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Abstract

We show each of four confluence techniques: random descent, proof orders for decreasing
diagrams, bricklaying, and local undercutting, serves to solve the problem of the calissons.

Introduction The problem of the calissons as presented in [2] is to show that if a box, a
regular hexagonal, can be filled with calissons, so named after certain diamond-shaped sweets,
then in the resulting filled box the numbers of calissons in each of their 3 orientations are the
same; in a formula r = g = b for r, g and b the numbers of red, green and blue1 calissons in
the box. For instance, for a box B with sides of length 2, there are 4 calissons for each of the

filled B-box B1hexagonal box B filled B-box B2calisson in 3 orientations

Figure 1: The Problem of the Calissons

3 orientations in both the filled B-boxes B1 and B2 in Figure 1; ri = gi = bi = 4 for i ∈ {1, 2}.
The problem has received quite some attention since; the paper [2] currently has ≈150

citations. We refer the reader to that literature for descriptions, solutions, generalisations,
applications and other discussions. The sole purpose here is to offer a rewriting perspective on
the problem. We present four solutions, each based on a confluence technique.

Instead of requiring boxes to be equiangular hexagons that are also equilateral we relax the
latter requirement to being zonogonal, i.e. to only having opposite sides of the same length. We
show that if such a box is filled, then for each of their 3 orientations the number of calissons is
always the same; if B1 and B2 fill the same box B, then r1 = r2, g1 = g2 and b1 = b2. This
solves the original problem of the calissons since if B is equilateral, is a regular hexagon, the 3
numbers of calissons must in fact be the same as seen by rotational symmetry.

Looking at the filled boxes B1 and B2 in Figure 1 it’s almost impossible not to see them as
different stackings of small cubes inside a large cube. From that three-dimensional perspective,
the generalisation considered here corresponds to stacking small cubes inside a large (rectan-
gular) cuboid. That perspective suggests the number of calissons of a given orientation, is the
product of the lengths of the sides of the hexagon parallel to the sides of calissons of that
orientation; since B in Figure 1 ‘is’ a cube with sides of length 2, the number of calissons of
each type is 2× 2 = 4 as indeed is the case for B1 and B2 in the figure.

∗This note is under the Creative Commons Attribution 4.0 International License L M.
1We assign colours to the orientations for convenient referencing and reasons of aesthetics.
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Figure 2: Solving the problem of the calissons by random descent

Random descent In the first approach to the problem by rewriting we view each calisson
as a rewrite rule ⇒ used to transform the left leg up–left–front of the box into its right leg
back–right–down, see Figure 2. A filling is a⇒-reduction gradually transforming the path from
the bullet • at the top to the • at the bottom of the box, into the dashed path, in the figure:

Definition 1. Filling ⇒ is the string rewrite system (SRS) over the alphabet { , , } of
edges and rewrite rules ⇒ , ⇒ , ⇒ .

A possible filling F1 from to is⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒;
it corresponds to the filled box B1 above. Other fillings for the same filled box B1 are possible,
but does any filled box B have some filling? Any partial filling F of B ends in a path P allowing
a filling step. If none of them would yield a partial filling of B again, then there could not be
any occurrence of in P by the assumptions. Moreover, a rightmost occurrence of in
P would then be filled in B by a pair of green,blue calissons and to the right of the blue one only
other such could occur, giving a contradiction (to B being a filled box). Analogous reasoning
pertains to a leftmost occurrence of in P , showing there’s always some way to let filling
make progress toward B. For instance, Figure 2 depicts that after the first 8 filling steps of F1,
progress toward B1 is made by the further ⇒-step (not by the, also possible, ⇒-step!).

Having established adequacy of the modelling, the problem of the calissons resurfaces as a
quantitative confluence question:

Does random descent hold for measure ⇒ 7→ (1, 0, 0), ⇒ 7→ (0, 1, 0), ⇒ 7→ (0, 0, 1)?

Recall [9, 10, 13, 11] that a rewrite system having random descent (RD) means that for any
object that is normalising, rewrites to a normal form, we have (i) maximally rewriting the former
always ends in the latter, and (ii) that all such rewrite sequences have the same measure.

In this case, filling⇒ is seen to be normalising (WN) for the same reason that sorting is; the
⇒-rules simply sort edges into red–green–blue order, cf. [10, Example 7], showing that filling
does result in a filled box.

