Confluence by Higher-Order Multi-One Critical pairs with an application to the Functional Machine Calculus

Willem Heijltjes and Vincent van Oostrom*
Department of Computer Science, University of Bath, United Kingdom
wbh22@bath.ac.uk, vvo21@bath.ac.uk

Abstract

The functional machine calculus (FMC) is a model of higher-order computation with effects, and is known to be confluent. Here we re-prove confluence of the FMC via higherorder term rewriting, embedding the FMC in a $3^{\text {rd }}$-order PRS. Our main contribution is a higher-order version of the critical-pair-criterion that was developed by Okui for first-order TRSs, requiring all multi-one critical peaks to be many-multi joinable.

1 The Functional Machine Calculus

The Functional Machine Calculus (FMC) is a model of higher-order computation with effects [1]. It generalizes the λ-calculus and is known to preserve its main properties of confluence and simply-typed termination, while it encodes reader/writer effects (state, I/O, probabilities, nondeterminism) and strategies including call-by-name, call-by-value, and call-by-pushvalue [3]. In this section we recapitulate the FMC in its traditional presentation. In Section 2 we show how it can be embedded in a $3^{\text {rd }}$-order positional pattern rewrite system. Via this embedding confluence of the FMC is then regained as an instance of a critical pair criterion for positional PRSs (Definition 2), generalising Okui's criterion for TRSs [5], as shown in Section 3.

The intuition for the FMC is of λ-terms as instruction sequences for a simple stack machine. Application $M N$, written $[N] . M$, pushes N to the stack and continues with M; abstraction $\lambda x . M$, written $\langle x\rangle . M$, pops a term N and continues with $\{N / x\} M$ (the substitution of N for x in M). The FMC then consists of two generalizations. One, to multiple stacks, indexed by locations a, b, c, \ldots in which application and abstraction are parameterized, $[N] a . M$ and $a\langle x\rangle$. M. As well as the main stack, these model input and output streams, memory cells, and random generators. Two, with the empty sequence \star and sequential composition, implemented by making the variable construct a prefix $x . M$; this gives control over evaluation behaviour and models strategies. Both generalizations have interesting consequences for reduction. First, a redex consists of an application and abstraction at the same location, $[N] a \ldots a\langle x\rangle . M$, possibly with operations on other locations in between. Second, to substitute N for x in $x . M$ involves sequential composition $N ; M$.

Definition 1. FMC-terms are given by the following grammar, where $a\langle x\rangle . M$ binds x in M, and considered modulo α-equivalence. (Trailing . \star may be omitted.)

$$
M, N, P \quad::=\quad \star|x \cdot M|[N] a . M \mid a\langle x\rangle . M
$$

We define β-reduction by the rewrite rule schema below (closed under all contexts)

$$
[N] a . H \cdot a\langle x\rangle . M \rightarrow H \cdot\{N / x\} M \quad(a \notin \operatorname{loc}(H), \operatorname{bv}(H) \cap \mathrm{fv}(N)=\varnothing)
$$

[^0]where H is a head context with binding variables $\operatorname{bv}(H)$ and locations $\operatorname{loc}(H)$ as defined below, writing $H . M$ for $H\{M\}$ (H with the hole $\}$ replaced by M).
\[

\left.$$
\begin{array}{rlrl}
\operatorname{bv}(\}) & =\varnothing & \operatorname{loc}(\}) & =\varnothing \\
\operatorname{bv}([M] a . H) & =\operatorname{bv}(H) & & \operatorname{loc}([M] a . H)
\end{array}
$$=\operatorname{loc}(H) \cup\{a\}\right\}
\]

$$
H::=\{ \}|[N] a . H| a\langle x\rangle . H \quad \operatorname{bv}([M] a . H)=\operatorname{bv}(H) \quad \operatorname{loc}([M] a . H)=\operatorname{loc}(H) \cup\{a\}
$$

Composition $N ; M$ and substitution $\{M / x\} N$ are capture-avoiding, and are as follows.

