
Critical Peaks Redefined, the Non-Left-Linear Case

Φ ⊔ Ψ = ⊤
Vincent van Oostrom

Department of Computer Science, University of Innsbruck, Austria
Vincent.van-Oostrom@uibk.ac.at

Abstract

In previous work we introduced clusters as terms with a number of linear patterns in
them, gave both a geometric account of clusters as sets of positions and an inductive one
as let-expressions for terms with gaps (second order variables), and showed these to be
isomorphic giving rise to a lattice under the refinement order ⊑. This enabled us to give
an alternative lattice theoretic definition of the notion of critical peak as Φ ⊔ Ψ = ⊤, for
coinitial multisteps Φ and Ψ. Here we extend this to the non-linear case.

1 Introduction

In [1] we gave an alternative account of critical peaks in left-linear first-order term rewriting
systems. Here we extend it to the non-left-linear case. For reasons of space, we introduce our
definitions as derived from those of [1], with the convention that derived notions are boldface.
This note is under the Creative Commons Attribution 4.0 International License L M.

2 Geometric Clusters

We formalise the notion of a cluster, a term having a number of non-overlapping patterns
encompassed in it, and show that these constitute a lattice under the refinement order ⊑.

Definition 1. A (geometric) pattern for a term t is a geometric pattern [1, Definition 2] for
t extended with an arity, which is a partitioning of its fringe: the set of positions directly below
it. A (geometric) cluster is a pair of a term together with a set of disjoint patterns for it.

By the boundary of a pattern comprising only vertex positions, its fringe necessarily com-
prises only edge positions. Given a term, we often specify a cluster just by its set of patterns.

Example 1. The set of positions {ε̊, 1̄, 1̊} is a geometric pattern for the term t = f(g(a), a),
corresponding to the connected component comprising both f and g. Its fringe is {1·1̄, 2̄} corre-
sponding to both its a-subterms. It allows two arities: the first {{1·1̄}, {2̄}} has an equivalence
class for each position separately, the second {{1·1̄, 2̄}} has a single equivalence class.

Partitionings can be represented in many ways. We will freely switch between represen-
tations as sets of blocks (as in the example), as restricted growth strings, and as equivalence
relations. Because of their conciseness we will mainly employ restricted growth strings for spec-
ifying arities using that the positions in a fringe are totally ordered from left to right by the
left-order ≺l . In the example they are [1, 2] and [1, 1]. We write π : w to denote that pattern
π has arity w, simply writing π if w is natural, i.e. of shape [1, . . . , n] for n the cardinality of
the fringe. We abbreviate1 such a natural arity to [n]. Arities other than the natural one
are called sharing. In the example [1, 2] is natural and [1, 1] is sharing. Note that geometric
clusters [1, Definition 2] are naturally embedded into geometric clusters, by decomposing the
former into a set of disjoint geometric patterns and equipping these with their natural arity.

1This is unambiguous since [n] itself is not a restricted growth string for n ̸= 1 and [1, . . . , 1] = [1].

Critical peaks redefined, the non-left-linear case: Φ ⊔Ψ = ⊤ V. van Oostrom

Example 2. Some geometric clusters for the term t = f(g(a), a) are: the empty cluster ∅;
{{ε̊}}, the single pattern comprising only f with natural arity [2], i.e. [1, 2]; {{ε̊, 1̄, 1̊} : [1, 1]}
as in Example 1, having sharing arity [1, 1]; and {{ε̊, 1̄, 1̊}, {̊2}} comprising patterns f–g and
the right a with natural arities [2] and [0].

The idea of partitioning, well-known from shared (dag) representations of terms in unifica-
tion and term graph rewriting, cf. e.g. [3, 4], is that arity-related positions indicate equivalent
subterms, for some appropriate notion of equivalence.

Definition 2. A cluster ς = (t,P) is f -homogenous if for each pattern π :w in P its w-related
positions have the same f -image, for f a function on (edge) positions (that may depend on ς).

