On covering hexagons with diamonds, by rewriting*

Vincent van Oostrom, vvo@sussex.ac.uk
University of Sussex, School of Engineering and Informatics, Brighton, UK

February 18, 2024

Abstract

We show each of the three rewrite techniques: random descent, proof orders for decreasing diagrams, and bricklaying, serves to solve the puzzle of covering hexagons with diamonds.

Consider an equiangular hexagon filled with diamonds; see Fig. 2 for four examples (ignoring the arrows in that figure for the moment). A diamond is obtained by the three ways in which an equilateral triangle whose edges are coloured widdershins red, green and blue can be glued to another such, along an edge of the same colour. We refer to these diamonds after their missing colour, that is, from left to right as displayed at the bottom of Fig. 1 as red, green and blue. We

Figure 1: Filling a hexagon by repeated tiling with diamonds (\Rightarrow) of its string of \longrightarrow-edges
show that all fillings of a given such hexagonal have the same spectrum [3], i.e. the same triple (r, g, b) of numbers of red r, green g, and blue b diamonds (steps), in the three ways stated in the abstract. This solves the problem of [1] for regular hexagons as then $r=g=b$ by symmetry.

Random descent Filling a hexagon can be seen as a transformation from its green-blue-red edges up from its bottom-leftmost node v, to its red-blue-green edges down-right from v, sorting edges so as to reverse the colour-order by repeated swapping (\Rightarrow) using the diamonds at the bottom of Fig. 1 1as indicated. 'Colouring' [6] Ex. 7] by measuring [8, Def. 4] a \Rightarrow-step as $(1,0,0)$, $\mathrm{a} \Rightarrow$-step as $(0,1,0)$, and $\mathrm{a} \Rightarrow$-step as $(0,0,1)$, one checks that ordered local confluence 6,8 holds; the critical peak from \quad measures $(1,1,1)$ either way. We conclude by [8, Lem. 24].

Proof orders for decreasing diagrams Consider the triple (r, g, b) of area measures [4, Ex. 3] by forgetting respectively the red, green and blue edges. For instance, for the hexagon edges ——— in Fig. 1, we measure per [4, Fig. 5] the areas of \longrightarrow as $(2,2,1)$, as $(2,4,2)$, and as $(2,2,1)$, giving the triple (of triples) $((2,2,1),(2,4,2),(2,2,1))$. We claim its spectrum is the triple of 2nd components (2,4,2); cf. its fillings in Fig. 2. This holds as steps swap adjacent edges, so leave the areas of those colours unchanged but decrement that of the other colour. Indeed, after the two filling steps on the left in Fig. 1] we obtain with triple $((2,1,1)),(2,3,2),(2,2,1))$, and the further \Rightarrow-step to the right changes only the third yielding $((2,1,1)),(2,3,2),(2,1,1))$. We conclude by that a string is sorted iff it has no inversions.

[^0]Remark. The area-involutive monoid homomorphism measures the no. of inversions per colour.

Figure 2: Proof by bricklaying

Bricklaying Consider the filling as on the left in Fig. 2, where we have directed edges to suggest an embedding in 3D. At the basis of bricklaying in [7], is that in any such embedding that contains a 3-peak (as indicated by the dotted lines), a brick can be laid per the \Rightarrow-rule on top in Fig. 2 in this case not directly at the position of the 3-peak, because it has a (Blue) in-edge. But following that back we must find a 3-peak again, and now (in general: eventually) the rule does apply. Since \Rightarrow-steps leave the spectrum unchanged, we conclude since from any filling the same \Rightarrow-normal form is reached (a brick [7]), here after one more \Rightarrow-step for the unique remaining 3 -peak.
Acknowledgment. Jan Willem Klop brought this problem to my attention (personal communication, 14-2-2024) explaining that he had solved it by the 'homotopic' methods of Dehornoy. After first solving it by the methods of [7], we realised it was a refinement of our 'homotopic' result [6], Ex. 2], refining counting swaps into counting types of swaps (so it generalises to arbitrarily many colours). (In hindsight, it's not surprising random descent [6, 8] applies since diagram filling as in [2], factors through it [9, Lem. 2].) This note illustrates the power of modern rewrite techniques.

