
Confluence by Higher-Order Multi–One Critical pairs

with an application to the Functional Machine Calculus

Willem Heijltjes and Vincent van Oostrom∗

Department of Computer Science, University of Bath, United Kingdom
wbh22@bath.ac.uk, vvo21@bath.ac.uk

Abstract

The functional machine calculus (FMC) is a model of higher-order computation with
effects, and is known to be confluent. Here we re-prove confluence of the FMC via higher-
order term rewriting, embedding the FMC in a 3rd-order PRS. Our main contribution is a
higher-order version of the critical-pair-criterion that was developed by Okui for first-order
TRSs, requiring all multi–one critical peaks to be many–multi joinable.

1 The Functional Machine Calculus

The Functional Machine Calculus (FMC) is a model of higher-order computation with ef-
fects [1]. It generalizes the λ-calculus and is known to preserve its main properties of conflu-
ence and simply-typed termination, while it encodes reader/writer effects (state, I/O, probabili-
ties, nondeterminism) and strategies including call–by–name, call–by–value, and call–by–push–
value [3]. In this section we recapitulate the FMC in its traditional presentation. In Section 2
we show how it can be embedded in a 3rd-order positional pattern rewrite system. Via this
embedding confluence of the FMC is then regained as an instance of a critical pair criterion for
positional PRSs (Definition 2), generalising Okui’s criterion for TRSs [5], as shown in Section 3.

The intuition for the FMC is of λ-terms as instruction sequences for a simple stack machine.
Application M N , written [N ].M , pushes N to the stack and continues with M ; abstraction
λx.M , written ⟨x⟩.M , pops a term N and continues with {N/x}M (the substitution of N
for x in M). The FMC then consists of two generalizations. One, to multiple stacks, indexed
by locations a, b, c, . . . in which application and abstraction are parameterized, [N ]a.M and
a⟨x⟩.M . As well as the main stack, these model input and output streams, memory cells, and
random generators. Two, with the empty sequence ⋆ and sequential composition, implemented
by making the variable construct a prefix x.M ; this gives control over evaluation behaviour and
models strategies. Both generalizations have interesting consequences for reduction. First, a
redex consists of an application and abstraction at the same location, [N ]a . . . a⟨x⟩.M , possibly
with operations on other locations in between. Second, to substitute N for x in x.M involves
sequential composition N ;M .

Definition 1. FMC-terms are given by the following grammar, where a⟨x⟩.M binds x in M ,
and considered modulo α-equivalence. (Trailing . ⋆ may be omitted.)

M, N, P ::= ⋆ | x.M | [N ]a.M | a⟨x⟩.M

We define β-reduction by the rewrite rule schema below (closed under all contexts)

[N ]a.H. a⟨x⟩.M H. {N/x}M (a /∈ loc(H), bv(H) ∩ fv(N) = ∅)

∗Supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with sharing and unsharing.



CR of the FMC by a Multi–One CP-criterion Heijltjes, van Oostrom

where H is a head context with binding variables bv(H) and locations loc(H) as defined below,
writing H.M for H{M} (H with the hole {} replaced by M).

H ::= {} | [N ]a.H | a⟨x⟩. H
bv({}) = ∅ loc({}) = ∅

bv([M ]a.H) = bv(H) loc([M ]a.H) = loc(H) ∪ {a}
bv(a⟨x⟩. H) = bv(H) ∪ {x} loc(a⟨x⟩. H) = loc(H) ∪ {a}

Composition N ;M and substitution {M/x}N are capture-avoiding, and are as follows.

⋆ ;M = M [P ]a.N ;M = [P ]a. (N ;M)
x.N ;M = x. (N ;M) a⟨y⟩. N ;M = a⟨y⟩. (N ;M) (y /∈ fv(M))

{P/x}⋆ = ⋆ {P/x}[N ]a.M = [{P/x}N ]a. {P/x}M
{P/x}x.M = P ; {P/x}M {P/x}a⟨x⟩.M = a⟨x⟩.M
{P/x}y.M = y. {P/x}M (x ̸= y) {P/x}a⟨y⟩.M = a⟨y⟩. {P/x}M (y /∈ fv(P ))

The pure λ-calculus may be embedded in the FMC by choosing a main location λ, omitted
from terms for compactness, and defining λx.M = ⟨x⟩.M and M N = [N ].M .

