ → 2 gets contracted. Thus, α-paths overapproximate the431

need of α. This overapproximation is sufficiently accurate to still allow interesting statements432

about different calculi, since α-avoidance is mainly about unremovable α-paths.433

An α-path is called unremovable, if it starts at a variable occurrence at position p1q and434

ends at its binder at position p (p ≺ p1q). In Theorem 6 we employed that we can get rid435

of arbic α-paths by naming all binders appropriately. This is possible because the starting436

and the ending position of these paths are always parallel. For unremovable α-paths this is437

not always the case any more, as illustrated by the λ-terms in Figures 7a and 7b. Note that438

Figure 7b illustrates that an unremovable α-path does not necessarily have to contain legal439

paths from a position p to a position q with q ≺ p.440

▶ Lemma 16. For every λ-term M containing no unremovable α-paths, there exists a λ-term441

N where M ≡α N , such that N does not contain any α-paths.442

Undecidability.443

Arbitrary λ-terms may have an unbounded set of legal paths, all of them characterising444

a different virtual redex. For such terms, making a prediction about the need for α via445

α-paths is not feasible. This problem is even undecidable for leftmost–outermost reductions,446

as established by our next result.447

▶ Theorem 17. α-avoidance is undecidable for the leftmost–outermost reduction strategy.448

Proof. In proof, we employ a reduction from Post’s correspondence problem (PCP short),449

whose undecidability is well-known [32]. Recall that PCP asks whether for an arbitrary finite450

set of string pairs ⟨s1, s
′
1⟩, ⟨s2, s

′
2⟩, . . . , ⟨sn, s

′
n⟩ over the alphabet {a, b}, there exists indices451

ij ∈ {1, 2, . . . , n} such that452

si1si2 . . . sik
= s′

i1
s′

i2
. . . s′

ik
k ⩾ 1 .453

It is not difficult to define λ-terms for (i) strings aa, bb, namely AA := λabx.a (a x) and454

BB := λabx.b (b x), respectively; (ii) conditionals (denoted as ITE); (iii) pairs (PAIRS) and455

(iv) n particular PCP (PCP), such that the λ-term PCP takes an (encoding) of list of pairs456

as input and recursively combines them, until a solution is produced (if it exists at all). As457

FSCD 2023

18:14 α-avoidance

µx

x

y x

µy −−−−−→
t(µx.M)

(a) A self-capturing chain in µ.M

@

@

λa

λf

@

f @

@

a a

f

λa

λf

@

f @

@

a a

f

λx

M

y x

λy

(b) An α-path in t(µ.M)

Figure 8 A self-capturing chain in µ is an α-path in Λµ.

the leftmost–outermost strategy is normalising for the λ-calculus, this solution can be found458

by this strategy. Now, consider the following program459

(ITE (PCP PAIRS)AABB) (λxyz.(x z) y) ,460

ITE, PCP, PAIRS, AA and BB are defined as above. As ITE (PCP PAIRS)AABB is461

typable, α can be avoided in its reduction, cf. Section 5.3 or [31, Section 11.3.2]. If the462

problem has a solution, it will reduce to the λ-term AA (λxyz.(x z) y), where α is unavoidable.463

Otherwise, it will reduce to the λ-term BB (λxyz.(x z) y), from which we get with one β-step464

to λbx.b (b x). Moreover, as mentioned the reduction sequence to these terms is α-free. Thus,465

if we further reduce these terms to normal form, then we need α iff the PCP problem has a466

solution. Thus, we conclude the theorem. ◀467

As already mentioned, α-paths characterise α-avoidance for seemingly unrelated calculi468

like (i) developments, (ii) affine λ-calculus, (iii) weak λ-calculus and (iv) safe λ-calculus. In469

Section 3 we have already seen this for developments and in the next section we illustrate this470

characterisation of the affine and the weak λ-calculus as well as the safe λ-calculus [11, 9].471

In the sequel, we clarify the ancestry of α-paths wrt. the concept of chains in the µ-472

calculus, cf. [17]. Further, we briefly detail our tool Alpha that can be used to compute and473

illustrate α-paths.474

Interpretation of µ in the λ-calculus.475

We show that α-paths are a strict generalisation of the chains considered for the µ-calculus476

in [17]. We do this by considering the sub-calculus Λµ of the λ-calculus obtained by the477

t-image of µ-terms defined as t(x) = x, t(M N) = t(M) t(N), t(µx.M) := AA (λx.t(M)) for478