Note that clusters having natural arities are f -homogeneous for any f , and that for a
constant f -function any cluster is f -homogeneous. We will be particularly interested in term-
homogeneity, obtained by the function mapping a position p to the subterm t|p of t at position
p, and cluster -homogeneity, obtained by the function mapping to the subcluster ς|p, defined
in the obvious way. The latter, simply referred to as homogeneity, is more restrictive:

Example 3. For the term t = f(g(a), a) the pattern {{ε̊, 1̄, 1̊} : [1, 1]} is homogeneous having
two identical empty a-subclusters at related fringe positions 1·1̄ and 2̄. The same pattern is
not even term-homogeneous for the term f(g(a), b). The cluster {{ε̊, 1̄, 1̊} : [1, 1], {̊2}} for t,
although term-homogeneous, is not homogeneous since its a-subclusters ∅ and {ε̊} are distinct.

Intuitively, homogeneity of a cluster means its singling out of patterns is compatible with
their arities, i.e. sharing. Henceforth, we restrict attention to homogeneous clusters.

To extend the subset order from clusters [1, Lemma 1] to clusters, we first generalise the
standard notion of taking a subterm t|p of t at a position p, from positions to patterns.

Definition 3. The term t|π:w at pattern π : w in t is (t[vi1 , . . . , vin]p1,...,pn)|p, for p the root
of π, w = [i1, . . . , in], variables vi1 , . . . , vin , and p1, . . . , pn the fringe of π.

Intuitively, this carves out the pattern π from the term t respecting the arity w. It nat-
urally generalises to clusters via their term component, updating patterns accordingly, i.e.
left-quotienting by p the patterns that are subsets of π and omitting the others.

Example 4. Consider the term t = f(g(a), a) and pattern π = {ε̊, 1̄, 1̊} already seen in Exam-
ple 2. Then t|π:[1,2] = f(g(v1), v2) and t|π:[1,1] = f(g(v1), v1). Note that taking the subterm at
the root of π has no effect in this case, since the root is the empty position.

Accordingly, for the cluster ς = {{ε̊, 1̄, 1̊} : [1, 1], {1·1·̊1}, {̊2}}, ς|π:[1,2] has term f(g(v1), v2)

and pattern {ε̊, 1̄, 1̊} : [1, 1], and ς|π:[1,1] has term f(g(v1), v1) and the same pattern. The result
of the latter is a cluster, but not of the former, it is not even term-homogeneous, as v1 ̸= v2.

Intuitively, the arity [1, 2] was not strong enough for carving out π to preserve homogeneity
(be compatible with [1, 1]). For comparing clusters we demand homogeneity is preserved.

Definition 4. ς ⊑ ζ if for each π : w in ς there is a ρ : v in ζ with π ⊆ ρ and ς|ρ:v a cluster.

The idea for that ⊑ is a lattice is based on [4, Section 5.3], where it is shown that a
term graph G (a dag) for a term t be represented as T/∼, the term tree T equipped with an
equivalence relation ∼ on parallel positions (indicating which nodes are to be shared) that is
homogeneous [4, Definition 5.3.14] (if a node is shared, then so are its corresponding arguments).
For a given finite term, its term graphs constitute a lattice with bottom ⊥ the term tree (for

2

Critical peaks redefined, the non-left-linear case: Φ ⊔Ψ = ⊤ V. van Oostrom

the identity relation), top ⊤ the maximal sharing graph (with pointer equality; same term iff
same node), with meet and join of T/∼1, T/∼2 given by T/(∼1 ∩ ∼2) and T/(∼1 ∪ ∼2)

∗.2

Viewing our arities as expressing sharing, for showing that clusters constitute a lattice we
proceed in much the same way, except that we also force connected components, i.e. patterns,
first to be homogeneous and second to be viewed as ‘single nodes’ (‘without internal sharing’).

Example 5. Consider the term t = f(g(h(a)), g(h(a))) and patterns π = {ε̊, 1̄, 1̊, 2̄, 2̊} with
sharing arity [1, 1], and ρ = {1·̊1, 1·1·1̄, 1·1·̊1} and o = {̊2, 2·1̄, 2·̊1} both with natural arity.

