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Abstract 

van Oostrom, V., Confluence by decreasing diagrams, Theoretical Computer Science 126 (1994) 

259-280. 

We present a confluence criterion, local decreasingness, for abstract reduction systems. This 

criterion is shown to be a considerable generalisation of several well-known confluence criteria. 

1. Introduction 

An abstract reduction system is a set of objects equipped with some binary 

“reduction” relations. As they have so little structure, abstract reduction systems can 

be viewed as abstractions of several kinds of rewriting such as string rewriting, term 

rewriting and graph rewriting. In the case of term rewriting, the objects model terms 

and reduction relations model (nondeterministic) computations. 

A desirable property in computing is that results of computations are unique (if they 

exist). In the case that whenever we have two “diverging” computations starting from 

the same term, a common result can be reached by “converging” computations (the 

so-called confluence or Church-Rosser property), uniqueness is guaranteed. 

a-c 

1 
1 

Confluence i 

i 
b _____________- d 

Correspondence to: V. van Oostrom, Department of Mathematics and Computer Science, Vrije Univer- 
siteit, De Boelelaan 108la, 1081 HV Amsterdam, The Netherlands. 

0304-3975/94/$07.00 G 1994-Elsevier Science B.V. All rights reserved 

SSDI 0304-3975(92)00023-E 



260 V. van Oostrom 

In this paper we present a confluence theorem that subsumes a number of classical 

confluence lemmata. A typical way to check confluence is to investigate how reduction 

steps interact. The idea is that this can be expressed abstractly by grading reduction 

steps with an ordered set of labels. Reduction sequences can then be graded with 

certain multisets of labels, ordered by the standard multiset exstension of the label 

order. A divergence bu-u-+c is graded by the multiset union of the grades of the 

reduction sequences a+b and a-c. A confluence diagram is graded by its divergence 

and is said to be decreasing if the measures of the convergent reductions a+b+d and 

a+c-nd are both less than or equal to the measure of the diagram. 

We define the measure of a reduction sequence to be the multiset of the lexi- 

cographically maximal step labels of the sequence (step labels not less than the label of 

an earlier step). Decreasing diagrams can then be pasted to yield decreasing diagrams. 

The main theorem states that if the label order is well-founded and every local 

confluence diagram is decreasing, then confluence holds. 

Many of the confluence lemmata for abstract reduction systems found in literature 

(see e.g. [8]) are in fact easy corollaries of this theorem. Among the immediate 

consequences of the theorem are: 

(1) the lemma of Hindley-Rosen [S, lo], 

(2) Rosen’s “requests” lemma [lo], 

(3) Newman’s lemma [9], 

(4) Huet’s strong confluence lemma [6] and 

(5) De Bruijn’s lemma [2]. 

A mediate consequence is the confluence of nonsplitting and relatively terminating 

reduction systems, a result of Geser [4]. 

Section 2 contains a short introduction to abstract reduction systems and multisets. 

In Section 3, we define the lexicographic maximum measure on reductions, and 

diagrams which are decreasing with respect to this measure. It is shown that these 

diagrams can be pasted together to form bigger decreasing diagrams. We conclude 

this section by proving our main theorem. This theorem is applied in Section 4 to 

obtain the results listed above. The notion of strong confluence is then generalized to 

abstract reduction systems having more than one reduction relation. We conclude in 

Section 5 with suggestions for further research. 

2. Preliminaries 

In this section we give a short introduction to abstract reduction systems and 

multisets. For an overview of these subjects we refer to [S] and [7]. 

An abstract reduction system is a set of objects A equipped with some binary 

“reduction” relations. Throughout this paper, 1 denotes the set of labels (or names) of 

these relations. Labels will be denoted by a, /I and y. 
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Definition 2.1 (Abstract reduction system). An Abstract Reduction System (ARS) is 

a structure d = def (A, ( +cl)aEI) consisting of a set of objects A and a sequence of 

relations -+= on A. A relation +a is said to be a reduction relation labelled by CL The 

reduction relation of d is the union of its constituent reduction relations: 

+.F/ = 
def U aeI +m. When the ARS is clear from the context, we will suppress it in our 

notations. Two ARSs d = def (A, ( +a)ael) and 93 =def (B, ( +p)gEJ) are reduction 
equivalent, denoted by d% 93, if -+,d = -+a. 

Two ARSs which are reduction equivalent can be viewed as different presentations of 

the same ARS. We extend the introduced notions for relations to ARSs by identifying 

an ARS d with its reduction relation +sl. Such notions obviously do not depend on 

the presentation of an ARS. For example, I,-calculus (see [l]) can be presented as the 

ARS (A, (/I, r])), i.e. objects are L-terms and reduction relations are /3- and q-reduction. 

Another presentation is (LI, (Pr)), where Pr is the union of the relations fl and r]. 

We use infix notation for a reduction relation + and its derived relations: 

t,+=,-+ + and -+ which denote the inverse, the reflexive closure, the transitive 

closure and the reflexive-transitive closure of -+, respectively. We use +bl; +p to 

denote the diagrammatic (sequential) composition of +a and -+B. If a+b, then we 

speak of a reduction step from a to b. An element which cannot be reduced is a normal 
form. A reduction sequence or reduction is a sequence of reduction steps. The element 

a is strongly normalising (SN) or terminating, if all reductions starting with a are finite. 