A = λaf.f (a a f). As suggested in [17], this translation allows simulating µ-terms in the479

λ-calculus, provided that we adopt the leftmost–outermost reduction strategy.480

t(µx.M) := AA (λx.t(M)) →β (λf.f (AAf)) (λx.t(M)) →β (λx.t(M)) (AA (λx.t(M)))481

→β t(M)Jx := AA (λx.t(M))K = t(M)Jx := t(µx.M)K482

= t(MJx := µx.MK) .483

In Λµ we can use α-paths to characterise α. We sketch the argument that an α-path in484

t(M) for some µ-term M correspond a self-capturing chain in M . Note that, as reducing485

S. Frontull et al. 18:15

Figure 9 α-avoidance tool web-interface.

Turing’s fixed point combinator AA itself does not cause any capturing problems, we do not486

introduce ”new α-problems”. Thus, we only need to characterise the paths that correspond487

to reductions at the root of a reduct of AA (λx.M) to characterise the need for α in Λµ.488

For that, we observe that a pair of connected binding and capturing links in µ correspond489

to an alb-path in Λµ and a self-capturing chain to an α-path. Figure 8 illustrates this490

correspondence.491

Implementation.492

Based on the notion of α-paths, we have implemented a tool, dubbed Alpha, to (partially)493

decide whether or not α-conversion can be avoided. The tool is publicly available and can494

either be accessed via the command-line or its web interface. The web interface also visualises495

the computed α-paths.496

Depending on whether α-paths can be found or not (up to a variable depth), the tool497

gives one of the following results:498

1) alpha free, if no α-paths were found and the calculation is terminated;499

2) alpha can be avoided, if α-paths were found (but no unremovable α-paths); in this500

case, the tools prints an α-equivalent term for which the calculation is α-free;501

3) alpha is unavoidable, if unremovable α-paths have been found;502

or returns maybe, if no α-paths have been found, but the computation has not been terminated503

(the maximum depth has been reached). Recall that the problem is undecidable, cf. Section 4.7504

Listing 1 shows and exemplary output of the command line tool.505

Listing 1 Church encoding of 32

506
$ dune exec bin/main.exe "(/f␣x.f␣(f␣x))␣(/f␣x.f␣(f␣(f␣x)))"507

alpha can be avoided:508

(/f x.f (f x)) (/f p_12.f (f (f p_12)))509510

The web interface displays the α-graph and the computed α-paths. Figure 9 shows a511

screenshot of the tool illustrating this for (λx.x x) (λyz.y z).512

7 The command line tool and the link to the web interface can be found at https://tcs-informatik.
uibk.ac.at/tools/alpha/.

FSCD 2023

https://tcs-informatik.uibk.ac.at/tools/alpha/
https://tcs-informatik.uibk.ac.at/tools/alpha/

18:16 α-avoidance

5 α-avoidance in Affine, Safe and Weak λ-Calculi513

In this section, we show how α-paths can be applied to analyse the need for α in restricted514

λ-calculi.515

5.1 The affine λ-calculus516

The affine λ-calculus [21, 23, 27, 38], forbids duplication by restricting term-formation,517

requiring the variable x to occur free at most once in M in an abstraction term λx.M . This518

calculus is strongly normalising; we recall the central definition.519

▶ Definition 18. The set ΛAF F of affine λ-terms is a subset of Λ and inductively defined as520

follows:521

(var) x ∈ ΛAF F , for all variables x;522

(app) M,N ∈ ΛAF F =⇒ M N ∈ ΛAF F , if FV (M) ∩ FV (N) = ∅;523

(abs) M ∈ ΛAF F =⇒ λx.M ∈ ΛAF F .524

Since the size of terms steadily decreases with each reduction step and variables persist525

linearly along reductions, it follows that this calculus is strongly normalising. This allows a526

precise analysis for the need of α.527

▶ Lemma 19. Let M ∈ ΛAF F , M →β N and q ≺ p for some positions p, q in M . If p ▶ p′
528

and q ▶ q′, then q′ ≺ p′.529

Proof. Since we have no duplication, each symbol has at most one copy in N . We distinguish530

the following cases where we have p ≺ q, with p ▶ p′ and q ▶ q′:531

1. p, q both in the context: Then as p′ = p and q′ = q so by assumption we have p′ ≺ q′.532

