Remarks on the full parallel innermost strategy

² Vincent van Oostrom 🖂 💿

³ Barendrecht, The Netherlands (http://www.javakade.nl)

⁴ — Abstract

11

⁵ We make some observations on how innermost \rightarrow_i , parallel innermost $\xrightarrow{}_i$ and full parallel innermost ⁶ rewriting $\xrightarrow{}_i$ relate for first-order term rewrite systems (TRSs).

 $_7$ 2012 ACM Subject Classification Theory of computation \rightarrow Equational logic and rewriting

8 Keywords and phrases TRS, innermost, full parallel innermost, confluence, termination,

9 Acknowledgements This note (1-6-2023) originated with questions raised by Carsten Fuhs. It is 10 under the Creative Commons Attribution 4.0 International License O O. Comments welcome.

¹² **Confluence** We only employ basic concepts in abstract and first-order term rewriting [5].

Lemma 1. Let →, → be rewrite systems on the same set of objects such that (i) → $\subseteq \rightarrow^+$; and (ii) → $\subseteq \rightarrow \cdot^= \leftarrow$. Then confluence of → entails confluence of → if (iii) → $\stackrel{=}{\rightarrow} \cdot \rightarrow \subseteq \rightarrow \cdot^=$, and is equivalent to it if (iv) → is terminating.

Proof. Let \rightarrow , \hookrightarrow be rewrite systems on a set of objects, satisfying assumptions (i) and (ii). The assumptions allow us to speak just of normal forms as \rightarrow - and \hookrightarrow -normal forms coincide. We first show confluence of \hookrightarrow entails confluence of \rightarrow assuming (iii). It suffices [5, Prop. 1.1.11] that $\hookrightarrow \to =$ has the diamond property, as the 1st inclusion in $\rightarrow \subseteq \hookrightarrow \to \to = \subseteq \twoheadrightarrow$ holds by reflexivity of \hookrightarrow and the 2nd by assumption (i). We conclude by $= \leftarrow \cdot \ll \to \to = \subseteq^{(ii)}$ $\rightarrow = \cdot \ll \to = \leftarrow \subseteq^{\operatorname{CR}(\hookrightarrow)} \rightarrow = \cdot \Longrightarrow \cdot \ll = \leftarrow \subseteq^{(iii)} \hookrightarrow \to = \cdot = \leftarrow \cdot \ll$.

²² Next we show \hookrightarrow is confluent iff \rightarrow is, assuming (iv).

For the only-if-direction, we claim $a \downarrow = b \downarrow$ for all $a \twoheadrightarrow b$, where the normal forms $a \downarrow$ and $b \downarrow$ of a and b exist uniquely by termination (assumptions (iv) and (i)) and confluence (assumption) of \hookrightarrow . The claim entails confluence of \rightarrow since $b \twoheadleftarrow a \twoheadrightarrow c$ gives $\hat{b} \twoheadleftarrow b \twoheadleftarrow a \twoheadrightarrow c \twoheadrightarrow \hat{c}$ for normal forms $\hat{b} = \hat{c}$ of b and c, existing by assumption (iv) and equal as $\hat{b} = \hat{b} \downarrow = a \downarrow = \hat{c} \downarrow = \hat{c}$ by the claim. We show the claim by well-founded induction on a w.r.t. \leftarrow . It being trivial for normal forms, suppose $a \to a' \twoheadrightarrow b$. Then $a \hookrightarrow b' = \leftarrow a'$ for some b' by assumption (ii) and we conclude to $a \downarrow = b' \downarrow = a' \downarrow = b \downarrow$ by $a \hookrightarrow b'$ and the IH for $a' \twoheadrightarrow b'$ and $a' \twoheadrightarrow b$.

The if-direction holds since if $b \nleftrightarrow a \hookrightarrow c$ then $\hat{b} \nleftrightarrow a \hookrightarrow c \hookrightarrow \hat{c}$ for normal forms $\hat{b} = \hat{c}$ of b and c, existing by assumptions (iv) and (i), and equal since then $\hat{b} \twoheadleftarrow a \twoheadrightarrow \hat{c}$ by assumption (i) and \hat{b}, \hat{c} are normal forms, equal by the assumed confluence of \rightarrow .

Theorem 2. →_i is confluent if \rightarrow_i is, and the converse holds if \rightarrow is terminating, for \rightarrow_i the innermost, cf. [1, Rem. 1] and \rightarrow_i the full parallel innermost strategies of a TRS, with \rightarrow_i defined as the full strategy for the (non-empty, i.e. contracting at least 1 redex) parallel innermost strategy \rightarrow_i [5], contracting the full (i.e. maximal) set of innermost redexes.¹

Proof. We claim the respective assumptions of Lemma 1 hold for $\rightarrow := \twoheadrightarrow_i$ (non-empty) and $\rightarrow := \twoheadrightarrow_i$. We then conclude by the lemma since confluence of \boxplus_i and \rightarrow_i coincide by $\rightarrow_i \subseteq \boxplus_i \subseteq \twoheadrightarrow_i$. We prove the claim. (i) holds by \twoheadrightarrow_i being a special case of \boxplus_i ; (ii) holds

¹ The notation should suggest that \rightarrow is a *full* version of \rightarrow , in the same way that *full* multisteps \rightarrow are a full version of multisteps \rightarrow , contracting a maximal set of (non-overlapping) redex-patterns [2]. The analogy goes (much) further, cf. [5, Sect. 8.7]. E.g. just like \rightarrow is deterministic for TRSs without *critical pairs*, \rightarrow is deterministic for systems without *overlay* critical pairs.