• {π}⊔ {ρ} is the cluster {π : [1, 1], ρ, ρ′} where ρ′ = {2·̊1, 2·1·1̄, 2·1·̊1} is a copy of ρ forced
by homogeneity of π, after taking the union of the sets of (disjoint!) patterns;

• {ρ} ⊔ {o} is {ρ, o}, i.e. just the union of their sets of (disjoint) patterns;

• {o} ⊔ {π} is {(π ∪ ρ ∪ o′) : [1, 1]} having one pattern since o and π have overlap and with
o′ = {1·1̄, 1·̊1} forced by homogeneity of π; the resulting pattern being larger forces to ‘push
the sharing’ of π to the new fringe, in this case again resulting in arity [1, 1].

Theorem 1. The clusters for a given term ordered by ⊑, constitute a lattice.

Proof. To compute the join ς ⊔ ζ we first take the unions P of the sets of positions and ∼ of
the arities, and next homogeneously close these to P and ∼ such that:

• if p ∼ q and p·r in P or ∼, then so is q·r and p·r ∼ q·r; and

• ∼ is an equivalence relation.

Finally, we (uniquely) decompose P into patterns with arities obtained by restricting ∼ to
their fringes. This yields a cluster since clusters are preserved under union, and positions in
∼ and hence in ∼ are all edge positions, so that P will be have vertex boundaries: if p ∼ q and
p·r̄ in P , then also p·̊r is, so both will be adjoined. Finally, equivalence relations are preserved
under restriction. That ς, ζ ⊑ ς⊔ζ and it is the ⊑-least such follows per construction, the former
by being homogeneously closed and the latter by closure not adjoining more than needed.

Meets ς⊓ζ are computed by taking the intersection of the sets of positions with the resulting
patterns having as arity the intersection of those of the respective patterns involved.

Note that for natural clusters, having natural arities, meet and join coincide with those
for clusters [1, Lemma 1], since then closing is vacuous. However, for non-linear terms the
respective tops differ, since unlike clusters, clusters cannot capture sharing:

Example 6. For t = f(v3, v3) the cluster top is {{ε̊} : [1, 2]} but the cluster top is {{ε̊} : [1, 1]}.

We call a term t or a cluster for it standard, cf. [2], if t = t|⊤, capturing that variables are
in accord with the restricted growth sequence of its top ⊤. For instance, t = f(v3, v1) is not
standard, since its top has arity [1, 2] so t|⊤ = f(v1, v2).

3

In contrast to cluster lattices [1, Theorem 1], cluster lattices need not be4 distributive:
{ρ}⊓ ({π}⊔ {o}) = {{1·̊1}} ≠ ∅ = ({ρ}⊓ {π})⊔ ({ρ}⊓ {o}) in Example 5. Note that the arity
[1, 1] of π is sharing here. In a sense, non-distributivity of the lattice reflects non-left-linear
rules being problematic for confluence analysis.

2The unification algorithm of [3] can be viewed as computing the join in time linear in the size of the dags.
3A check for standardness is part of the COPS database infrastructure to avoid duplicate problems.
4But sometimes they are, e.g. for terms not allowing any sharing.

3

Critical peaks redefined, the non-left-linear case: Φ ⊔Ψ = ⊤ V. van Oostrom

3 Inductive Clusters

We adapt inductive clusters [1, Definition 3] to inductive clusters to allow for non-linear
patterns, in such a way that they again [1, Theorem 1] are isomorphic to geometric clusters.
To that end we first extend the notion of signature to be able to express non-linearity constraints.

Definition 5. A signature is a set of symbols having restricted growth sequences as arities.