2. p = o11s1 and q = o11s2 both in the body: Then from p ≺ q we know that s1 ≺ s2 and533

we have os1 = p′ ≺ q′ = os2.534

3. p = o2s1 and q = o2s2 both in the argument: Then from p ≺ q we know that s1 ≺ s2535

and we have ots1 = p′ ≺ q′ = ots2.536

4. p is in the context and q = o11s in the body. Then p′ = p and q′ = os and since p ≺ q we537

also have p′ ≺ q′.538

5. p is in the context and q = o2s in the argument. Then p′ = p and q′ = oqs. Since we539

know that p ≺ o (because it is in the context), we also have p′ ≺ q′.540

The other cases can be omitted because they violate the assumption that p ≺ q. ◀541

Since each β-step preserves the property proven in Lemma 19, we cannot have a reduct542

of M where for the copy of p (the position of a variable), p′, and the copy q (the position of543

an abstraction), q′, we have p′ ∥ q′, if for the origins we have q ≺ p. This would temporarily544

be needed to form a redex whose contraction causes a variable capture. Moreover, as argued545

above we could map back such a setting to an (unremovable) α-path in M . We conclude546

that no such path can exist in M .547

▶ Lemma 20. Let M be an arbitrary term in ΛAF F . There are no unremovable α-paths548

in M .549

In sum, we obtain the following, well-known result.550

▶ Theorem 21. In the affine λ-calculus α can be avoided.551

Proof. Due to Lemma 20 it only remains to prove that for every affine λ-term M there552

exists an affine λ-term N such that M ≡α N and N avoids α. This, however, follows from553

Lemma 19 in conjunction with Lemma 16. ◀554

S. Frontull et al. 18:17

(var) x : A ⊢s x : A
(const) ⊢s f : A

f : A ∈ Ξ (wk)
Γ ⊢s M : A

∆ ⊢s M : A
Γ ⊂ ∆ (δ)

Γ ⊢s M : A

Γ ⊢asa M : A

(appasa)
Γ ⊢asa M : A → B Γ ⊢s N : A

Γ ⊢asa M N : B
(app)

Γ ⊢asa M : A → B Γ ⊢s N : A

Γ ⊢s M N : B
ord B ≤ ord Γ

(abs)
Γ, x1 : A1, . . . , xn : An ⊢asa M : B

Γ ⊢s λxA1
1 . . . xAn

n .M : (A1, . . . , An, B)
ord (A1, . . . , An, B) ≤ ord Γ

Figure 10 The safe λ-calculus [9].

5.2 The safe λ-calculus555

In the safe λ-calculus, a variable capture can never occur by definition, thus α is not needed.556

This calculus was first introduced in [28] and then further developed and formalised in [11].557

The fundamental concept allowing α-free computations is known as the safety restriction. In558

the standard form this syntactic restriction restricts the free occurrences of variables according559

to their type-theoretic order. It was initially introduced for higher-order grammars, cf. [16].560

The safe λ-calculus is the result of the transposal of the safety condition for higher-order561

grammars to the simply-typed calculus à la Church.562

In this section, we show that α cannot be avoided in the safe λ-calculus as presented563

in [11] and [9] by giving a counterexample and clarify why we need to stick to a more564

restricted version of the safe λ-calculus (as presented in [10]) if we aim for α-free reductions.565

More precisely, we show how α-paths can be used to reason that α is not needed in the safe566

λ-calculus and that the absence of α-paths implies the safe variable typing convention.567

Simple types over the atomic type o are defined as usual, cf. [6], A1 → · · · → An → o is568

abbreviated as (A1, . . . , An, o) and (o) as o. The order of a type is given by (i) ord o := 0569

and (ii) ord (A → B) := max(1 + ordA, ordB). The order of a typed term or symbol is570

defined to be the order of its type. The lowest order in a set of type assignments Γ is denoted571

by ord Γ (0 if Γ empty). A set of type assignments Γ is order-consistent if all the types572

assigned to a given variable are of the same order.573

▶ Example 22. Let Γ = {x : o, y : (o, o)}, then Γ is order-consistent and ord Γ = 0.574