Example 1. To model global store, a cell is a dedicated location a with lookup !a encoded by
a⟨x⟩. [x]a. x and update N := a ;M by a⟨ ⟩. [N ]a.M (where is a non-binding variable). The
following example term stores λf. f (f 3) to the cell a, and then retrieves it to call it on λy. y+1.
Overall, it should update a and return 5, which FMC reduction indeed exposes. (Underlining
indicates a redex, and colours trace subterms through translations and reductions.)

a := (λf. f (f 3)) ; !a (λy. y + 1) = a⟨ ⟩. [⟨f⟩. [[3]. f ]. f ]a. [⟨y⟩. [y]. [1].+]. a⟨x⟩. [x]a. x
a⟨ ⟩. [⟨y⟩. [y]. [1].+]. [⟨f⟩. [[3]. f ]. f ]a. ⟨f⟩. [[3]. f ]. f
a⟨ ⟩. [⟨f⟩. [[3]. f ]. f ]a. [[3]. ⟨y⟩. [y]. [1].+]. ⟨y⟩. [y]. [1].+
a⟨ ⟩. [⟨f⟩. [[3]. f ]. f ]a. 5

= a := (λf. f (f 3)) ; 5

2 Embedding the FMC in a PRS

We show the FMC can be embedded in a 3rd-order pattern rewrite system (PRS), with which
we assume familiarity [4, 9]. Since we will build on it below, we revisit the standard embedding
of the pure λ-calculus in a 2nd-order PRS ([4, Example 3.4],[9, Examples 11.2.6(i),11.2.22(ii)]).

Example 2. The PRS Lam has a single base type term, two simply typed constants for ab-
straction and application: lam : (term→ term)→ term and app : term→ term→ term, and rules:

beta : λFS.app(lamλx.F (x), S) → λFS.F (S)
eta : λS.lam(λx.app(S, x)) → λS.S

with variables x : term, F : term→ term and S : term, and rules, which are symbols in our setting
having the type of their lhs / rhs, beta : (term→ term)→ term→ term, and eta : term→ term.

Objects The objects of a PRS are simply typed λ-terms modulo αβη for a collection of base
types, and a signature of symbols. We refer to the simply typed λαβη-calculus as the sub-
stitution calculus of PRSs as it brings about the standard notions of matching, substitution

2



CR of the FMC by a Multi–One CP-criterion Heijltjes, van Oostrom

and occurrence [8, 6]. We assume λ-terms to be in η-expanded form ([4, p. 5],[9, Conven-
tion 11.2.12]). Terms then are λ-terms also in β-normal form, serving as representatives (unique
up to α) of αβη-equivalence classes. The parameter passing of rewrite rules is brought about
by the substitution calculus, matching by β-expansion and substitution by β-reduction. To
separate the replacement aspect of rewrite rules from their parameter passing aspect [9, Defini-
tion 11.2.25(iv)], rewrite rules are closed. To facilitate defining occurrences below, we overline
a subterm of a λ-term to denote the λ-term (recursively) obtained by removing the overlining,
and if the subterm is a β-redex then contracting it and overlining the created β-redexes.

In [2, Lemma 2] we established that for first-order term rewriting there is a perfect rapport
between the inductive and geometric views of the notion of occurrence. We consider the higher-
order case: in the inductive view an occurrence of a pattern π in a λ-term t then is a β-expansion
of t to a λ-term (λx.s)π (cf. [8, Definition 2.9]), and in the geometric view a pat P is a certain
subset of the positions of the tree [4, p. 5] of t (cf. [9, Proposition 8.6.25]). To make the
rapport perfect, we restrict ourselves to occurrences of patterns [4, Definition 3.1] that are
rule-patterns [9, Definition 11.2.18(ii)], local [7, Footnote 4], and moreover such that the free
variables are in pre-order and the parameters in outside-in order; these are positional patterns:

Definition 2 (Inductive view). A positional pattern π is a closed λ-term of shape λF .f(t)
such that (head-defined) f is a function symbol and f(t) is of base type; ( linear) π is linear in
F , each Fi occurs once; and ( fully-extended) each F ∈ F occurs in π as F (x) where x is the
list of (η-expansions of) variables that are bound above F in f(t), in outside-in order. To avoid
clutter we may drop the initial binders F of π. We incongruously refer to such an F as a free
variable of π and to its arguments x as its parameters. A rule / PRS is positional if its lhs is
/ rules are. If for a vector π of positional patterns and λ-term t, we have (λF .s)π = t with s
linear in F , we speak of a multipattern π in t. They are taken up to permutation of π, F .