We will employ the conventions for arities introduced in the previous section. Usual signa-
tures are naturally embedded into signatures by embedding a symbol having arity n as one
having natural arity [n]. We henceforth assume a signature with symbols of four types: function
symbols f , g, . . . having natural arities;5 variables v1, v2, . . . having arity []; gap symbols X,
Y , . . . infinitely many of each arity; and rule symbols ϱ, θ, Terms are built according to
the arities associated to (being the length of) the arities. A term has arity n if variables in
it have indices ⩽ n. The arity of a term is its list w of variable indices, if that is a restricted
growth sequence and undefined otherwise, and has arity v if w refines v (as partitions).

Example 7. The idea of, say, t = f(v1, v1, v2) having arities both [1, 1, 2] and [1, 1, 1] is that
it is ‘safe’ to substitute t for a symbol having either of those arities, since they ‘guarantee’ at
least as much as the arity [1, 1, 2] of t. This would not hold for, e.g., a symbol of arity [1, 2, 2].

Definition 6. An assignment (called 2nd order substitution in [1, Definition 3] and denoted

there by Jf⃗ := t⃗K) let f⃗ = t⃗ is an assignment if each ti is homogeneous and has the arity of fi.

After this generalisation of assignments (note that if all arities are natural the condition
holds vacuously, so is not restrictive), all other notions carry, mutatis mutandis (switching from
regular to boldface), over from Definitions 3 and 4 of [1], in particular the inductive definition
of the refinement order ⊑, In accord with the above we let (inductive) clusters be denoted by

(second order) let-expessions: let f⃗ = t⃗ in t.

Theorem 2. For a given term, geometric clusters ordered by ⊆ are isomorphic to inductive
clusters, up to renaming of gaps, ordered by ⊑. The order is a finite lattice.

Proof. The proof extends that of [1, Theorem 1], verifying that homogeneity is preserved by
the transformation in either direction.

Lemma 1. A cluster ς for non-variable t with ς ̸= ⊤ can be written as let v⃗= ς⃗ in ς0, with ς0
standard and non-variable, and non-empty vectors.

Proof. Let t = f (⃗tn) and let [i1, . . . , in] be the arity of f . By homogeneity of ς we may write t

as let v⃗ =
−→
tm in f(vi1 , . . . , vin) with

−→
tm ⊆ t⃗. Decomposing ς accordingly yields the result.

4 Critical Pairs

Having introduced the new set up, we redefine fundamental notions such as overlap for clusters
(without reference to rules yet!), then inducing the same for multisteps, clusters assigning
single rule symbols to terms.

Definition 7. A pair (ς,ζ) for t is critical if ς ⊔ ζ = ⊤, t is standard, ς ̸= ⊥ and ζ ̸= ⊥,
overlapping if ς ⊓ ζ ̸= ⊥, and empty if ς = ⊥ or ζ = ⊥.

5It could be interesting to consider sharing arities for function symbols as well.

4

Critical peaks redefined, the non-left-linear case: Φ ⊔Ψ = ⊤ V. van Oostrom

Lemma 2. Every critical pair is overlapping.

Proof. A pair (ς,ζ) for t being critical means ς ⊔ ζ can be written as let X = t in X(vi1 , . . . , vin)
for [i1, . . . , in] the arity of t. Per construction of ⊔ in the proof of Theorem 1, this means that
the head of t belongs to a pattern π in ς or ζ. But if it belongs to only one of them, then some
pattern in the other must overlap it, otherwise π would by the construction be a pattern of
ς ⊔ ζ, its only one by criticality, as well.

Notions for clusters extend to multisteps, via the map lhs mapping the rule symbols in its
assignment to their left-hand side; geometrically, expanding the vertices in the set of positions
labelled by rule symbols, to their left-hand sides. In particular, a critical peak is a peak, i.e. a
pair (ϕ,ψ) of co-initial steps, that is critical, i.e. such that (lhs(ϕ),lhs(ψ)) is critical. A peak is
trivial if it is parallel, i.e. if also its targets are the same.

Lemma 3. Critical (one–one) peaks correspond to the usual ones.

Proof. This follows from Lemma 2, and observing that usual critical pairs are induced by most
general (w.r.t. ⊑) overlaps between left-hand sides; cf. [1, Lemma 3].