Conversely, the set {x : ((o, o), o), x : (o, o)} is not order-consistent and ord Γ = 1.575

▶ Definition 23. A term M of type A is said to be safe, if FV (M) ⊢s M : A is a valid576

statement in the inference system of the safe λ-calculus depicted in Figure 10.577

We can abstract multiple variables at once, λx1 . . . xn.M , provided that they are pairwise578

distinct (abs-rule). In particular, λ.x and λxo.λxo.x are valid λ-terms of the safe λ-calculus,579

λxoxo.x is not. The conditions on the types in the app- and abs-rule ensure that the variables580

occurring free in some term M have order at least the order M (safety condition). The581

subscript asa stands for almost safe (application). Almost safe applications can be turned582

into a safe term via further applications or further abstractions. For example, (λxoyo.x) z583

(with z of type o) is an almost safe application but not safe. However, in (λxoyo.x) z f (with584

f, z of type o) it is a subterm of a safe application.585

In the safe λ-calculus, consecutive redexes are contracted simultaneously, as the standard586

β-reduction does not preserve safety [9, Section 3.1.2]. This requires a notion of simultaneous587

substitution. The definitions of simultaneous capture-permitting and simultaneous capture-588

avoiding substitution are given in Table 2.589

FSCD 2023

18:18 α-avoidance

Table 2 Simultaneous capture-avoiding and simultaneous capture-permitting substitution.

M MJN/xK (sim. capture-avoiding) M [N/x] (sim. capture-permitting)
xi Ni Ni

y y y

e1 e2 e1JN/xK e2JN/xK e1[N/x] e2[N/x]
(λy.e)JN/xK λy.eJN ′/x′K where x′ = x − y λy.e[N ′/x′] where x′ = x − y

if y ∩ FV (t) = ∅ for all t ∈ N ′, else
λz.eJz/yKJN/xK where zi fresh for e, N

▶ Definition 24 (safe redex [9, Definition 3.21]). An untyped safe redex is an untyped almost590

safe application (a succession of several standard redexes) of the form (λx1 . . . xn.M)N1 . . . Nl591

for some l, n ≥ 1 where λx1 . . . xn.M is safe and each Ni, for 1 ≤ i ≤ n, is safe.592

▶ Definition 25 (safe redex contraction). The relation βs is defined on the set of safe redexes593

as follows:594

βs = {(λx1 . . . xn.M)N1 . . . Nl 7→ (λxl+1 . . . xn.M)[N1 . . . Nl/x1 . . . xl] | n > l}595

∪ {(λx1 . . . xn.M)N1 . . . Nl 7→ M [N1 . . . Nn/x1 . . . xn]Nn+1 . . . Nl | n ≤ l}596

where λ.M = M and M [N/x] denotes the simultaneous capture-permitting substitution.597

Note that simultaneous capture-permitting substitution cannot be applied serially because598

it may require α. The statement M [x1 := N1][x2 := N2] = M [x := y, y := z] is not true in599

general, as x2 may be free in N1, e.g. x[x := y][y := z] = z and x[x := y, y := z] = y.600

▶ Definition 26. The safe β-reduction, written as →βs
, is the compatible closure of the601

relation βs with respect to the formation rules of the safe λ-calculus.602

In addition to the inference rules, the safe variable typing convention is adopted, which603

restricts the naming of variables according to their type.604

▶ Definition 27 (safe variable typing convention [9]). A type-annotated term M is order-605

consistent just if the set of type-assignments induced by the type annotations in M is. In any606

definition, theorem or proof involving countably many terms, it is assumed that the set of607

terms involved is order-consistent.608

According the safe variable typing convention, variables of distinct order must have distinct609

names. This is crucial for α-avoidance in the safe λ-calculus.8 However, if we consider the610

term M = λyo.(λxoyo.x) y we see that although this term is safe (⊢s λy
o.(λxoyo.x) y : (o, o))611

and (λxoyo.x) y is a safe redex, it cannot be contracted by means of capture-permitting612

substitution, because this would lead to a variable capture. This invalidates a central property613

of this calculus, according to which a variable capture can never happen, and leads to the614

fact that we may compute different normal forms for α-equivalent terms.9615

A more restrictive set of rules is needed to resolve this issue. These rules are depicted616

in Figure 11.10 In this system we dropped the ”almost safety” and allow to type only617