The relation --+ is strongly normalising if all elements in its domain are. 

The label of a finite reduction is the string of labels of its constituent reduction steps 

(in the obvious order), i.e. an element of I *. The symbols 0,~ and u will be used to 

denote strings. The concatenation of two strings (r and 5 is denoted by or. 

In this paper we are interested in how the reduction relations of an ARS interact. To 

visualise this interaction, diagrams are useful and therefore we first fix some diagram 

notation (which has already been used in the introduction). 

Definition 2.2 (Diagram notation). A diagram consists of a number of (labelled, 

dashed) arrows. For diagrams defining a property, the convention will be used that 

solid arrows are universally quantified and dashed arrows are existentially quantified. 

It is natural to think of the solid arrows as the hypothesis and of the dashed ones as the 

conclusion. By mirroring a diagram, we mean mirroring it in its northwest southeast 

diagonal. The name JV of the property being expressed by or used in a diagram is 

displayed in its centre. Such a diagram is spoken of as an M-diagram. A property 

expressed by a diagram whose hypothesis contains only reduction steps is local. It is 

global otherwise. Note that if a “double-headed arrow” appears somewhere in the 

hypothesis of a property, the property is global. 

Next we state some commutativity properties using diagrams. Roughly speaking, if 

two reduction relations commute, then they do not interfere with one another. 

Properties (l)-(4) are depicted in Fig. 1. Confluence is depicted in the introduction. 



Fig. 1. Commutativity properties. 

Definition 2.3 (Commutativity Properties). Let -So, +B be two relations on A. 

(1) The relation -+a subcommutes (SC) with jB if Va,b,cEA, 3dEA: b+-,a-tsc 

* b -B d +h c, more succinctly expressed by ta; +B C-B ; +-J. 

(2) A relation is subcommutative or has the diamond (0) property, if it subcommutes 

with itself. 

(3) A relation + is locally conjuent or weakly Church-Rosser (WCR) 
if+-; + c +;u-. 

(4) The relations +a and +p commute if their transitive-reflexive closures subcommute. 

(5) A relation is confluent or has the Church-Rosser (CR) property if it commutes 

with itself. 

Confluence, the property we are interested in, is an important property in rewriting, 

because it ensures the uniqueness of the normal form of an object (independent from 

the question whether such a normal form does exist). It is easy to prove that the local 

property of subcommutativity implies the global property of confluence. We will show 

that the subcommutativity requirement can be considerably weakened without loos- 

ing confluence. In order for confluence to hold, it is obviously necessary that local 

confluence holds. The idea is now to choose a presentation of an ARS such that for all 

local divergences the labels of the convergences needed to reach a common reduct 

“trace back” to the labels of the local divergence. The labels of reduction sequences are 

graded by multisets and these will be compared using the multiset extension of the 

order on the labels of the reduction relations. In this section we assume a fixed strict 

partial order < on the set I of labels of the reduction relations. 

Now we give an informal definition of multisets. A formal definition can be found in 

Appendix A. The definition is slightly more general than the ones usually encountered 

in literature, to allow for a uniform treatment of both sets and finite multisets. Sets (of 

labels) will be interpreted as multisets where elements occur either infinitely often or 

not at all. Usually sets are interpreted as multisets where elements occur at most once. 

The multiset sum then corresponds to a disjoint union. For the interpretation we have 

chosen,’ the multiset sum corresponds to an ordinary union. 

’ The interpretation of sets as infinite multisets was suggested to us by the anonymous referee. 



Conjhence by decreasing diagrams 263 

Definition 2.4 (Mdtiset). A (general) multiset is a collection in which elements are 

allowed to occur more than once or even infinitely often. The class of multisets over 

I is denoted by (M, N, X, Y, ZE) =,H (I). A jnite multiset has finitely many different 

elements which occur finitely often. The class of finite multisets over I is denoted by 

(F, G, HE)PA(Z). A set is a multiset in which elements occur either not at all or 

infinitely often. The class of sets over Z is denoted by (S, T, UE) 9’dt’ (I). 

Note. In the rest of the paper the type of multiset denoted by a symbol will be as 

specified above and not be made explicit. For example F, G and H will always denote 

finite multisets. 

When we speak of sets of labels, we always mean the above interpretation of the set 

as a multiset over the set of labels. To denote operations on multisets we use (the 

denotations of) the corresponding operations on sets. This causes no confusion, 

because the operations intersection, union and difference on sets interpreted as 

multisets have all the usual properties. The multiset sum will be denoted by a,. For the 

formal definitions see again Appendix A. Note that both 9~?(1) and 9&(Z) are 

closed with respect to intersection, union, sum and difference. 

To distinguish between set comprehension and finite multiset comprehension, 

braces will be used to denote the former and square brackets to denote the latter. For 

example [a, p] denotes the finite multiset with exactly one occurrence of both a and /3, 

whereas {u} denotes the set multiset with infinitely many occurrences of CL. 

The following (in)equalities illustrate the differences between finite and set multi- 

sets, and sum and union: [a] ti [a] = [a, cr] # [a] = [a] u [a], {a} ti {M} = {a, M} = {M} = 

{u> u {a}, CM, al- Cal = Cal, {E> - [a, aI = {a>, and Ca, al- (N} = 0. 
The multiset [a] of labels of a string 0 is the sum of all label occurrences in it, 

so in particular we have [oz] = [a] ti [r]. For example, if we have digits as labels, 

[132343]=[1,3,2,3,4,3]. 