Also RD is easily seen to hold: Because the (only) critical peak ⇐ ⇒
is joinable as ⇒ ⇒ ⇐ ⇐ and both legs

have measure (1, 1, 1), ordered local confluence (OWCR) holds entailing RD by [13, Lem. 24].
Finally, to see that by having answered the quantitative confluence question in the affir-

mative we have solved the problem of the calissons, note that the measure given counts the
respective numbers of red, green and blue steps while filling. Hence the triple of numbers of
red, green and blue of calissons in a filled box, its spectrum [4], is the measure of its filling.
Indeed, the measure (4, 4, 4) of the filling F1 is the same as the spectrum of the filled box B1.
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Figure 3: Volume of path P as areas of 3 projections Pr, Pg, Pb (by ‘forgetting’ colours)

Proof orders for decreasing diagrams Above we proceeded by (weak) normalisation (WN)
and ordered local confluence (OWCR). Here we proceed instead by termination (SN) and local
confluence (WCR) of filling ⇒, as suggested by WN & OWCR ⇐⇒ SN & WCR [11].

Since the single critical peak of ⇒ was shown to be joinable already, yielding WCR, it
suffices to show termination of ⇒ by a measure from which the numbers of calissons can be
retrieved. To realise the idea that was given at the bottom of the first page we make use of the
area measure on conversions, introduced for measuring decreasing diagrams in [5, Example 3].

Definition 2. The area measure of a conversion comprising ℓ forward and r backward steps,
is a triple (ℓ, a, r) measuring how many square tiles a are needed to complete the conversion
into a valley. The volume of a path P is the triple (r, g, b) of area measures of the conversions
Pr, Pg and Pb obtained from P by forgetting respectively the red, green and blue edges.

Referring the reader to [5, Example 3] for formal details, we illustrate the definition by
means of the path P given by as depicted in Figure 3. Then Pr is the
conversion →←→→← obtained by forgetting the -edges in P and orienting the - and

-edges in opposite directions, yielding area (3, 2, 2), Pg is the conversion ←→→← having
area (2, 2, 2) and Pb the conversion ←→←←→ with area (3, 4, 2).

We claim that if V is the volume (r, g, b) of the initial path P of a filling F of box B, then
the spectrum of the box is the triple V 2 of second components of V . For instance, the volume of
the initial path for box B in Figure 1 is ((2, 4, 2), (2, 4, 2), (2, 4, 2)), and indeed its triple (4, 4, 4)
of second components is the spectrum of B comprising 4 calissons of each colour.

To prove the claim we prove the property that for any filling step of a given colour only
the second component of that colour is decremented in the volume, with the areas of the other
colours being unchanged. This suffices, since for a filling yielding a filled box, the volume of
its final path Q has second components that are all 0, since ‘forgetting’ then yields valleys:
Qr has shape ↠↞, Qg has shape ↠↞ and Qb shape ↠↞. To see the property holds observe
that a filling step of a given colour swaps adjacent edges of the other colours, so leaves the
areas of those other colours unchanged, but decrements that of the given colour. Indeed,
the filling ⇒-step in Figure 2 transforms into and volume
((2, 1, 2), (2, 1, 2), (2, 2, 2)) into ((2, 1, 2), (2, 1, 2), (2, 1, 2)), decrementing (only) the blue area.
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Figure 4: Solving the problem of the calissons by bricklaying

Bricklaying For the third approach to the problem of the calissons by rewriting we change
the modelling; filled boxes are now the objects of a rewrite system ⇛ having bricklaying as
rule [12] displayed on the left in Figure 4, allowing to locally rearrange the calissons in a box.

Definition 3. Linear combinations rr
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natural number scalars rr, rg, rb, a box when restricting them to real intervals [0, w], [0, h], [0, d]
for natural number width w, height h, depth d, and calissons when further restricting two
among w, h, d to 1 and the other (its colour) to 0; reversing this yields edges. Box, diamond
and edge occurrences arise by translation. We suppress writing ‘occurrence’. A family DI of
diamonds is a tiling (of a box B) if Di ∩Dj is a subset of some edge for i ̸= j (and

⋃
DI ⊆ B).

W.l.o.g. we analyse only the discrete problem where calissons occur at vertices, B at the
origin, and B =

⋃
DI . By the spectrum obviously being invariant under ⇛, the problem of the

calissons resurfaces as the confluence / uniqueness of normal form question:

Does
⋃
DI = B =

⋃
D′
J for box B, entail DI , D′

J have the same ⇛-normal form?