8 {y : (((o, o), o), o), z : ((o, o), o)} ⊢s (λx((o,o),o)y(o,o)zo.x) (λq(o,o).y z) : ((o, o), o, ((o, o), o)) is a counter-
example to [9, Lemma 3.17].

9 Compare to the errata published at https://github.com/blumu/dphil.thesis/blob/erratum/
Current/thesis-erratum/dphilerratum.pdf.

10 Simultaneous substitutions coincide with the singleton substitutions from Table 1 in the case |x| = 1.

https://github.com/blumu/dphil.thesis/blob/erratum/Current/thesis-erratum/dphilerratum.pdf
https://github.com/blumu/dphil.thesis/blob/erratum/Current/thesis-erratum/dphilerratum.pdf

S. Frontull et al. 18:19

(var)
{x : A} ⊢sα x : A (const)

⊢sα f : A f : A ∈ Ξ (wk)
Γ′ ⊢sα M : A
Γ ⊢sα M : A Γ′ ⊂ Γ

(app)
Γ ⊢sα M : (A1, . . . , An, B) Γ≥m ⊢sα N1 : A1 . . . Γ≥m ⊢sα Nj : Bj

Γ ⊢sα M N1 . . . Nj : B m = ordB

(abs)
Γ≥m ∪ {x1 : A1, . . . , xn : An} ⊢sα M : B

Γ ⊢sα λx1 . . . xn.M : (A1, . . . , An, B) m = ord (A1, . . . , An, B)

Figure 11 An α-avoiding safe λ-calculus.

applications that provide enough arguments to abstractions. More precisely, if an argument618

of order k is provided, the arguments of all abstracted variables of order k and higher must619

be provided. In this way, we avoid free variables ending up in the scope of abstractions of the620

same order during reduction. This avoids potential variable capture, since it can be assumed621

that free variables are always of a higher order than the abstractions they enter the scope of.622

Therefore, according to the safe variable typing convention, they are named differently.11
623

▶ Example 28. The simply-typed term (λf (o,o,o)yo.f y) (λxoyo.x) is derivable in the safe624

λ-calculus from Figure 10, but not in the system from Figure 11 because of the unsafe625

application f y. Indeed, this term reduces in one step to λyo.(λxoyo.x) y where α is required626

to further reduce it.627

In the following Lemma 29 we show that the safe λ-calculus of Figure 11 avoids α by628

reasoning with α-paths. This can be done by interpreting safe λ-terms as ordinary terms.629

▶ Theorem 29. In the safe λ-calculus no variable capture can occur, provided that the safe630

variable typing convention is adopted.631

Proof. Suppose we have an α-path in a safe λ-term M with Γ ⊢sα M : A. Then this path632

would start at a variable y occurring free in the argument N of some application, which is633

connected via legal path to an abstraction λx binding a variable x in the scope of a λy, as634

illustrated below. In such case, by definition of safe terms, we know that λx.M and N are635

both safe. Moreover, we know that ord y ≥ N and ordN = ord x. We can therefore have636

the following two cases: (i) ord y > ord x or (ii) ord y = ord x. In any case, as the subterm637

λy.M ′ would be unsafe in isolation, we conclude that the λy and the λx must be jointly638

abstracted. By definition of safe β-reduction, we know that compound abstractions of same639

order are contracted simultaneously. Therefore, we cannot have a variable capture. ◀640

5.3 The weak λ-calculus641

The weak λ-calculus [39] forbids to contract open redexes, i.e. redexes that involve free642

variables that are bound outside. Thus, if the name of the free variables and the bound643

variables are chosen to be distinct, a variable capture can by definition never occur. We644

recall the notion of weak β-reduction.645

11We note that these rules correspond to the rules of the safe λ-calculus published in [10] and to the
typing rules for long-safe terms (without constants) listed in [9, Table 3.2].