The lexicographic maximum measure, to be defined in Definition 3.1, assigns to 

each reduction a submultiset of the multiset of its label. These multisets will be 

compared using the standard multiset extension of <, which inherits well-founded- 

ness (on the class of finite multisets) of <, as was shown by Dershowitz and Manna 

[3]. Our definition of the standard multiset extension is a notational variant of the 

usual Dershowitz-Manna definition. The down-set operator is introduced to allow 

for algebraic proofs of the properties needed in this paper. 

Definition 2.5 (Multiset extension). (1) The set vcc is the strict order ideal generated 

by (or down-set of) CI, defined by VU =def {p 1 p<cx}. This is extended to multisets and 

strings by defining yM =def UaeMya and ~0 =def v [a]. For example, ~2 = 

~[0,2]=~212={O,lj. 

(2) The (standard) multiset extension (denoted by <,,,“,) of the partial order < is 

defined by 

M<,,,N ifIX,Y,Z: M=2wX,N=ZtiY,X~yYand Y#@. 
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Furthermore, 5 mul will be used to denote the reflexive closure of <,,,“,. The relation 
< Tmul can also be obtained by removing the last condition (Y#@ in the definition 

of <mui. 

Intuitively, the elements belonging to the down-sets of the multisets are only of 

minor importance in comparing multisets. 2 Hence we will refer informally to its 

down-set as “noise generated by” the multiset. Furthermore, we say that M “traces 

back” to N if M <,,,“, N. This corresponds to the intuition that each element of M is 

dominated by some element of N, i.e. traces back to that element. It is well known 

(cf. [7]) that the standard multiset extension of a strict partial order is again a strict 

partial order on the class of finite multisets. In the case of general multisets one can 

show that transitivity is preserved, but irreflexivity is not. For example, N <,,,“, N, 

where N denotes the (multi)set of natural numbers and < is the natural order on the 

set of natural numbers. 

The following technical lemma paves the way for the confluence theorem in the next 

section. If one is interested only in the applications of that theorem, it can safely be 

skipped. 

Lemma 2.6 (Properties of the multiset extension). 

(1) Taking the down-set distributes over union and sum. y(M - N)? VM - yN. 
(2) MLN * M<,,,N * yMcyN. 

(3) For$nite multisets, we may assume X and Y in Dejinition 2.5(2) to be disjoint. 

(4) If G is nonempty, then FL \iG 3 F <mul G. 

(5) IRISES, then F%,,,G o F-S<,,lG-S. 

(6) ZfHc F, G, then F <,,,“, G o F-H <mul G-H. 

(7) IfHsyG-yF, then F<mulG~ FtiH<,,,,G. 

Proof. (1) By definition, noting that union coincides with sum for sets. For the 

inequality to hold, it suffices to note that ~M-J~NE UoleM,BBEN,IX~B~~~ 

Uol.~-NW=V(M-N). 
(2) Easy. 

(3) If they are not disjoint, we can take Z’ = def Z ti (Xn Y), X’ = def X - Y, and 

Y’ = def Y-X. By Lemma A.3( 10) we have M = Z’ w X’, N = Z’ ti Y’ and X’ and Y 

2The correspondence between the intuition and the formal definition of the multiset extension is not 

exact. It looks like coincidence that noise is not important in comparing multisets using the multiset 

extension. We obtain a better match if we define the order extension <, of < by 

M< N=de’dM<,,,i3N or (aM=aN&h<,fi) m 

where dM =def M-_VM, the boundary (i.e. maxima1 elements) of M and fi =dcf MnyM, the interior 
(i.e. noise) of M. In words this reads, first compare the maxima1 elements of the multisets and only if this is 

not decisive apply the method recursively to its noise. This order is the same as the order <<.,, in [7], where it 

is shown that it properly contains the standard multiset extension and inherits well-foundedness. Although 
the properties needed in this paper hold for both extensions, we will prove this only for the standard 

multiset extension. 
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are obviously disjoint. Furthermore, X’cvY’ holds because X- YcvY by the 

assumption X c v Y, v Y= v( Y- v Y) because in finite multisets there are no infinite 

ascending chains, and finally v( Y- v Y) E v( Y- X) again using the assumption. 

(4) By definition. 

(5) The implication from right to left is a direct consequence of the definition, so the 

other direction remains to be shown. By definition there exist X, Y and Z such that 

F = Z ti X, G =Z ti Y and XC v Y. Because set-difference distributes over sum 

(Lemma A.3(8)) we only have to show X-Ssv( Y- S). This is immediate from (l), 

VS c S, and the assumption X s v Y. 

(6) The implication from right to left is again trivial. The other direction is more 

difficult to show. By definition there exist X, Y and Z such that F = Z tt~ X, G = Z ti Y 
and X&vY, and we may assume by (3) that X and Y are disjoint. From this and the 

assumption H G F, G, we conclude that H g Z. Subtracting elements from Z has no 

influence on the order. 