$$
\begin{array}{rrrrr}
\star ; M & =M & {[P] a \cdot N ; M} & = & {[P] a \cdot(N ; M)} \\
x \cdot N ; M & = & x \cdot(N ; M) & a\langle y\rangle \cdot N ; M= & a\langle y\rangle \cdot(N ; M) \\
\{P / x\} \star & = & \star & \{P / x\}[N] a \cdot M=[\{P / x\} N] a \cdot\{P / x\} M & \\
\{P / x\} x \cdot M & =P ;\{P / x\} M & & \{P / x\} a\langle x\rangle \cdot M= & a\langle x\rangle \cdot M \\
\{P / x\} y \cdot M & =y \cdot\{P / x\} M & (x \neq y) & \{P / x\} a\langle y\rangle \cdot M= & a\langle y\rangle \cdot\{P / x\} M
\end{array}
$$

The pure λ-calculus may be embedded in the FMC by choosing a main location λ, omitted from terms for compactness, and defining $\lambda x \cdot M=\langle x\rangle . M$ and $M N=[N] . M$.

Example 1. To model global store, a cell is a dedicated location a with lookup !a encoded by $a\langle x\rangle .[x] a . x$ and update $N:=a ; M$ by $a\langle-\rangle .[N] a . M$ (where _ is a non-binding variable). The following example term stores $\lambda f . f(f 3)$ to the cell a, and then retrieves it to call it on $\lambda y . y+1$. Overall, it should update a and return 5, which FMC reduction indeed exposes. (Underlining indicates a redex, and colours trace subterms through translations and reductions.)

$$
\begin{aligned}
a:=(\lambda f \cdot f(f 3)) ;!a(\lambda y \cdot y+1) & =a\left\langle_{-}\right\rangle \cdot \underline{[\langle f\rangle \cdot[[3] \cdot f] \cdot f] a \cdot[\langle y\rangle \cdot[y] \cdot[1] \cdot+] \cdot a\langle x\rangle \cdot[x] a \cdot x} \\
& \rightarrow a\langle-\rangle \cdot \underline{[y\rangle \cdot[y] \cdot[1] \cdot+] \cdot[\langle f\rangle \cdot[[3] \cdot f] \cdot f] a \cdot\langle f\rangle \cdot[[3] \cdot f] \cdot f} \\
& \rightarrow a\left\langle_{-}\right\rangle \cdot[\langle f\rangle \cdot[[3] \cdot f] \cdot f] a \cdot[[3] \cdot\langle y\rangle \cdot[y] \cdot[1] \cdot+] \cdot\langle y\rangle \cdot[y] \cdot[1] \cdot+ \\
& \rightarrow a\langle-\rangle \cdot[\langle f\rangle \cdot[[3] \cdot f] \cdot f] a \cdot 5 \\
& =a:=(\lambda f \cdot f(f 3)) ; 5
\end{aligned}
$$

2 Embedding the FMC in a PRS

We show the FMC can be embedded in a $3^{\text {rd }}$-order pattern rewrite system (PRS), with which we assume familiarity $[4,9]$. Since we will build on it below, we revisit the standard embedding of the pure λ-calculus in a $2^{\text {nd }}$-order PRS ([4, Example 3.4], [9, Examples 11.2.6(i), 11.2.22(ii)]).

Example 2. The $P R S \mathcal{L}$ am has a single base type term, two simply typed constants for abstraction and application: lam : $($ term \rightarrow term $) \rightarrow$ term and app : term \rightarrow term \rightarrow term, and rules:

$$
\begin{array}{rlrll}
\text { beta } & : & \lambda F S \cdot a p p(\operatorname{lam} \lambda x \cdot F(x), S) & \rightarrow & \lambda F S \cdot F(S) \\
\text { eta } & : & \lambda S \cdot \operatorname{lam}(\lambda x \cdot \operatorname{app}(S, x)) & \rightarrow & \lambda S \cdot S
\end{array}
$$

with variables $x:$ term, $F:$ term \rightarrow term and $S:$ term, and rules, which are symbols in our setting having the type of their lhs / rhs, beta: $($ term \rightarrow term $) \rightarrow$ term \rightarrow term, and eta : term \rightarrow term.