Mapping calissons to their vertices and (coloured) edges, turns tilings into bed-graphs [12]: (i)
every green tile is a tetragonal cycle of shape ←←→→ and similarly for red and blue tiles; (ii)
vertices have at most a single in-/out-edge of a given colour; (iii) there are no paths having
edges of each of the 3 colours; (iv) every path →→ belongs to some tile and similarly for other
colour-pairs; (v) if ← a→ does not belong to a tile then a has a green in-edge and similarly for
other colour-triples. Taking edges as vectors in the 3 colour-dimensions shows tilings even are

beds [12], i.e. are plane bed-graphs under projection from viewpoint
(∞
∞
∞

)
, as used in illustrations.

Let an i-peak for such a tiling DI be a vertex in B having exactly i out-edges. Then 0 ≤ i ≤ 3
by there being 3 colours, and we distinguish cases on whether or not there are 3-peaks:

If there are 3-peaks, then the bricklaying ⇛-rule is applicable to at at least one of them.
This holds for any bed [12] as depicted in Figure 4: If v is a 3-peak but ⇛ does not apply, then
by (v) it has an in-edge of colour c from v′, which is a 3-peak by (iv) and its in-edge, if any, has
colour c by (iii) from which we conclude by finiteness of tilings / monochrome paths in beds.

If there are no 3-peaks, then we have one large brick [12] generalising that in the rhs of the
⇛-rule in Figure 4. That is, at the top we must have a big green calisson composed of smaller
such and mutatis mutandis the same for blue / red at the bottom–left / right. This holds in
fact for any bed: Any ←→-peak then must belong to a green tile since otherwise (v) and the
above reasoning would give rise to a 3-peak contradicting the assumption. The big red, green,
blue calissons share boundary paths and these 3 rays end up in the same nexus, the common
reduct; this holds by monochrome paths being finite and (iii), with the former a consequence
of the bed-graph being plane. We conclude by noting the 3 big calissons only depend on B.



The problem of the calissons, by rewriting V. van Oostrom

⇒12

⇒11

⇒10

⇒9

⇒8

⇒7

⇒6

⇒4

⇒3

⇒5⇒2

⇒1

filling Φ⇒⇒ Ψ projection Φ−1 · Ψ ⇓⇓ ε

trivial ⇓-steps)
(not showing 6

·

Φ Ψ

→ :=→∪→∪→

iff

⇓12

⇓11
⇓10

⇓9

⇓8

⇓7
⇓6

⇓5
⇓4

⇓3⇓2

⇓1

Figure 5: Solving the problem of the calissons by local undercutting; filling iff projection

Local undercutting Our fourth approach to the problem of the calissons by rewriting, in-
spired by [3, Proposition 4.16(4.18)], mixes the above modellings: We again view the grid for a
box B as a rewrite system→ :=→∪→∪→ but with green→-steps now oriented downward as
displayed on the left in Figure 5. Calissons now are diamonds ϕ

χ⋄ψυ inducing filling ϕ ·χ⇒ ψ · υ
respectively projection ϕ−1 · ψ ⇓ χ · υ−1 rules. Filling is modelled as Φ⇒⇒ Ψ for left,right legs
Φ,Ψ of B, and we claim it holds iff projecting Φ,Ψ is empty, i.e. iff Φ−1 ·Ψ ⇓⇓ ε with the spectra
of filling and projection the same, from which we conclude as the spectrum of projection only
depends on B, as seen before. Here we use Υ,Φ, X,Ψ, . . . to range over conversions, elements
of the free (typed) involutive monoid over →-steps υ, ϕ, χ, ψ, . . ., with · denoting composition
and −1 reverse; conversions are (possibly empty; ε) compositions of steps and reverse steps [5].

Definition 4. A local undercutting2 (LUC) is a collection of diamonds D consisting of for every

local peak ϕ−1 · ψ at most one diamond of shape ϕ
X⋄

ψ
Υ for reductions X,Υ such that: ϕε⋄ϕε ∈ D,

and (ϕ ·X)−1 · ψ ·Υ ⇓⇓ ε if ϕ−1 · χ · χ−1 · ψ ⇓⇓ X ·Υ−1. D is spectrum-preserving if the spectra
of the latter two projections are the same (they are unique by random descent [10] of ⇓).

Calissons induce a spectrum-preserving LUC after adjoining ϕε⋄ϕε ; per definition of→ the only
non-trivial case is (←·→·←·→) ⇓3 (→·→·←·←) for which we indeed have (←·←·←·→·→·→) ⇓6
ε, and both projections have spectrum (1, 1, 1). To prove the claim, it suffices that filling iff
projection for spectrum-preserving LUCs, cf. Figure 5 right. To enable proving it by inductions,
we rephrase filling using the notion of foliage3 imaged on the left in Figure 6: a cyclic conversion
Z = Z1 · . . . · Zn of length n, together with reductions Ξi for 0 ≤ i ≤ n with Ξ0 = ε = Ξn, and
fillings Ξi−1 ⇒⇒ Zi · Ξi if Zi is a step and Z−1

i · Ξi−1 ⇒⇒ Ξi if Zi is a reverse step.