(7) The if-direction is a consequence of (2). For the only-if-direction, we can take 

X, Y and Z as in the proof of (5). By the assumption H s yG - yF and (1) it holds that 

HsyY, so XtiHG’y’Y and we are done. 0 

Note. All the statements in the above lemma remain true if we replace the occurrences 

of F and G by M and N. Since finite multisets suffice for our purposes, we do not prove 

this. Actually, one easily verifies that the only proof that has to be modified is the 

proof of (6). This is necessary, because (3) cannot be extended to general multisets, as 

exemplified by [0, 1,2, . ..I cmul [1,2, . ..I. 

3. Confluence by decreasing diagrams 

In this section we prove a general theorem for deriving confluence from local 

confluence. We do this by gluing together small “decreasing” tiles into bigger ones 

having that same property. The diagrams are decreasing in the sense that their 

conclusion is less than or equal to their hypothesis. First we define a measure on 

strings of labels and hence on reduction sequences labelled by them. In this section we 

assume the set of labels I to be strictly partially ordered by <. 

Definition 3.1 (Lexicographic maximum measure). The (lexicographic maximum) 
measure is a map 1.1: I * -FM(I), grading strings by finite multisets. It is inductively 

defined as follows. 

0 I&l =def [I, 

0 ICC01 =““[cl]ti(~c+~cr). 

For example I 132343 I= [l, 3,3,4] and I21 :I= [2]. Intuitively, we take the multiset of 

elements which are maximal (in the < ordering) with respect to the elements to their 

left in the string. Operationally, one can think of filtering out the noise before 

proceeding to the right. The measure of a reduction is the measure of its label. For 



266 v. van Oostrom 

example, 1 a + 2 b -+ 1 c I = 12 1 1 = [2]. The measure of a diagram is the multiset sum of 

the measures of the reductions in its hypothesis. 

The next lemma shows how the measure of a string can be decomposed into the 

sum of the measures of its substrings. 

Lemma 3.2 (Properties of lexicographic maximum measure). 

(1) VIoI=Ya. 

(2) I~~I=I4~(I~I-Y4. 

Proof. (1) The sets of maxima of 1~1 and [o] are easily shown to be the same. In the 

sequel we will make use of this fact without mention. 

(2) By induction on the length of C. The base case being trivial, we only show the 

induction step. 

IaozI=[cl]ti(IazI-VU) 

=C~l~((I~I@J(I~I-Y~))-V~) 

=C~l~(I4-Y4N(lsI-Y+V4 

=l~~I~((I~l-Y+w) 

=lcrcrlw(lzI-ycxr) 

(definition) 

(induction hypothesis) 

(distribute (A.3(8))) 

(definition) 

(Lemmas A.3(9) and 2.6(l)) 0 

The lexicographic maximum measure is designed to make pasting decreasingness 

preserving (Lemma 3.5) and hypothesis decreasing (Lemma 3.6). The intuition for this 

measure is that labels below a label in front of them do not matter in proving 

confluence. At the time we get to them (to finish the confluence diagram) we already 

know they “behave nicely” because the bigger label does so. Now we define decreasing 

diagrams with respect to this measure. 

Definition 3.3 (Decreasing diagram). The diagram 

is decreasing (D) if the following decreasingness3 condition is satisfied: 

I~~‘l~m”ll~l~l~l$mull~~‘I 

3 We can extend the notion of decreasingness a little bit by taking <,,, instead of =$,,,“, for comparing the 

measures. However, these notions coincide for the case of a locally decreasing diagram. 
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Fig. 2. Locally decreasing diagram. 

A locally decreasing (LD) diagram is a decreasing diagram such that its divergence is 

local, i.e. both D and z consist of exactly one step. 

Using the Decomposition Lemma 3.2(2) and the property in Lemma 2.6(6) we can 

reformulate the decreasingness condition as 

One can think of these inequalities in the following way. The labels in the measure of 

the conclusion (0’) all trace back to the labels (in the measure) of the opposite side in 

the hypothesis (a), except for the noise (elements of VT) which has been generated by 

the adjacent side in the hypothesis (t). 

The next proposition gives a characterisation of the convergent reduction se- 

quences of a locally decreasing diagram. 

Proposition 3.4. The form of a locally decreasing diagram is as specijed in Fig. 2. 

Proof. The reformulation of decreasingness in the case of a local diagram where o = a 

and z=/i’, reads lr’l --VN <mul [fi] and [cl] +=mul lr~‘l -vfl. It is apparent that g’ is 

a string less than or equal to IX, i.e. a string headed by at most one CI followed by 

a number of labels less than CI, interspersed with noise from 0, i.e. labels less than 8. 

This is described exactly by the right-hand side of the LD-diagram.4 The same holds, 

mutatis mutandis, for 5’. 0 

A nice property of D-diagrams is that they can be pasted together to form bigger 

D-diagrams. 

Lemma 3.5 (Pasting preserves decreasingness). 

4 If one replaces <,., by <m, then nothing changes because one easily proves F <,,, [a] o F <,,, [E], for 
every finite multiset F. 
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Proof. We have to prove that the diagram on the right is decreasing. Continuing on 

the informal explanation of decreasingness, the proofs are guided by tracing back the 

reductions in the conclusion to the reductions in the hypothesis. For the right-hand 

side of the conclusion, the labels of c” are either noise from u or trace back to 0’. The 

labels of CJ’ are either noise from z or trace back to G. We can combine these 

observations by noting that all the noise generated by z and ucan also be generated by 

ru, and that tracing back is transitive. Formally 

1 zucf’ 1 = ~su~w(~o”~-yw) (decompose (3.2(2))) 

= lzul &((Io”I-vu)-vr) (Lemmas A.3(9) and 2.6(l)) 

i Tmul lzul w,(Ia’I-Yz) PJ 

< Ymul lTuI *Ial PI). 