FSCD 2023

18:20 α-avoidance

▶ Definition 30 (weak λ-reduction [39, Definition 3.1]). A particular occurrence of a redex R646

in a λ-term M will be called weak in M iff no variable-occurrence free in R is bound in M .647

A weak β-contraction in M is the contraction of a β-redex-occurrence that is weak in M .648

The characterisation of the virtual redexes by legal paths is not suitable for the weak649

λ-calculus, since they include redexes that are not reduced at all. However, we can infer650

from the structure of the unremovable α-paths that α can also be avoided in this calculus.651

To this end, we rely on the fact that bound variables are never released, i.e. they do not652

change or loose their binder.653

▶ Lemma 31. For every λ-term M there exists a λ-term N such that M ≡α N and any654

→βw-reduction from N is α-free.655

Proof. We prove it by showing that the name-collision characterised by an unremovable656

α-paths will not arise. Suppose we have an unremovable α-path in a λ-term M . Such path657

has the shape σ+
alb ·c. Assume, that at some point along the reduction sequence of M we reach658

a λ-term N , containing a redex R whose contraction leads to the predicted name-collision.659

Let q be the position of the variable y occurring free in the argument of R in N . Since the660

position q originates from position p in M (p ▶ p′ ▶ . . . ▶ q) and the variable occurrence at661

position p in M was bound, we know that also the variable y at position q in N is bound (as662

bound variables are never released). So R would be an open redex and thus not contracted.663

Any other α-path can be removed by naming each binder distinctly and distinct from the664

free variables, as proven in Lemma 16. ◀665

In sum, α-avoidance is immediate from the definitions.666

▶ Theorem 32. In the weak λ-calculus α can be avoided.667

6 Conclusion668

We have presented a sound characterisation of α-avoidance, via α-paths, generalising self-669

capturing chains [17], studied in the context of the µ-calculus; α-paths exploit the predictive670

power of legal paths, characterising virtual redexes of a λ-term M , that is, all redexes671

occurring in some reduction sequence starting from M . By reasoning on the structure of672

the initial term, we estimated whether α is needed, when contracting these virtual redexes.673

Further, we have shown undecidability of α avoidance for (leftmost-outermost reductions in)674

the untyped λ-calculus. Moreover, α-paths were instantiated to different restrictive λ-calculi,675

where they can be used to show that α can be avoided, namely developments, the affine676

λ-calculus, the weak λ-calculus and the safe λ-calculus. In short, forbidding redex creation,677

duplication, or the contraction of redexes involving variables bound outside is enough to678

allow α-avoidance. For all calculi where we can avoid α, we can infer potential α-conversions679

needed to allow α-free computations from the α-paths. This allows to move a dynamic680

problem to a static one.681

We have shown that α-avoidance is undecidable for the leftmost–outermost strategy in682

the untyped λ-calculus. These leaves the question open, whether undecidability holds in683

general. We further note that α-paths only overapproximate the need for α. It remains an684

open question whether we could tighten the definition of α-paths such that the established685

(sound) characterisation becomes precise, that is, complete. These questions are left to future686

work.687

S. Frontull et al. 18:21

References688

1 Samson Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda calculus.689

Information and Computation, 105(2):159–267, 1993. doi:10.1006/inco.1993.1044.690

2 Andrea Asperti, Vincent Danos, Cosimo Laneve, and Laurent Regnier. Paths in the lambda-691

calculus. In Proceedings of the Ninth Annual Symposium on Logic in Computer Science692

(LICS ’94), Paris, France, July 4-7, 1994, pages 426–436. IEEE Computer Society, 1994.693

doi:10.1109/LICS.1994.316048.694

3 Andrea Asperti and Stefano Guerrini. The optimal implementation of functional programming695

languages, volume 45 of Cambridge tracts in theoretical computer science. Cambridge University696

Press, 1998.697

4 Andrea Asperti and Cosimo Laneve. Paths, computations and labels in the λ-calculus.698

Theoretical Computer Science, 142(2):277–297, 1995. doi:10.1016/0304-3975(94)00279-7.699