Theorem 1. If→ is terminating and D LUC, then there is a foliage for conversion Z iff Z ⇓⇓ ε.
If D moreover is spectrum-preserving then the foliage and the projection have the same spectra.

See the appendix for a proof. Here we conclude by observing a filling Φ⇒⇒ Ψ for left,right
legs Φ,Ψ of a box B gives rise to a foliage for Φ−1 ·Ψ with the same spectrum, and vice versa.

Remark. The diagrammatic perspective originates with Newman’s II-Lemma [9, Section 6]:
If → is terminating, there is a diamond in D for every local peak, and J K is a typed involutive
monoid homomorphism to a typed group mapping diamonds in D to 0, then J K maps every
conversion cycle to 0. Proof. For any conversion Z there is a valleyX ·Υ−1 with JZK = JX ·Υ−1K,
by enriching Newman’s Lemma with that J K maps diamonds inD to 0. Hence if Z is a conversion
cycle, say on a, then JΦ−1 ·Z ·ΦK = JεK for Φ a reduction from a to normal form, so JZK = 0.2
What Newman’s Lemma is to the Critical Peak Lemma [6, Lemma 2.4] is Newman’s II-Lemma
to Squier’s Finite Derivation Type method [14, 1]; it ought to be better-known.

2It expresses cut-elimination (transitivity-elimination) replacing two diamonds by a single one under them.
3Originally introduced for proving [12, Theorem 4].
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Conclusion This note illustrates the power of modern confluence techniques: The first three
provided solutions out of the box. The fourth, inspired by [3, Proposition 4.16(4.18)], is novel.

The equiangular hexagonal B in the middle in Figure 6 is not zonogonal; filling gets stuck.
Still, as shown on the right, the spectra of both tilings DI ,D′

J of B for
⋃
DI = O =

⋃
D′
J (a

triangle is ‘missing’) are the same [4]. We leave it to future research to investigate whether the
techniques presented here can be appropriately adapted (we expect the first and fourth can).

Acknowledgment . Jan Willem Klop brought the problem of the calissons, it being amenable
to rewrite techniques, and ‘piling = tiling’ (Theorem 1, cf. [7][15, Chapter 8]) to my attention.
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Appendix In the proof of Theorem 1 we measure a foliage for conversion Z by the multiset
of pairs where the ith object a (height) of Z is paired with the number of ⇒-root-steps in
Z−1
i · Ξi−1 ⇒⇒ Ξi ⇒⇒ Zi+1 · Ξi+1 if a is the apex of a local peak and 0 otherwise (width). The

multiset extension of the lexicographic product of ←+ and < well-foundedly orders measures.

Proof of Theorem 1. We prove the if-direction by induction on the number of steps p in Z ⇓p ε,
cf. [12, Theorem 4]. If p = 0, we trivially conclude as Z = ε. Otherwise, for some ϕ

X⋄
ψ
Υ we have

Z = Zl · ϕ−1 · ψ · Zr and Z ⇓ Z ′ and Z ′ ⇓p−1 ε for Z ′ = Zl · X · Υ−1 · Zr. By the IH there
is a foliage for Z ′ (with spectrum that of Z ′ ⇓p−1 ε); its subconversions Zl, Zr combined with
prefixing ϕ to the last reduction of Zl then give a foliage for Z (with spectrum that of Z ⇓p ε).

We prove the only–if-direction by induction on the measure of the foliage for Z and cases
on Z. If Z is a valley, then by definition of foliage Z = ε using that the legs of diamonds in
D are non-empty, and we conclude. Otherwise, Z has shape Zℓ · ϕ−1 · ψ · Zr with ϕ · Ξi−1 ⇒⇒
Ξi ⇒⇒ ψ · Ξi+1 and we distinguish cases on the width w of the apex of the local peak.