References

[1] G. David and C. Tomei. The problem of the calissons. The American Mathematical Monthly, 96(5):429431, 1989. doi:10.1080/00029890.1989.11972212.
[2] P. Dehornoy and alii. Foundations of Garside Theory. EMS, 2015. doi:10.4171/139.
[3] E.W. Dijkstra. On the problem of the calissons. Technical Report 1055, Department of Computer Sciences, The University of Texas at Austin, July 1989. URL: https://www.cs.utexas.edu/users/ EWD/transcriptions/EWD10xx/EWD1055.html.
[4] B. Felgenhauer and V. van Oostrom. Proof orders for decreasing diagrams. In RTA, volume 21 of LIPIcs, pages 174-189, 2013. doi:10.4230/LIPIcs.RTA.2013.174.
[5] M.H.A. Newman. On theories with a combinatorial definition of "equivalence". Annals of Mathematics, 43:223-243, 1942. doi:10.2307/2269299
[6] V. van Oostrom. Random descent. In RTA, volume 4533 of Lecture Notes in Computer Science, pages 314-328, 2007. doi:10.1007/978-3-540-73449-9_24.
[7] V. van Oostrom. Residuation $=$ skolemised confluence. In 12th IWC, pages 20-25, 2023. URL: http://cl-informatik.uibk.ac.at/iwc/2023/proceedings.pdf
[8] V. van Oostrom and Y. Toyama. Normalisation by Random Descent. In FSCD, volume 52 of LIPIcs, pages 32:1-32:18, 2016. doi:10.4230/LIPIcs.FSCD.2016.32.
[9] H. Zantema and V. van Oostrom. The paint pot problem and common multiples in monoids. AAECC, 2023. doi:10.1007/s00200-023-00606-6.

A Remarks on equiangular hexagonals filled with diamonds

Since the diamonds (aka rhombi or calissons) used for filling (aka tiling or tessellation) are zonogons (centrally symmetric, convex polygons), i.e. have opposing sides of the same length, if an equiangular hexagonal can be filled by them it must be a zonogon itself, i.e. be an elongated rhombus. For instance, the equiangular hexagonal on the left in Fig. 3 is not zonogonal, hence not fillable, as is clear from colouring diamonds as in Fig. 1; the triples $(2,2,1)$ and $(1,1,2)$ of edges of each colour, going up resp. down-right from v are different, whereas such triples are preserved by filling with diamonds, by \Rightarrow-steps.

Figure 3: Non-fillable hexagon (left) and 3D (middle), non-convex non- \Rightarrow-interconvertible (right)
From the perspective of sorting, filling is a stable sort; the (relative) order of edges of the same colour is preserved by filling; only edges of distinct colours are swapped.

Every filled hexagon can be realised by a series of fillings, i.e. filling can be sequentialised ${ }^{1}$ into a series of \Rightarrow-steps rewriting the initial \longrightarrow-segment of its boundary up from v, into the final --segment of its boundary right-down from v. This holds since the latter segment is sorted but all intermediate segments are not, so contain at least one inversion, i.e. have a location where a diamond can be filled. The same holds for filling confluence / commutation diagrams with local such diagrams in rewriting. We there even have [9, Rem. 2] [7, Thm. 4] that a tiling of such a diagram that can be realised by tiling vertically by repeatedly rewriting a peak of a diagram in a family \mathcal{D} of such by its valley ${ }^{2}$ can also be realised, see [7] Fig. 3], by tiling horizontally with \mathcal{D}, now repeatedly rewriting left legs of \mathcal{D}-diagrams into right legs, strengthening the known such homotopical results in the literature [2] $\left.\right|^{3}$

The first two proofs are 2-homotopical; the third is 3-homotopical and yields the stronger result that all possible fillings are obtainable from a block by inverse \Rightarrow-steps, so are all interconvertible.

In the case of hexagons, filling can even be attained by repeatedly sliding a diamond diagonally into position such that exactly two sides of the diamond snap into place / are glued, as suggested in Fig. 1. This holds since there always is a diamond 'on top', but may fail in general, e.g. for 2D-diagrams on cylinders (think of a cycle of toppled dominoes; no single domino can be slid upward). Similarly, in the (partial) 3D-filling in the middle in Fig. 3, none of the parts can be slid out to the front (or back; they can be slid out in each of the 4 other directions though).

In a filling as in Fig. 2 each grid-point may be classified as being an i-peak for i the number of out-edges. By the constraints, $0 \leq i \leq 3$. If all grid-points are ≤ 2-peaks, then we have a blockfilling generalising that at the top-right of Fig. 2 [7]. E.g. at the top we must have a big green diamond composed of smaller such: this holds since if a \longrightarrow peak were filled not by a green diamond, it would be filled by a pair of red and blue diamonds, yielding another - -peak. That must be filled itself, by it not being convex, but it couldn't be filled with a green diamond since then we would have a 3-peak. Hence, by induction this is impossible. (Convexity is necessary for this argument as witnessed by Fig. 3 right from [3], exhibiting distinct fillings in \Rightarrow-normal form.)

[^1]
[^0]: ${ }^{*}$ This note is under the Creative Commons Attribution 4.0 International License (c) (i).

[^1]: ${ }^{1}$ Much like how a proof net can be sequentialised into a sequent proof.
 ${ }^{2}$ Both peaks and valleys are allowed to be degenerate in that they might comprise one or two empty reductions.
 ${ }^{3}$ The first such homotopical result we know of goes back all the way to Sec. 6 of Newman's trailblazing paper [5], where he showed the following strengthening of the lemma nowadays simply known as Newman's Lemma in rewriting: a locally confluent and terminating rewrite system is confluent and all conversions between two given objects are deformable into each other, on the basis of local confluence diagrams; in particular, all conversion-cycles are contractible.