Observe the close relationship between the informal and formal proofs. For the 

other side of the conclusion the situation is more complicated. For the first half of the 

conclusion (r’), everything is straightforward. However, for the second half of the 

conclusion (u’), the noise generated by 0’ either traces back to 0 or it is the noise 

generated by r. The former case is not problematic, because IS is allowed to generate 

noise inside r’u’. The latter case is problematic, because it is not clear why steps in u’ 

should trace back to z. We are saved by the lexicographic maximum measure because, 

roughly speaking, some of the steps in u’ are filtered out by r’ in taking the measure of 

t’u’ and the other ones can safely be traced back to r (safely, because they were not 

filtered out): 

IfJt’u’I = /0z’Iti(ju’I-yvdr’) (decompose (3.2(2))) 

= lot’I~((Io’I-~ar’)n~r)s((lu’l-yor’)-yt)(split (A.3(10))) 

< ,rn”l I~I~I~I~((IU’I-~~~‘)-~~) (see below) 

G lg/ &lTl ~NIu’I-Va’)-v) (see below) 

< --Yrn”l 101 Ml *‘l4-\/4 Pz) 

= loI 4~UI (compose (3.2(2))). 

The correspondence between the informal proof and the formal one is here more 

difficult to find, but still present. For example, the first not yet justified step corres- 

ponds exactly to the problematic case above. 
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Claim. Ifwe take F =defIaz’l, G =defIoIti,I~I, and H =def(I~‘I-_~~‘)n~z, then the 
assumptions of Lemma 2.6(7) are satisfied. Hence the step is justi$ed. 

Proof of claim. The first assumption, F <mul G, follows directly from D1. The second 

one, H c~G-~F, is shown by the following simple argument: 

(IU’I--~Z’)nVt=(Iu’l~V~)-Vaz’ (exchange (A.3( 11))) 

s J(r - yaz’ 

C(~O~~Z)-~OZ’ 

=V(l~l~l~l)-Vl~~‘I (distribute (2.6( 1)) and 

Lemma 3.2( 1)). 

This proves the claim. The other step reformulates which steps in u’ need to trace back 

to u. This is just as simple: 

(Iu’I-Vat’)-Vz=Io’l-V~z’z (Lemma A.3(9)) 

CIU’l-_CX 

slu’l-V(l~‘I~l~l) PI) 

=(lu’l-yo’)-yz (Lemma A.3(9)). 0 

We will prove the main theorem by well-founded induction on the measure of 

a diagram. The next lemma states that by filling in a decreasing diagram, the measure 

is decreased. 

Lemma 3.6 (Pasting is hypothesis decreasing). If t is nonempty and we have the 
situation 

then 10’1 w,) 01 -K,,,“, 101 ~,/zuJ, i.e. the measure of the hypothesis is decreased. 

Proof. What labels are in the measure of the new hypothesis? A label in the measure of 

CJ’ either traces back to CJ or is noise generated by z. The labels in the measure of u either 

were also present in the measure of zu or were filtered out by t. In the last case they 

can be considered as noise generated by t. Summing up, the only “created” step labels 
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in the new hypothesis can be seen as noise generated by 

/0’/W,1 UI = ~~I~‘l~I~l~~~~~~,(~l~‘l~l~l~-~~~ 

< mu1 I~I~,((I~‘l~l4)-V~) 

I~INla’l -W~,(I4-W 

l~~‘I~(I~l-W 

< --Ymul l~I~I~I~(I~l-Y~) 

= l44~4 

T: 

(split (A.3(10))) 

(noise reduction (2.6(4))) 

(distribute (A.3(8))) 

(compose (3.2(2))) 

(D) 

(compose (3.2(2)). 0 

Now the two previous lemmas can be used in a straightforward way to obtain our 

main theorem. It is only here that we have to assume that the strict partial order < is 

well-founded. 

Main Theorem 3.7. Let JZZ = def (A, ( +cr)olcl) b e an ARS and let < be a well-founded 
partial order on I. Let I, and I, be (not necessarily disjoint) subsets of I, with 

+” =def Unel,+or and +,, =def UBEIh -+8. The v and h stand for vertical and horizon- 
tal. If, for all a in I, and b in I,,, the following diagram holds, then --+” commutes with --+,,: 

In the diagram CT must consist of vertical labels (EI,) and t of horizontal ones (EI,,). 

Proof. The theorem is proved by well-founded induction on the measure of diagrams, 
showing that we always obtain D-diagrams. The proof is expressed by the diagram in 
Fig. 3. 

The diagram IH1 can be completed to a D-diagram because of the induction 
hypothesis, using Lemma 3.6. The diagrams LD and IH, together form a D-diagram 
by Lemma 3.5, hence the diagram IH2 can be completed again to a D-diagram 
because of the induction hypothesis, using (the mirrored version of) Lemma 3.6. Now 
the complete diagram is a D-diagram by another appeal to (the mirrored version of) 
Lemma 3.5. 0 

Note. The above proof can be made formal, by showing that the predictate P on 
divergences, defined by: P(b+a+c) = def 3d b+d+cforming a decreasing diagram, is , 
a >,,,-complete’ predicate (see [6]). 