Lemma 4. For a peak (Φ,Ψ) for t that is neither critical nor empty, ς = Φ⊔Ψ can be written
as let v⃗= ς⃗ in ς0 such that for every step χ : t → s in Φ or Ψ there is a step χ′ in some ςi that
extends χ in the sense that the target of χ′ (as a step from t) is reachable from that of χ.

Example 8. For the term f(a, a) and rules a→ b, a→ c, f(v1, v1) → . . ., let Φ contract the
f -redex and Ψ contract both a-redexes but to b and c respectively. Contracting a to b in the
decomposed term let v1 = a in f(v1, v1) yields let v1 = b in f(v1, v1) i.e. f(b, b) which is distinct
but reachable from the result f(b, a) of contracting the left a to b.

As the example shows, due to sharing we do not have in general that steps all belonging
to either Φ or Ψ can be done in parallel on the decomposition; either of the Ψ-redexes can be
contracted but not both, on the decomposition. This is as intended: it witnesses that there is
overlap, albeit only after enforcing the sharing due to Φ.

Lemma 5 (Huet). A term rewrite system is locally confluent iff its critical peaks are joinable.

Proof. Let (ϕ,ψ) be a critical peak. If the pair is trivial, then we conclude trivially, if critical,
then by assumption, and if empty, then we conclude by swapping the steps. Otherwise, ϕ, ψ
are in distinct components of the decomposition of ϕ ⊔ ψ, and a common reduct is found by
contracting them simultaneously, which is reachable from the targets of ϕ, ψ by Lemma 4.

Cleanness and constructiveness is the main goal of this approach. For example, Okui’s
confluence criterion was implemented using the same definition of criticality, as in the appendix.

References

[1] N. Hirokawa, J. Nagele, V. van Oostrom, and M. Oyamaguchi. Critical peaks redefined,
Φ ⊔ Ψ = ⊤. In B. Accattoli and B. Felgenhauer, editors, Proc. 6th IWC, pages 33–37, 2017.
https://arxiv.org/pdf/1708.07877v1.pdf.

[2] Yves Métivier. About the rewriting systems produced by the Knuth–Bendix completion algorithm.
Inf. Process. Lett., 16(1):31–34, 1983.

[3] M.S. Paterson and M.N. Wegman. Linear unification. Journal of Computer and System Sciences,
16(2):158–167, 1978.

[4] J.E.W. Smetsers. Graph Rewriting and Functional Languages. PhD thesis, Katholieke Universiteit
Nijmegen, 1993.

5

Critical peaks redefined, the non-left-linear case: Φ ⊔Ψ = ⊤ V. van Oostrom

A Appendix
okuiMultiOne :: Signature a => SemiClosure a -> LocalPeak a -> SemiValley a

okuiMultiOne d (LocalPeak z dl dr) = if (lpeakSize p) <= 1 then emptyorcritical else recurse where

p = LocalPeak z l r

l = bb dl -- normalise input

r = bb dr

emptyorcritical = if (lpeakCritical p) then (if (lpeakTrivial p) then (sValleyTrivial z (tgt z (lmstp p))) else critical) else empty where

critical = varSValleyCompose (sclosure d (fst dp)) (snd dp) where -- search for -o->*;<-o- closure in list of closures, solve, and var inst

dp = varLPeakDecompose p -- decomposition into critical peak and variable instantiation

empty = (SemiValley z [r’] l’) where

r’ = if (isGap (trmHead (skeleton l))) then InduCluster (tgt z l) [] else r

l’ = if (isGap (trmHead (skeleton r))) then InduCluster (tgt z r) [] else l

recurse = aux (lpeakDecompose p) where

aux (t,v,b) = sValleyCompose v1 v v2 where

v1 = okuiMultiOne d t

v2 = okuiMultiOne d b

6

	Introduction
	Geometric Clusters
	Inductive Clusters
	Critical Pairs
	Appendix