Definition 3 (Geometric view). A pat in a λ-term t is a non-empty set P of positions in the
tree1 of t such that ( convex) if p, q ∈ P then all positions on the path between p and q are in
P [2, Footnote 4]; ( rigid) if t(p) is a variable and p ∈ P , then it is bound by a λ-abstraction
at a position in P ; (base-fringe) t|p is of base type for p the root of P or a child not in P of
a position in P ; and (normal) if t(p) is an application and p ∈ P , then its left child is not the
position of a λ-abstraction. A multipat is a vector P of pairwise disjoint pats in t.

Example 3. For examples of patterns see [9, Example 11.2.19]. The lhs of beta is a positional
pattern. It would not be so anymore when swapping its initial binders from λFS into λSF
(pre-order violated). The lhs of eta is a pattern, but is not positional (full-extendedness violated).

For π the lhs of beta, we have {11, 111, 1111, 1112, 11121, 11122} is a pat; 11, 111, 1111 are
the positions from its root 11 toward the head symbol app, 11121 the position of abs, and 11122
that of λx. This is the greatest pat in π, its internal pat π̊. The only other pat in π is
{1112, 11121, 11122} corresponding to lamλx.F (x). For instance, {1112, 11121} is not a pat,
since the subterm λx.F (x) at position 11122 is not of base type violating (base-fringe), and
{112} is not a pat since (rigid) is violated by S being a free variable. For TRSs, a pat coincides
with a non-empty convex set of function symbol positions as in [2].

Multipatterns and multipats can be ordered by refinement ⊑. These orders correspond and
will allow us to state the notion of critical peak in lattice-theoretic terms [2].

Definition 4. (λG.((λF .s)u))π ⊑ (λG.((λF .s)u))π if both sides are multipatterns and s,
u are linear in F , G. For multipats, Q ⊑ P if each pat Q ∈Q is a subset of a pat P ∈ P .

1We employ t|p / t(p) to denote the subterm / symbol at position p in t ([4, p. 5] uses t/p for the former).

3



CR of the FMC by a Multi–One CP-criterion Heijltjes, van Oostrom

Example 4. We have {{2, 21}, {222, 2221}} ⊑ {{2, 21, 22, 221, 222, 2221}} for multipats in
f(g(h(i(a)))). Likewise (λXY.f(X(h(Y (a)))) (λ z.g(z)) (λ z.i(z)) ⊑ (λZ.f(Z(a)))λ z.g(h(i(z)))
for multipatterns as witnessed by (λXY.(λZ.f(Z(a))) (λ z.X(h(Y (z))))) (λ z.g(z)) (λ z.i(z)).

) (λF.

PRS step

)(λF.

PRS step

β-reduction

)

β-expansionβ-expansion

(λFGH.
H

G

FFF

Figure 1: Carving out multipat from term by β-expanding into multipattern (left), and step
for PRS rule ℓ→ r via matching (β-expansion; middle) and substitution (β-reduction; right)

Lemma 1. Refinement ⊑ on multipats / multipatterns of a λ-term is a finite distributive lattice.
Multipatterns and multipats w.r.t. their respective notions of refinement ⊑, are isomorphic.

Proof idea. By extending the proof of-[2, Lemma 2] to positional PRSs. The isomorphism
between multipats and multipatterns is illustrated in Figure 1; for any multipat P in a λ-term
t a multipattern π may be carved out from t in that (λF .s)π = t for some s linear in F such
that the set of internal positions of the π in it trace [9] to the P in t, and vice versa.

Steps The steps of a PRS are terms over the signature extended with rules [9, Chapter 8].

Definition 5. A multistep of a PRS P is a term over its signature extended with its rule
symbols. This induces a rewrite system ◦−→P having terms as objects, multisteps as steps, with
source / target maps obtained substituting the lhs / rhs for the rule symbol [8, 6]; cf. Figure 1
(middle,right). Requiring to have one rule in a multistep yields steps →P.

Example 5. abs(λ y.beta(λx.app(x, x), y))) and eta(abs(λx.app(x, x))) are Lam-steps. Despite
being intensionally distinct, they are extensionally the same as they have the same sources
abs(λ y.(λFS.app(lamλx.F (x), S)) (λx.app(x, x), y))) = abs(λ y.app(abs(λx.app(x, x)), y)) =
(λS.lam(λx.app(S, x))) (abs(λx.app(x, x))) and targets abs(λ y.(λFS.F (S)) (λx.app(x, x), y))) =
abs(λ y.app(y, y)) = (λS.S) (abs(λx.app(x, x))).