5 For the extended notion of decreasingness one must show P to be >,-complete. 
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Fig. 3. Proof of main theorem. 

A special case of the theorem arises when we take the sets I, and I,, to be equal to the 

set of all labels I. In searching for applications of the theorem, the characterization of 

locally decreasing diagrams (Proposition 3.4) is often helpful. Another useful observa- 

tion is that for proving confluence the presentation of an ARS can be chosen freely. 

Definition 3.8 (LD and DCR). (1) An ARS ~6’ = def (A, ( +a)orsl) is locally decreasing 
(LD), if there exist a relation < and sets I, and I,, satisfying the assumptions of 

Theorem 3.7, such that +& = +” = +h. 

(2) An ARS is decreasing Church-Rosser (DCR) if it is reduction equivalent to 

a locally decreasing ARS. 

In the sequel, if we do not specify the sets I, and Zh, they are assumed to be equal to 

I, the set of all labels. 

Corollary 3.9. (1) A locally decreasing ARS is conjuent. 
(2) A decreasing Church-Rosser ARS is confluent. 

Proof. (1) By assumption we can apply Theorem 3.7 and conclude that +& com- 

mutes with itself, that is, d is confluent. 

(2) Directly by (l), noting that the presentation of an ARS does not influence 

confluence. 0 

4. Applications 

In this section we apply the results from the previous section to obtain proofs of 

some classical confluence lemmata. The difficulty in applying our main theorem to an 

ARS will be finding a suitable presentation of the ARS and finding a well-founded 

partial order on its set of labels, such that it is locally decreasing. The first application 

will be the lemma of Hindley-Rosen. As the ordering on the labels models how the 
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reduction steps interact and in the lemma of Hindley-Rosen there is no interaction at 

all, the application is straightforward. 

Corollary 4.1 (Lemma of Hindley-Rosen [S, lo]). Let (A, ( +or)as,) be an ARS. Zffor 

all M and j3 in I, joL subcommutes with +8, then xx? is conjluent. 

Proof. Take for < the empty order on I. Because an SC-diagram is a special 

LD-diagram (compare Figs. 1 and 2), we can apply Corollary 3.9(l) and obtain 

confluence of d. 0 

For the next application the ordering is almost as easy to find. 

Definition 4.2 (Requests [lo]). Let -ti and +2 be relations on A. The relation +2 

requests + 1 if t1;+2 z +2; +r; c1 (see Fig. 4). Informally, the second reduction 

relation requests the first one to reach a common reduct. 

Corollary 4.3 (Requests lemma [lo]). Let (A, (+1, +2)) be an ARS. If +1 and +2 

both are subcommutative and j2 requests -+ 1, then _zf is confluent. 

Proof. Take as order 142. Now d is confluent because SC-diagrams as well as 

requests-diagrams and mirrored requests-diagrams are LD-diagrams, so Corollary 

3.9(l) can be applied again. 0 

Note. Actually, the results above are trivial reformulations of the original ones by 

Hindley and Rosen. 

As a simple example of an application of the main theorem to a specific ARS, 

we show that j?- and r]-reductions commute for A-calculus. By simple case analysis 

(see [l]) one shows that the diagram in Fig. 4 holds. Now one notes that /I has 

“splitting effect” on r~ but not vice versa, so if we take r<P, then the diagram is 

decreasing hence /I commutes with VI. The same method cannot be applied to obtain 

that fl is confluent, the main difficulty being that P-reduction has splitting effect on 

itself. 

1 I ___________*-----______g 
2 1 

Fig. 4. Requests and i-calculus. 
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The results so far could be obtained by constructing a well-founded ordering on the 

set of labels of the reduction relations, i.e. showing the AR% to be locally decreasing. 

For the remaining applications, we shall have to construct suitable presentations of 

the ARSs as well. The idea is that we have to choose a presentation such that 

reduction steps have no splitting effect on themselves. If the reduction relation is 

strongly normalising then the splitting behaviour does not matter, as stated by an 

early result of Newman. 

Corollary 4.4 (Newman’s lemma [9]). Let d = def (A, -+) be an ARS. If d is locally 

conjuent and strongly normalising, then d is confluent. 

Proof. Let the reduction relations of the ARS g =def (A, ( +o)aeA) be defined as 

follows: a -+u b if a+b, for all a, b in A. Let < = def t +, then < is a well-founded 

partial order because + is strongly normalising. Obviously, we have &s%?‘. The 

translation of a WCR-diagram in JZZ to a diagram in g is shown in Fig. 5. Note that 

a reduction sequence a-+b+d in & translates to a reduction sequence a+, b-Had in 

g such that a is greater than every element in G. Thus, the simulation by g of 

a WCR-diagram in &’ is an LD-diagram. We conclude from Corollary 3.9(2) that JZZ is 

DCR, hence CR. 0 

If one can choose the splitting to take place in one direction only, as in Huet’s 

Lemma below, then confluence can also be proved. 

Definition 4.5 (Strong confluence [6]). A relation + is strongly confluent (SCR) if 
t;+c+= ;+ (see Fig. 6). Informally, the tiler can choose the side of the splitting. 