5 Thibaut Balabonski. Weak optimality, and the meaning of sharing. In Greg Morrisett and700

Tarmo Uustalu, editors, ACM SIGPLAN International Conference on Functional Programming,701

ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages 263–274. ACM, 2013. doi:702

10.1145/2500365.2500606.703

6 Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies704

in Logic and the Foundations of Mathematics. North-Holland, 2nd revised edition, 1984.705

doi:10.2307/2274112.706

7 Henk P. Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types.707

Perspectives in logic. Cambridge University Press, 2013.708

8 Tomasz Blanc, Jean-Jacques Lévy, and Luc Maranget. Sharing in the Weak Lambda-Calculus.709

In Aart Middeldorp, Vincent van Oostrom, Femke van Raamsdonk, and Roel C. de Vrijer,710

editors, Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan711

Willem Klop, on the Occasion of His 60th Birthday, volume 3838 of Lecture Notes in Computer712

Science, pages 70–87. Springer, 2005. doi:10.1007/11601548_7.713

9 William Blum. The Safe Lambda Calculus. PhD thesis, Oxford University, UK, 2009.714

10 William Blum and C.-H. Luke Ong. The Safe Lambda Calculus. In TLCA, pages 39–53,715

Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.716

11 William Blum and C.-H. Luke Ong. The safe lambda calculus. Logical Methods in Computer717

Science, Volume 5, Issue 1, February 2009. doi:10.48550/arXiv.0901.2399.718

12 Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies, a tool for719

automatic formula manipulation, with application to the Church–Rosser theorem. Indagationes720

Mathematicae, 75(5):381–392, 1972. Proc. 19th International Conference on Automated721

Deduction. doi:10.1016/1385-7258(72)90034-0.722

13 Felice Cardone and J. Roger Hindley. Lambda-Calculus and Combinators in the 20th Century.723

In Logic from Russell to Church, 2009. doi:10.1016/S1874-5857(09)70018-4.724

14 Alonzo Church and John Barkley Rosser. Some properties of conversion. Trans-725

actions of the American Mathematical Society, 39:472–482, 1936. doi:10.1090/726

S0002-9947-1936-1501858-0.727

15 Haskell B. Curry. Combinatory Logic. Amsterdam: North-Holland Pub. Co., 1958.728

16 Werner Damm. The IO- and OI-hierarchies. Theoretical Computer Science, 20(2):95–207,729

1982. doi:10.1016/0304-3975(82)90009-3.730

17 Jörg Endrullis, Clemens Grabmayer, Jan Willem Klop, and Vincent van Oostrom. On equal731

µ-terms. Theoretical Computer Science, 412(28):3175–3202, 2011. doi:10.1016/j.tcs.2011.732

04.011.733

18 Samuel Frontull. Alpha Avoidance. Master’s thesis, University of Innsbruck, 2021.734

19 Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax involving binders.735

In Proc. 14th LICS, pages 214–224, 1999. doi:10.1109/LICS.1999.782617.736

20 J. Roger Hindley. Reductions of Residuals are Finite. Transactions of the American Mathem-737

atical Society, 240:345–361, 1978. doi:10.2307/1998825.738

FSCD 2023

https://doi.org/10.1006/inco.1993.1044
https://doi.org/10.1109/LICS.1994.316048
https://doi.org/10.1016/0304-3975(94)00279-7
https://doi.org/10.1145/2500365.2500606
https://doi.org/10.1145/2500365.2500606
https://doi.org/10.1145/2500365.2500606
https://doi.org/10.2307/2274112
https://doi.org/10.1007/11601548_7
https://doi.org/10.48550/arXiv.0901.2399
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/S1874-5857(09)70018-4
https://doi.org/10.1090/S0002-9947-1936-1501858-0
https://doi.org/10.1090/S0002-9947-1936-1501858-0
https://doi.org/10.1090/S0002-9947-1936-1501858-0
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.1016/j.tcs.2011.04.011
https://doi.org/10.1016/j.tcs.2011.04.011
https://doi.org/10.1016/j.tcs.2011.04.011
https://doi.org/10.1109/LICS.1999.782617
https://doi.org/10.2307/1998825