Objects The objects of a PRS are simply typed λ-terms modulo $\alpha \beta \eta$ for a collection of base types, and a signature of symbols. We refer to the simply typed $\lambda \alpha \beta \eta$-calculus as the substitution calculus of PRSs as it brings about the standard notions of matching, substitution
and occurrence $[8,6]$. We assume λ-terms to be in η-expanded form ([4, p. 5], [9, Convention 11.2.12]). Terms then are λ-terms also in β-normal form, serving as representatives (unique up to α) of $\alpha \beta \eta$-equivalence classes. The parameter passing of rewrite rules is brought about by the substitution calculus, matching by β-expansion and substitution by β-reduction. To separate the replacement aspect of rewrite rules from their parameter passing aspect [9, Definition 11.2.25(iv)], rewrite rules are closed. To facilitate defining occurrences below, we overline a subterm of a λ-term to denote the λ-term (recursively) obtained by removing the overlining, and if the subterm is a β-redex then contracting it and overlining the created β-redexes.

In [2, Lemma 2] we established that for first-order term rewriting there is a perfect rapport between the inductive and geometric views of the notion of occurrence. We consider the higherorder case: in the inductive view an occurrence of a pattern π in a λ-term t then is a β-expansion of t to a λ-term $(\lambda x . s) \pi$ (cf. [8, Definition 2.9]), and in the geometric view a pat P is a certain subset of the positions of the tree [4, p. 5] of t (cf. [9, Proposition 8.6.25]). To make the rapport perfect, we restrict ourselves to occurrences of patterns [4, Definition 3.1] that are rule-patterns [9, Definition 11.2.18(ii)], local [7, Footnote 4], and moreover such that the free variables are in pre-order and the parameters in outside-in order; these are positional patterns:

Definition 2 (Inductive view). A positional pattern π is a closed λ-term of shape $\lambda \boldsymbol{F} . f(\boldsymbol{t})$ such that (head-defined) f is a function symbol and $f(\boldsymbol{t})$ is of base type; (linear) π is linear in \boldsymbol{F}, each F_{i} occurs once; and (fully-extended) each $F \in \boldsymbol{F}$ occurs in π as $F(\boldsymbol{x})$ where x is the list of (η-expansions of) variables that are bound above F in $f(\boldsymbol{t})$, in outside-in order. To avoid clutter we may drop the initial binders \boldsymbol{F} of π. We incongruously refer to such an F as a free variable of π and to its arguments \boldsymbol{x} as its parameters. A rule $/ P R S$ is positional if its lhs is $/$ rules are. If for a vector $\boldsymbol{\pi}$ of positional patterns and λ-term t, we have $\overline{(\lambda \boldsymbol{F} . s) \boldsymbol{\pi}}=t$ with s linear in \boldsymbol{F}, we speak of a multipattern $\boldsymbol{\pi}$ in t. They are taken up to permutation of $\boldsymbol{\pi}, \boldsymbol{F}$.

Definition 3 (Geometric view). A pat in a λ-term t is a non-empty set P of positions in the tree ${ }^{1}$ of t such that (convex) if $p, q \in P$ then all positions on the path between p and q are in P [2, Footnote 4]; (rigid) if $t(p)$ is a variable and $p \in P$, then it is bound by a λ-abstraction at a position in P; (base-fringe) $t_{\mid p}$ is of base type for p the root of P or a child not in P of a position in P; and (normal) if $t(p)$ is an application and $p \in P$, then its left child is not the position of a λ-abstraction. A multipat is a vector \boldsymbol{P} of pairwise disjoint pats in t.

Example 3. For examples of patterns see [9, Example 11.2.19]. The lhs of beta is a positional pattern. It would not be so anymore when swapping its initial binders from $\lambda F S$ into $\lambda S F$ (pre-order violated). The lhs of eta is a pattern, but is not positional (full-extendedness violated).