2 fpi

since if $t \xrightarrow{} i_{i,T-P} u$ and $t \xrightarrow{} i_{i,T-P} u$ for some $P \subseteq T$. If P = T we conclude; otherwise the consecutive parallel steps constitute a *loath* pair [3, Sect. 4]: the innermost redexes contracted in $s \xrightarrow{} i_{i,S} u$ at positions in T - P can be permuted up front into (as residuals of innermost redexes in t not contracted in) $t \xrightarrow{} i_{i,P} s$ giving $t \xrightarrow{} i_{i,T} s' \xrightarrow{} i_{i,S-(T-P)} u$; (iv) if \rightarrow is terminating, then so is (non-empty) $\xrightarrow{} i_{i,V} by \xrightarrow{} i_{i,V} \subseteq \rightarrow^+$.

The theorem allows to reduce the study of confluence of full parallel innermost rewriting \downarrow_{49} \rightarrow_i to that of more local, hence easier to analyse (qua properties), innermost rewriting \rightarrow_i ; in part: without termination,³ confluence of \rightarrow_i need not entail confluence of \rightarrow_i due to the usual *out-of-sync* problem: for the trivially confluent TRS with rules $b \leftarrow a \rightarrow c$ and $b \leftrightarrow c$, the full parallel innermost steps $f(a, a) \rightarrow_i f(b, c), f(b, b)$ are not \rightarrow_i -joinable.

Termination of full parallel innermost rewriting follows from that of innermost rewriting 53 since $\longrightarrow_i \subseteq \longrightarrow_i^+$. The quantitative version of this, using the framework of [4], states that 54 for every \rightarrow_i -reduction of measure μ , there is a co-initial \rightarrow_i -reduction of measure ν such 55 that $\mu \leq \nu$, measuring a $\twoheadrightarrow_{i,P}$ -step by #P. It immediately follows from $\twoheadrightarrow_{i,P} \subseteq \to_i^{\#P}$ 56 and has the original qualitative statement as a consequence since it entails that if there were 57 an infinite \rightarrow_i -reduction, so with measure $\mu = \top$, there would be a co-initial \rightarrow_i -reduction 58 with $\mu \leq \nu$, hence $\nu = \top$, so the \rightarrow_i -reduction would be infinite too.⁴ To see also the 59 converse quantative (and hence the (known) qualitative) statement holds, i.e. that for every 60 \rightarrow_i -reduction from t of measure μ , there is a co-initial \rightarrow_i -reduction of measure ν such 61 that $\mu \leq \nu$, it suffices to instantiate (the statement in the proof of) [1, Thm. 5]⁵ with 62 $\triangleright := \triangleright := \rightarrow_i$, setting p to the successive p_i of $T = \{p_1, \ldots, p_n\}$, yielding an \rightarrow_i -reduction 63 of shape $t \to_{i,p_1} \ldots \to_{i,p_n} s \to_i \ldots$ with measure $\nu \ge \mu$, from which we conclude by iterating 64 65 on s as then $t \rightarrow i s$.

The above gives a handle on also reducing (or simply relating) the study of quantitative termination of full parallel innermost rewriting (*macro* steps, in the terminology of [4]) to that of innermost rewriting (*micro* steps).⁶

⁵⁹ — References

70	1	V. van Oostrom. Random descent. In RTA, volume 4533 of Lecture Notes in Computer Science,
71		pages 314-328. Springer, 2007. doi:10.1007/978-3-540-73449-9_24.
72	2	V. van Oostrom. Z; syntax-free developments. In N. Kobayashi, editor, FSCD, volume 195 of
73		<i>LIPIcs</i> , pages 24:1–24:22, 2021. doi:10.4230/LIPIcs.FSCD.2021.24.
74	3	V. van Oostrom. On causal equivalence by tracing in string rewriting. In C. Grabmayer, editor,
75		<i>TERMGRAPH</i> , volume 377 of <i>EPTCS</i> , pages 27–43, 2023. doi:10.4204/EPTCS.377.2.
76	4	V. van Oostrom and Y. Toyama. Normalisation by Random Descent. In FSCD, volume 52 of
77		LIPIcs, pages 32:1-32:18, 2016. doi:10.4230/LIPIcs.FSCD.2016.32.
78	5	Terese. Term Rewriting Systems. Cambridge University Press, 2003.

 $[\]frac{2}{t}$ For a term t we denote its full set of innermost redex-positions by T, i.e. by capitalising the notation t.

³ Without normalisation; the last part of the proof of Lemma 1 only uses existence of normal forms. ⁴ Formally, in the framework of [4], infinite reductions are represented by finite extended reductions, that

may have steps that *unfold* to infinite reductions.

 $^{^{5}}$ It should be easy to generalise [1, Thm. 5] to the setting of [4], i.e. generalising it from the length measure to an arbitrary one.

⁶ To capture the exchange between the width (the amount of parallelism) and the length (the amount of causality) of the reductions; cf. Dilworth's Theorem.