18:22 α-avoidance

21 J. Roger Hindley. BCK-Combinators and Linear lambda-Terms have Types. Theoretical739

Computer Science, 64(1):97–105, 1989. doi:10.1016/0304-3975(89)90100-X.740

22 Martin Hyland. A simple proof of the Church–Rosser theorem. Oxford University, UK, 1973.741

23 Bart Jacobs. Semantics of lambda-I and of other substructure lambda calculi. In Marc Bezem742

and Jan Friso Groote, editors, Typed Lambda Calculi and Applications, pages 195–208, Berlin,743

Heidelberg, 1993. Springer Berlin Heidelberg. doi:10.1007/BFb0037107.744

24 Jan W. Klop. Combinatory reduction systems. PhD thesis, Rijksuniversiteit Utrecht, 1980.745

25 Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer Science, 27:333–746

354, 1983. doi:10.1016/0304-3975(82)90125-6.747

26 Clemens Kupke, Johannes Marti, and Yde Venema. Size measures and alphabetic equivalence748

in the µ-calculus. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual749

ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022,750

pages 18:1–18:13. ACM, 2022. doi:10.1145/3531130.3533339.751

27 Harry G. Mairson. Linear lambda calculus and PTIME-completeness. Journal of Functional752

Programming, 14(6):623–633, 2004. doi:10.1017/S0956796804005131.753

28 Jolie G. de Miranda. Structures generated by higher-order grammars and the safety constraint.754

PhD thesis, University of Oxford, UK, 2006.755

29 Maxwell H. A. Newman. On theories with a combinatorial definition of "equivalence". Annals756

of mathematics, 43(2):223–243, 1942. doi:10.2307/1968867.757

30 Vincent van Oostrom and Roel de Vrijer. Four equivalent equivalences of reductions. Electronic758

Notes in Theoretical Computer Science, 70(6):21–61, 2002. WRS 2002, 2nd International759

Workshop on Reduction Strategies in Rewriting and Programming - Final Proceedings (FLoC760

Satellite Event). doi:10.1016/S1571-0661(04)80599-1.761

31 Simon L. Peyton Jones. The Implementation of Functional Programming Languages. Prentice762

Hall, January 1987.763

32 Emil L. Post. A variant of a recursively unsolvable problem. Bulletin of the American764

Mathematical Society, 52(4):264 – 268, 1946. doi:10.2307/2267252.765

33 John Barkley Rosser. Review: H. B. Curry, A New Proof of the Church–Rosser Theorem.766

Journal of Symbolic Logic, 21(4):377–378, 1956.767

34 David E. Schroer. The Church–Rosser Theorem. PhD thesis, Cornell University, 1965.768

35 Rick Statman. On the complexity of alpha conversion. The Journal of Symbolic Logic,769

72(4):1197–1203, 2007. doi:10.2178/jsl/1203350781.770

36 Terese. Term rewriting systems. Cambridge University Press, 2003.771

37 Christopher P. Wadsworth. Semantics and Pragmatics of the Lambda-Calculus. PhD thesis,772

University of Oxford, 1971.773

38 Noam Zeilberger. Linear lambda terms as invariants of rooted trivalent maps. Journal of774

Functional Programming, 26:e21, 2016. doi:10.1017/S095679681600023X.775

39 Naim Çağman and J. Roger Hindley. Combinatory weak reduction in lambda calculus.776

Theoretical Computer Science, 198(1-2):239–247, 1998. doi:10.1016/S0304-3975(97)00250-8.777

https://doi.org/10.1016/0304-3975(89)90100-X
https://doi.org/10.1007/BFb0037107
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1145/3531130.3533339
https://doi.org/10.1017/S0956796804005131
https://doi.org/10.2307/1968867
https://doi.org/10.1016/S1571-0661(04)80599-1
https://doi.org/10.2307/2267252
https://doi.org/10.2178/jsl/1203350781
https://doi.org/10.1017/S095679681600023X
https://doi.org/10.1016/S0304-3975(97)00250-8

	1 Introduction
	2 Preliminaries
	3 Developments are -avoiding
	4 -paths—A Sound Characterisation For
	5 -avoidance in Affine, Safe and Weak -Calculi
	5.1 The affine -calculus
	5.2 The safe -calculus
	5.3 The weak -calculus

	6 Conclusion