Although a direct proof that strong confluence implies confluence is easy, we want 

to reduce this problem to Theorem 3.7. It is not immediately clear how this can be 

done, because the SCR-diagram does not fit in the LD-diagram. This is because 

a reduction step is split into several reduction steps having the same label, not smaller 

ones as required by the theorem. The solution is to note that splitting takes place only 

a--------)c a(1‘c 

b _____----_>.z d b _-_--_-__- d 

<a 

Fig. 5. Proof of Newman’s lemma. 



214 V. van Oostrom 

Fig. 6. Proof of Huet’s lemma. 

in the vertical reductions. Hence, we make a distinction between vertical and horizon- 

tal reductions, ordering the horizontal steps above the vertical ones. 

Corollary 4.6 (Strong confluence lemma [6]). Let d = def (A,+) be an ARS. If._& is 

strongly conjkent, then d is confluent. 

Proof. Define the ARS 2 =def (A, (--+,,, -,)) by +,, =def -)” =def --+. Obviously, 

&iG@. The idea is to simulate the “vertical” reduction steps in the SCR-diagram of 

l?e by +y and the “horizontal” reduction steps by +h in %?. This translation is depicted 

in Fig. 6. By an appeal to Theorem 3.7 (taking as order v<h)+h commutes with -+“. 

From this we conclude immediately by Corollary 3.9(2) that & is confluent. 0 

The method of proof of the previous lemma can be extended easily to ARSs having 

more than one reduction relation. This leads to an extended notion of strong 

confluence, coinciding with the usual one in the case of an ARS with one reduction 

relation. We obtain an asymmetrical version of the main theorem. 

Definition 4.7 (Strong conjuence (Extended)). Let &’ = def (A, ( -‘JaGI) be an ARS. Let 

< be a well-founded partial order on I. The ARS & is strongly conjluent if for all CI and 

p in I, we have the diagram in Fig. 7 or (cf. Proposition 3.4) 

l~‘l-~~<~~~CBl and Cul $mU~C~‘l-lB 

where r’ is the bottom side, (T’ the right-hand side of the conclusion, and Jp denotes the 

order ideal generated by /I, defined by J/I = def v/I u { fi}. 

‘Theorem 4.8. Every strongly conjluent ARS is conjhent. 

Proof. Let < be the well-founded partial order on I making the ARS 

J.&’ = def (A, ( +a)asI) strongly confluent. We adapt the method used in the proof of 

Corollary 4.6. We create for every reduction relation a horizontal and a vertical 

version. Let the ARS g =def (A, ( -+a)asIT) be defined by I’ =def ZhuZ,, where 

I, =def {a,jcr~Z} and +a, =def jII, for x in (h,v), then we have &‘024@. Define the 

order <’ on I’ by clX<‘&, if either cr<j3 or CI =/-I, x = v and y = h. It is easy to check that I 
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Fig. 7. Extended strong confluence 

< ’ is a well-founded partial order on I’. We translate an SCR-diagram in JZZ to an 

SCR-diagram in g by simulating vertical reduction steps by +” and horizontal ones 

by ‘h. Now in order to prove that --+” commutes with -+hr we must check that (the 

translation of) an SCR-diagram is an LD-diagram. Comparing Figs. 2 and 7, this is 

easily seen to be the case, because the only steps which might cause problems, the 

vertical P-steps, are less than the horizontal P-steps with respect to <‘. This shows 

that g is locally decreasing, & is decreasing Church-Rosser, and by Corollary 3.9(2) 

that s4 is confluent. 0 

We next state two corollaries of this theorem. The first one is a lemma by De Bruijn 

[a]. It was the search for a simple proof of this lemma, instead of the complicated 

combinatorial proof given in his paper, which led to our notion of decreasing diagram. 

Corollary 4.9 (De Bruijn’s Lemma [2]). Let d = def (A, ( +a)aal) be an AM. Let -X be 

a well-founded total order on 1. Iffor all cc<p in I, we have the following diagrams, then 

22 is conjkent. 

Proof. A well-founded total order is of course a well-founded partial order. One easily 

checks that the diagrams DBi, DB2 and the mirrored version of DB2 all are 

SCR-diagrams, so we can apply Theorem 4.8 and obtain confluence. Note that 

because of the totality of the order 4, these three cases cover all the possible local 
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divergences. The mirrored version of DB, is needed because of the condition a</I on 

its hypothesis. 0 

Next, we show a nontrivial application of the strong confluence theorem to obtain 

a recent result by Geser. 

Definition 4.10 (Relatiue termination and non-splitting [4]). Let zd = def (A, ( -F~, -ra)) 

be an ARS. 

(1) The relation -+m modulo +/I is defined by +a,P =def~,r; -+,;-nP. If +a,P is 

terminating, then +a is said to be relatively terminating (with respect to --+&. 

(2) The relation +p, is nonsplitting (NS), if ca; +,d s +,s;+& (see Figs. 8 and 9). 

Corollary 4.11 [4]. Let sf =def (A, ( -fa, +P)) be an ARS. If -+oL is relatively terminu- 

ting and locally conjluent and if +B is nonsplitting, then & is confluent. 