If w = 0 then ϕ = ψ and Ξi−1 ⇒⇒ Ξi+1. Then Z ⇓ Z ′ for Z ′ := Zℓ · Zr by LUC. Replacing4

Ξi−1 by Ξi+1 in the foliage for Zℓ renders Z ′ a foliage. We conclude by the IH for Z ′.
If w = 1 then ϕ · Ξi−1 ⇒⇒ ϕ ·X · Ξ′ ⇒ ψ ·Υ · Ξ′ ⇒⇒ ψ · Ξi+1 for some diamond ϕ

X⋄
ψ
Υ ∈ D and

some Ξ′, where the displayed⇒⇒ do not have head-steps. Then Z ⇓ Z ′ for Z ′ := Zℓ ·X ·Υ−1 ·Zr.
Replacing (cf. footnote 4) Ξi−1 by X · Ξ′ in the foliage for Zℓ and replacing Ξi+1 by Υ · Ξ′ in
the foliage for Zr, renders Z ′ a foliage again. We conclude by the IH for Z ′.

If w > 1 then ϕ ·Ξi−1 ⇒⇒ ϕ ·Φ ·Ξ′ ⇒ χ ·Ψ ·Ξ′ ⇒⇒ χ ·X ·Ξ′′ ⇒ ψ′ ·Υ ·Ξ′′ ⇒⇒ ψ ·Ξi+1 for some

diamonds ϕ
Φ⋄

χ
Ψ,

χ
X⋄

ψ′

Υ ∈ D and some Ξ′,Ξ′′, where the first two displayed horizontal reductions
do not have head-steps (we may but need not have ψ′ = ψ). The second induces a foliage for
the peak (Ψ · Ξ′)−1 ·X · Ξ′′ to which the IH applies (by its apex being reached via χ), yielding

(Ψ ·Ξ′)−1 ·X ·Ξ′′ ⇓⇓ ε. By random descent for ⇓, this projection factors as Ψ−1 ·X· ⇓⇓ X ′ ·Ψ′−1

and Ξ′−1 ·X ′ ·Ψ′−1 · Ξ′′ ⇓⇓ ε for some reductions X ′,Ψ′.
The former ⇓⇓ combined with two ⇓-steps for the diamonds gives ϕ−1 · χ · χ−1 · ψ′ ⇓⇓ Φ ·X ′ ·

(Υ · Ψ′)−1 for which LUC entails (ϕ · Φ · X ′)−1 · ψ · Υ · Ψ′ ⇓⇓ ε. The if-direction then yields a
foliage for it, so ϕ · Φ ·X ′ ⇒⇒ ψ ·Υ ·Ψ′ having exactly 1 head-step (by a diamond for ϕ, ψ).

For the latter ⇓⇓ the if-direction yields a foliage so Ξ′ ⇒⇒ X ′ · Ξ̂ and Ψ′ · Ξ̂⇒⇒ Ξ′′ for some Ξ̂.
Combining both shows that ϕ · Φ · Ξ′ ⇒⇒ ψ′ ·Υ · Ξ′′ using a single head-step, instead of the

two before. Hence we conclude by the IH for the same Z but with this alternative foliage.

Definition 5. local semi-lattice (LSL) is LUC with commutativity of D: ϕ
Φ⋄

ψ
Ψ ∈ D iff ψ

Ψ⋄
ϕ
Φ ∈ D.

Observe that to establish LUC it suffices to consider triples ϕ, ψ, χ where ϕ ̸= χ ̸= ψ since
if, say, ϕ = χ then the assumption simplifies to ϕ−1 · ψ ⇓⇓ X · Υ−1, which is seen to entail
the conclusion (ϕ · X)−1 · ψ · Υ ⇓⇓ ε using that peaks between a step and itself were assumed

trivial. LSL allows to also assume ϕ ̸= ψ, since if ϕ = ψ then ϕ−1 · χ · χ−1 · ϕ ⇓⇓ X ·Υ−1 entails
X = Φ = Υ for ϕ

Φ⋄
χ
Ψ,

χ
Ψ⋄

ϕ
Φ ∈ D so (ϕ ·X)−1 ·ϕ ·Υ ⇓⇓ ε, using trivial peaks have trivial diamonds.

This resumes our attempts [7][15, Chapter 8] at a theory of orthogonality for rewriting and
algebra: LSL holds for the λβ-calculus [8] (local cube) and for positive braids [3, Example 4.20].
Though neither →β nor braids (Artin’s σi) are terminating, that can be brought about (by
finiteness of family developments [15] respectively right-Noetherianity [3]) making Theorem 1
applicable. From a rewriting / order perspective Theorem 1 aims at showing that permutation
equivalence = projection equivalence [15] / reductions constitute a semi-lattice [8] (whence LSL).
Contrapositively, it enables showing reductions do not have a common reduct (no upperbound)
by showing projection of their peak does not terminate (no least upperbound) [3, Example 4.28].

4 If Zℓ = ε replacing is not allowed but not needed: then Ξi−1 = ε = Ξi+1 as legs of diamonds are non-ε.