Multisteps render traditional redex-orthogonality-talk obsolete [2]; redexes are orthogonal
because there is a multistep contracting them. Note →P ⊆ ◦−→P ⊆↠P [9, Lemma 11.6.24(ii)].

The FMC as fragment of a PRS The untyped λ-calculus is embedded in a fragment of
the 2nd-order PRS Lam, namely in terms where all variables are of type term. We show the
same holds for the FMC: its terms are embedded as a fragment of a 3rd-order PRS FMC.
The embedding hinges on that although the FMC (Definition 1) has a non-standard notion of
substitution, that may be represented by PRS substitution by replacing each ⋆ by a variable χ,
so that composition with N in the FMC is represented in FMC as substitution of N for χ.

Definition 6. The PRS FMC has a signature comprising for every location a, symbols lama :
((term→ term)→ term)→ term and appa : term→(term→ term)→ term, and rewrite rule schema:

betaH : λMPN.appa(H[lama(λx.M(x, x))], N) → λMPN.H[M(x, N)]

4



CR of the FMC by a Multi–One CP-criterion Heijltjes, van Oostrom

where N , x, and x all have type term→ term (not η-expanded to avoid clutter) and H ranges
over contexts, compositions of basic contexts with the empty context 2, with a basic context
being of shape either appb(2, P (x)) or lamb(λx.2), for any location b distinct from a, and each
P ∈ P a fresh free variable having as parameters the variables bound by the contexts above it.

Terms of the FMC are represented by spines, FMC-terms λχ.S of type term→ term with:

S ::= χ | xS | appa(S, λχ.S) | lama(λx.S)

where χ is the unique variable of type term. We embed an FMC term M as λχ.⟨M⟩ and show
this fragment of FMC is well-behaved, where ⟨ ⟩ maps the FMC constructs as follows: (i) ⋆ is
mapped by ⟨ ⟩ to χ, that is, to the coccyx of a spine; (ii) x.M is mapped to x⟨M⟩, that is, to
the application of x to the embedding of M ; (iii) [N ]a.M is mapped to appa(⟨M⟩, λ χ.⟨N⟩);
and (iv) a⟨x⟩.M is mapped to lama(λx.⟨M⟩).

Lemma 2. Embedding the FMC in the λχ.S-fragment yields a bisimulation for and→betaH .

3 A Multi–One Critical Pair Criterion for the FMC

We generalise the critical pair criterion for confluence introduced in [5] from left-linear TRSs
to positional PRSs to obtain confluence of FMC, and hence (Lemma 2) of its λχ.S-fragment.

Definition 7. Multipatterns ς and ζ in term t are overlapping if ς ⊓ ζ ̸= ⊥, where ⊓ denotes
the meet w.r.t. refinement ⊑ and ⊥ the least element (t). The overlap is critical if moreover
ς ⊔ ζ = (λF.F̂ ) t with F̂ the η-expansion of F . This extends to peaks Φ ◦←− t→Ψ of multisteps
Φ = (λF .s)ϱ and Ψ = (λG.u)θ for rules ϱ : ℓ→ r and θ : g → d, via their multipatterns
(λF .s) ℓ and (λG.u) g. If Ψ is a step, we speak of a multi–one (critical) peak.

Example 6. We give two multi–one critical peaks for the following TRS [5, Example 1], with
our multi–one critical peaks corresponding to the critical pairs numbered (4) and (5) there:

α :λxyz.x+ (y + z)→λxyz.(x+ y) + z
γ : λxy.x+ y→λxy.y + x

λxyz.(z+y)+x
(λFGxyz.F (x,G(y,z))) γγ

◦←− λxyz.x+(y+z)→
(λHxyz.H(x,y,z))α

λxyz.(x+y)+z

λw.((x+y)+z)+w (λFGw.F (w,G(x,y,z))) γα ◦←− λw.w+(x+(y+z))→(λHw.H(w,x,y+z)α λw.(w+x)+(y+z)

where x = wxyz. The first multi–one peak has {111·{ε, 1, 11}, 111·{2, 21, 211}} as multipat for
the left multistep and {111·{ε, 1, 11, 2, 21, 211}} for the right.

Figure 2: Illustration of proof of Lemma 3 by splitting-off critical multi–one peak
.

