Remarks on the full parallel innermost strategy

Vincent van Oostrom \square (0)
Barendrecht, The Netherlands (http://www.javakade.nl)

Abstract

- Abstract

We make some observations on how innermost \rightarrow_{i}, parallel innermost \prod_{i} and full parallel innermost rewriting \rightarrow_{i} relate for first-order term rewrite systems (TRSs).

2012 ACM Subject Classification Theory of computation \rightarrow Equational logic and rewriting
Keywords and phrases TRS, innermost, full parallel innermost, confluence, termination,
Acknowledgements This note (1-6-2023) originated with questions raised by Carsten Fuhs. It is under the Creative Commons Attribution 4.0 International License © (i). Comments welcome.

Confluence We only employ basic concepts in abstract and first-order term rewriting [5].

- Lemma 1. Let $\rightarrow, \hookrightarrow$ be rewrite systems on the same set of objects such that (i) $\hookrightarrow \subseteq \rightarrow^{+}$; and (ii) $\rightarrow \subseteq \hookrightarrow \cdot^{=} \leftarrow$. Then confluence of \hookrightarrow entails confluence of \rightarrow if (iii) $\rightarrow^{=} . \hookrightarrow \subseteq \hookrightarrow \cdot \rightarrow^{=}$, and is equivalent to it if (iv) \rightarrow is terminating.

Proof. Let $\rightarrow, \hookrightarrow$ be rewrite systems on a set of objects, satisfying assumptions (i) and (ii). The assumptions allow us to speak just of normal forms as \rightarrow - and \hookrightarrow-normal forms coincide.

We first show confluence of \hookrightarrow entails confluence of \rightarrow assuming (iii). It suffices [5, Prop. 1.1.11] that $\hookrightarrow \cdot \rightarrow^{=}$has the diamond property, as the $1^{\text {st }}$ inclusion in $\rightarrow \subseteq \hookrightarrow \cdot \rightarrow^{=} \subseteq \rightarrow$ holds by reflexivity of \hookrightarrow and the $2^{\text {nd }}$ by assumption (i). We conclude by $=\leftarrow \cdot \longleftrightarrow \cdot \hookrightarrow \cdot \rightarrow^{=} \subseteq^{(\mathrm{ii})}$

Next we show \hookrightarrow is confluent iff \rightarrow is, assuming (iv).
For the only-if-direction, we claim $a \downarrow=b \downarrow$ for all $a \rightarrow b$, where the normal forms $a \downarrow$ and $b \downarrow$ of a and b exist uniquely by termination (assumptions (iv) and (i)) and confluence (assumption) of \hookrightarrow. The claim entails confluence of \rightarrow since $b \nleftarrow a \rightarrow c$ gives $\hat{b} \sharp b \nleftarrow a \rightarrow c \rightarrow \hat{c}$ for normal forms $\hat{b}=\hat{c}$ of b and c, existing by assumption (iv) and equal as $\hat{b}=\hat{b} \downarrow=a \downarrow=\hat{c} \downarrow=\hat{c}$ by the claim. We show the claim by well-founded induction on a w.r.t. \leftarrow. It being trivial for normal forms, suppose $a \rightarrow a^{\prime} \rightarrow b$. Then $a \hookrightarrow b^{\prime}=\leftarrow a^{\prime}$ for some b^{\prime} by assumption (ii) and we conclude to $a \downarrow=b^{\prime} \downarrow=a^{\prime} \downarrow=b \downarrow$ by $a \hookrightarrow b^{\prime}$ and the IH for $a^{\prime} \rightarrow b^{\prime}$ and $a^{\prime} \rightarrow b$.

The if-direction holds since if $b \longleftrightarrow a \hookrightarrow c$ then $\hat{b} \longleftrightarrow b \longleftrightarrow a \hookrightarrow c \hookrightarrow \hat{c}$ for normal forms $\hat{b}=\hat{c}$ of b and c, existing by assumptions (iv) and (i), and equal since then $\hat{b} \leftrightarrow a \rightarrow \hat{c}$ by assumption (i) and \hat{b}, \hat{c} are normal forms, equal by the assumed confluence of \rightarrow.

- Theorem 2. \rightarrow_{i} is confluent if \rightarrow_{i} is, and the converse holds if \rightarrow is terminating, for $\rightarrow i$ the innermost, cf. [1, Rem. 1] and \longrightarrow_{i} the full parallel innermost strategies of a TRS, with $\longrightarrow{ }_{i}$ defined as the full strategy for the (non-empty, i.e. contracting at least 1 redex) parallel innermost strategy $\Pi_{i}[5]$, contracting the full (i.e. maximal) set of innermost redexes. ${ }^{1}$

Proof. We claim the respective assumptions of Lemma 1 hold for $\rightarrow:=\Pi_{i}$ (non-empty) and $\hookrightarrow:=\leftrightarrows \rightarrow_{i}$. We then conclude by the lemma since confluence of Π_{i} and \rightarrow_{i} coincide by $\rightarrow_{i} \subseteq \Pi_{i} \subseteq \rightarrow_{i}$. We prove the claim. (i) holds by \longrightarrow_{i} being a special case of \prod_{i}; (ii) holds

[^0]since if $t \oiint_{i, P} s$ with P its set of (pairwise parallel) positions of contracted redexes, then $s \prod_{i, T-P} u$ and $t \longrightarrow_{i} u$, obtained by contracting (in arbitrary ways) in s the innermost redexes of t at positions not in P (still innermost redex-positions in s); (iii) holds since $t \Pi_{i} s \longrightarrow_{i} u$ means $t \oiint_{i, P} s \oiint_{i, S} u$ for some $P \subseteq T$. If $P=T$ we conclude; otherwise the consecutive parallel steps constitute a loath pair [3, Sect. 4]: the innermost redexes contracted in $s \Pi_{i, S} u$ at positions in $T-P$ can be permuted up front into (as residuals of innermost redexes in t not contracted in) $t \Pi_{i, P} s$ giving $t \oiint_{i, T} s^{\prime} \Pi_{i, S-(T-P)} u$; (iv) if \rightarrow is terminating, then so is (non-empty) Π_{i} by $\Pi_{i} \subseteq \rightarrow^{+}$.