Proof. The idea of proof is the same as for the proof of Newman’s lemma (Corol- 

lary 4.4). The reduction relations are split into smaller ones based on the “weight” 

(with respect to +aip) of the origin of a reduction step. Let the reduction relations of 

the ARS g =def (A, ( +a)asA) be defined as follows: a -+c b if c ++@ a +d b, for all a, b 

and c in A. Note that we can translate a reduction step in d to many different 

reduction steps in %Y, but nevertheless & and 93 are clearly reduction equivalent. Let 
< zdef t&, then < is a well-founded partial order because +a is relatively termina- 

ting. To obtain confluence of d it suffices to check that 39 is strongly confluent. So 

NW) j d 

-----_=____, d 

.d 

===3 e :o 

t 
b __-___=____, d 

f 

Fig. 8. Proof of Geser’s lemma 
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f 
a-c 

b ____-_-___+> d 

.d 

s I NW) 

1 
b _____________> d 

.d 

b ___________>, d 

Fig. 9. Proof of Geser’s lemma. 

suppose we have a local divergence b t, a +f c in .@. Then by definition there exist 

reductions e-n/, a -+d b andfefl a+~, c in &. Because in both of these reductions the 

+,,-step can be either an +3- or a +p-step, there are four cases to consider. These 

cases are depicted in Figs. 8 and 9. The e- andf-labels in the conclusions are justified 

because, e.g. f ++P a +P b +,& d. The labels of u and z in the conclusions are obtained by 

translating the corresponding reductions on the left. Each step a’+b’ is translated to 

a’ +a, b’. By choice of the order all the labels in CJ and r are then below f and e, 

respectively. The only problem occurs in the last case of Fig. 9. There the labels in the 

right-hand side of the conclusion cannot be chosen belowfuntil the first (if any) a-step 

occurs. Happily, we can choose them to be equal to f; and we still get an SCR- 

diagram. 0 

Note. The proof shows that local confluence of CI is an unnecessarily restrictive 

condition. In the first diagram of Fig. 8 one can replace the a-labels in the conclusion 

by d without affecting the proof. 

5. Conclusion 

In this paper we have presented a new confluence criterion, DCR (decreasing 

ChurchhRosser), and we have shown that several other confluence criteria can be 

reduced to this one by simple transformations. There are certainly other criteria which 

can be reduced to local decreasingness, but the ones we have presented should give an 

idea of the kind of transformations involved and illustrate the power of the method. 
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All the confluent ARSs in this paper are in fact DCR, i.e. their confluence can be 

shown by choosing a suitable presentation which is locally decreasing. An interesting 

question is whether this holds in general, that is, whether the implication CR 3 DCR 

holds. 

A severe limitation of the Knuth-Bendix completion algorithm in the field of term 

rewriting systems is the fact that it is based on Newman’s lemma; which requires the 

rewriting system to be strongly normalising. Because Newman’s lemma can be viewed 

as a special case of our main result, which itself does not require strong normalisation 

of the reduction relations, it seems worthwhile to investigate whether we can use this 

fact to extend the completion procedure to term rewriting systems which are not 

strongly normalising. 

Appendix A 

Although finite multisets are omnipresent in computer science literature, general 

multisets seem to be “folklore”. In this appendix we give the formal definitions of the 

operations on multisets and state some properties (without proof) of their inter- 

relations (implicitly) needed in the proofs in the paper. First we give the formal 

definition of multisets. 

Definition A.1 (Multiset). (1) Let (WE) N denote the set of natural numbers. Let N, be 

N extended with a new element co. The element cc is the top element of the natural 

ordering < on N extended to N m. The operations minimum (A), maximum ( V), 
addition (+) and cutoff-subtraction (2) on IV, are defined as for N, extended as 

specified in Table 1. 

(2) (a) A (general) multiset A4 over I is a map M: Z+N,. 

(b) Ajnite multiset F over Z is a multiset such that C_IF(a)< co. 
(c) A set S over I is a multiset such that Va~:l, S(cz)e{O, co}. 

Multiset membership is defined by LYE&Z =def M(a)>O. 

Multiset inclusion is defined by MEN =def V’cr~l, M(E) < N(a). 

Definition A.2 (Operations on multisets). 
(1) The empty multiset @ is the constant 0 function. 

(2) The (finite) multiset [!_x] has value 1 at a and 0 elsewhere. The set (IX> has value 

00 at tl and 0 elsewhere. 

(3) The binary operations intersection (n), union (u), sum (ti) and dzfference (-) 
are defined by: for all CI in I, (A4 @ N) (CI) =def M(U) * N(a) via the correspondence in 

Table 1. 

Lemma A.3 (Properties of operations). (1) Intersection and union constitute a distribu- 

tive lattice. 



Confluence by decreasing diagrams 

Table 1 
Multiset operations 

219 

(2) Sum is commutative and associative. It has 8 as neutral element. 

(3) Sum distributes over intersection. 

(4) Sn(M wN)=(SnM)ti(SnN). 

(5) Mn(N-S)=(MnN)-(MnS). 

(6) (MnN)-X=(M-X)n(N-X). 

(7) (S&M)-N=(S-N)ti(M-N). 

(8) (M&N)-S=(M-S)&(N-S). 

(9) (M-N)-X=M-(NwX). 

(10) M=(MnN)&(M-N). 

(11) (M-N)nS=(MnS)-N. 

Proof. The properties are easily verified by checking the corresponding properties for 

the extended natural numbers. 0 
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