5



CR of the FMC by a Multi–One CP-criterion Heijltjes, van Oostrom

Lemma 3. If for a positional PRS P every critical multi–one peak is many–multi joinable, i.e.
if Φ ◦←− ·→Ψ ⊆↠P · P ◦←− for Φ,Ψ critical, then multi–one peaks are many–multi joinable.

Proof idea. Let s Φ ◦←− t→Ψ u be a multi–one peak. The geometric view, justified by Lemma 1,
for the following construction is illustrated in Figure 2 where the blue blob denotes t, the green
blobs the multipat of the multistep ◦−→Φ, and the red blob that of the step →Ψ.

We may write the multipattern ς of Φ as (λG′G.s′) ℓ′ℓ, and the multipattern ζ of Ψ as
(λF.u′) g, with ℓ those patterns in ς overlapping the pattern g (2 green blobs in the figure
overlapping the red one), and ℓ′ (1 green blob) the non-overlapping ones;

The join ς⊔ζ is then of shape (λG′F ′.v) ℓ′π with π being the minimal pattern refinable into

both ℓ and g. Thus, ς = (λG′G.(λG′F ′.v)G′s′′) ℓ′ℓ and ζ = (λF.(λG′F ′.v) ℓ′u′′) g for some
s′′ and u′′, with the multisteps Φ and Ψ obtained by replacing the left-hand sides ℓ′ℓ in ς and
g in ζ by rule symbols, and with (λG′G.(λG′F ′.v)G′s′′) ℓ′ℓ = ς ⊔ ζ = (λF.(λG′F ′.v) ℓ′u′′) g.
By minimality, π is the source of the critical multi-one peak for multistep Φ̂ and step Ψ̂ having
multipatterns (λG.s′′) ℓ and (λF.u′′) g, which is many–multi joinable by assumption, say by
valley ↠Ψ̂′ ·Φ̂′ ◦←− for reduction Ψ̂′ and multistep Φ̂′. We conclude by plugging these into context

as in Figure 2 (right), yielding the reduction (λG′F ′.v) r′Ψ̂′ and the multistep (λG′F ′.v)ϱ′Φ̂′,
for r′ and ϱ′ the right-hand sides respectively the rules, corresponding to ℓ′.

Theorem 1. A positional PRS is confluent if multi–one critical peaks are many–multi joinable.

Proof. By Lemma 3 using →P ⊆ ◦−→P ⊆↠P for any positional PRS P.

Theorem 2. FMC reduction is confluent.

Proof. By Theorem 1 and Lemma 2 it suffices that all multi–one critical peaks of FMC are
many–multi joinable. There are still infinitely many such peaks, but these are uniformly shown
to be many–multi joinable: since in the FMC all patterns in a critical peak are on the same
spine, and patterns on the spine are not replicated, the peaks are even one–multi joinable.

References

[1] C. Barrett, W. Heijltjes, and G. McCusker. The functional machine calculus, 2022. To appear in
Mathematical Foundations of Programming Semantics (MFPS 2022). Available at http://people.
bath.ac.uk/wbh22/index.html#FMC2022.

[2] N. Hirokawa, J. Nagele, V. van Oostrom, and M. Oyamaguchi. Confluence by critical pair analysis
revisited. In CADE 27, volume 11716 of LNCS, pages 319–336. Springer, 2019.

[3] P.B. Levy. Call-by-push-value: A functional/imperative synthesis, volume 2 of Semantic Structures
in Computation. Springer Netherlands, 2003.

[4] R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. TCS, 192(1):3–29,
1998.

[5] S. Okui. Simultaneous critical pairs and Church–Rosser property. In T. Nipkow, editor, RTA-98,
volume 1379 of LNCS, pages 2–16. Springer, 1998.

[6] V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije Univer-
siteit, Amsterdam, March 1994.

[7] V. van Oostrom. Finite family developments. In H. Comon, editor, RTA-97, volume 1232 of LNCS,
pages 308–322. Springer, 1997.

[8] V. van Oostrom and F. van Raamsdonk. Weak orthogonality implies confluence: The higher order
case. In LFCS’94, volume 813 of LNCS, pages 379–392. Springer, 1994.

[9] Terese. Term Rewriting Systems, volume 55 of CTTCS. CUP, 2003.

6

http://people.bath.ac.uk/wbh22/index.html#FMC2022
http://people.bath.ac.uk/wbh22/index.html#FMC2022

	The Functional Machine Calculus
	Embedding the FMC in a PRS
	A Multi–One Critical Pair Criterion for the FMC