The theorem allows to reduce the study of confluence of full parallel innermost rewriting $\rightarrow \rightarrow_{i}$ to that of more local, hence easier to analyse (qua properties), innermost rewriting \rightarrow_{i}; in part: without termination, ${ }^{3}$ confluence of \rightarrow_{i} need not entail confluence of \rightarrow_{i} due to the usual out-of-sync problem: for the trivially confluent TRS with rules $b \leftarrow a \rightarrow c$ and $b \leftrightarrow c$, the full parallel innermost steps $f(a, a) \longrightarrow i f(b, c), f(b, b)$ are not $\rightarrow i$-joinable.
Termination of full parallel innermost rewriting follows from that of innermost rewriting since $\leftrightarrows \rightarrow_{i} \subseteq \rightarrow_{i}^{+}$. The quantitative version of this, using the framework of [4], states that for every $\rightarrow \rightarrow_{i}$-reduction of measure μ, there is a co-initial \rightarrow_{i}-reduction of measure ν such that $\mu \leq \nu$, measuring a $\Pi_{i, P}$-step by $\# P$. It immediately follows from $\Pi_{i, P} \subseteq \rightarrow_{i}^{\# P}$ and has the original qualitative statement as a consequence since it entails that if there were an infinite $\longrightarrow \rightarrow_{i}$-reduction, so with measure $\mu=\top$, there would be a co-initial \rightarrow_{i}-reduction with $\mu \leq \nu$, hence $\nu=T$, so the \rightarrow_{i}-reduction would be infinite too. ${ }^{4}$ To see also the converse quantative (and hence the (known) qualitative) statement holds, i.e. that for every \rightarrow_{i}-reduction from t of measure μ, there is a co-initial \rightarrow_{i}-reduction of measure ν such that $\mu \leq \nu$, it suffices to instantiate (the statement in the proof of) $[1, \text { Thm. } 5]^{5}$ with $\triangleright:=\triangleright:=\rightarrow_{i}$, setting p to the successive p_{i} of $^{2} T=\left\{p_{1}, \ldots, p_{n}\right\}$, yielding an \rightarrow_{i}-reduction of shape $t \rightarrow_{i, p_{1}} \ldots \rightarrow_{i, p_{n}} s \rightarrow_{i} \ldots$ with measure $\nu \geq \mu$, from which we conclude by iterating on s as then $t \nrightarrow_{i} s$.

The above gives a handle on also reducing (or simply relating) the study of quantitative termination of full parallel innermost rewriting (macro steps, in the terminology of [4]) to that of innermost rewriting (micro steps). ${ }^{6}$

[^1][^2]
[^0]: 1 The notation should suggest that \longrightarrow is a full version of Π, in the same way that full multisteps \rightarrow are a full version of multisteps \rightarrow, contracting a maximal set of (non-overlapping) redex-patterns [2]. The analogy goes (much) further, cf. [5, Sect. 8.7]. E.g. just like \rightarrow is deterministic for TRSs without critical pairs, \longrightarrow is deterministic for systems without overlay critical pairs.

[^1]: - References

 1 V. van Oostrom. Random descent. In RTA, volume 4533 of Lecture Notes in Computer Science, pages 314-328. Springer, 2007. doi:10.1007/978-3-540-73449-9_24.
 2 V. van Oostrom. Z; syntax-free developments. In N. Kobayashi, editor, FSCD, volume 195 of LIPIcs, pages 24:1-24:22, 2021. doi:10.4230/LIPIcs.FSCD.2021.24.
 3 V. van Oostrom. On causal equivalence by tracing in string rewriting. In C. Grabmayer, editor, TERMGRAPH, volume 377 of EPTCS, pages 27-43, 2023. doi:10.4204/EPTCS.377.2.
 4 V. van Oostrom and Y. Toyama. Normalisation by Random Descent. In $F S C D$, volume 52 of LIPIcs, pages 32:1-32:18, 2016. doi:10.4230/LIPIcs.FSCD.2016. 32 .
 5 Terese. Term Rewriting Systems. Cambridge University Press, 2003.

[^2]: ${ }^{2}$ For a term t we denote its full set of innermost redex-positions by T, i.e. by capitalising the notation t
 ${ }^{3}$ Without normalisation; the last part of the proof of Lemma 1 only uses existence of normal forms.
 ${ }^{4}$ Formally, in the framework of [4], infinite reductions are represented by finite extended reductions, that may have steps that unfold to infinite reductions.
 ${ }^{5}$ It should be easy to generalise [1, Thm. 5] to the setting of [4], i.e. generalising it from the length measure to an arbitrary one.
 ${ }^{6}$ To capture the exchange between the width (the amount of parallelism) and the length (the amount of causality) of the reductions; cf. Dilworth's Theorem.