For π the lhs of beta, we have $\{11,111,1111,1112,11121,11122\}$ is a pat; 11, 111, 1111 are the positions from its root 11 toward the head symbol app, 11121 the position of abs, and 11122 that of λx. This is the greatest pat in π, its internal pat $\stackrel{\circ}{\pi}$. The only other pat in π is $\{1112,11121,11122\}$ corresponding to lam $\lambda x . F(x)$. For instance, $\{1112,11121\}$ is not a pat, since the subterm $\lambda x . F(x)$ at position 11122 is not of base type violating (base-fringe), and $\{112\}$ is not a pat since (rigid) is violated by S being a free variable. For TRSs, a pat coincides with a non-empty convex set of function symbol positions as in [2].

Multipatterns and multipats can be ordered by refinement \sqsubseteq. These orders correspond and will allow us to state the notion of critical peak in lattice-theoretic terms [2].

Definition 4. $(\lambda \boldsymbol{G} \cdot(\overline{(\lambda \boldsymbol{F} . s) \boldsymbol{u})}) \boldsymbol{\pi} \sqsubseteq \overline{(\lambda \boldsymbol{G} \cdot((\lambda \boldsymbol{F} . s) \boldsymbol{u})) \boldsymbol{\pi}}$ if both sides are multipatterns and s, \boldsymbol{u} are linear in $\boldsymbol{F}, \boldsymbol{G}$. For multipats, $\boldsymbol{Q} \sqsubseteq \boldsymbol{P}$ if each pat $Q \in \boldsymbol{Q}$ is a subset of a pat $P \in \boldsymbol{P}$.

[^1]Example 4. We have $\{\{2,21\},\{222,2221\}\} \sqsubseteq\{\{2,21,22,221,222,2221\}\}$ for multipats in $f(g(h(i(a))))$.Likewise $(\lambda X Y . f(X(h(Y(a))))(\lambda z . g(z))(\lambda z . i(z)) \sqsubseteq(\lambda Z . f(Z(a))) \lambda z . g(h(i(z)))$ for multipatterns as witnessed by $(\lambda X Y .(\lambda Z . f(Z(a)))(\lambda z \cdot X(h(Y(z)))))(\lambda z . g(z))(\lambda z . i(z))$.

Figure 1: Carving out multipat from term by β-expanding into multipattern (left), and step for PRS rule $\ell \rightarrow r$ via matching (β-expansion; middle) and substitution (β-reduction; right)

Lemma 1. Refinement \sqsubseteq on multipats / multipatterns of a λ-term is a finite distributive lattice. Multipatterns and multipats w.r.t. their respective notions of refinement \sqsubseteq, are isomorphic.

Proof idea. By extending the proof of-[2, Lemma 2] to positional PRSs. The isomorphism between multipats and multipatterns is illustrated in Figure 1; for any multipat \boldsymbol{P} in a λ-term t a multipattern $\boldsymbol{\pi}$ may be carved out from t in that $\overline{(\lambda \boldsymbol{F} . s) \boldsymbol{\pi}}=t$ for some s linear in \boldsymbol{F} such that the set of internal positions of the $\boldsymbol{\pi}$ in it trace [9] to the \boldsymbol{P} in t, and vice versa.

Steps The steps of a PRS are terms over the signature extended with rules [9, Chapter 8].
Definition 5. A multistep of a PRS \mathscr{P} is a term over its signature extended with its rule symbols. This induces a rewrite system $\rightarrow \mathscr{P}$ having terms as objects, multisteps as steps, with source / target maps obtained substituting the lhs / rhs for the rule symbol [8, 6]; cf. Figure 1 (middle, right). Requiring to have one rule in a multistep yields steps $\rightarrow \mathfrak{p}$.

Example 5. abs $(\lambda y \cdot \operatorname{beta}(\lambda x \cdot \operatorname{app}(x, x), y)))$ and eta $(\operatorname{abs}(\lambda x \cdot \operatorname{app}(x, x)))$ are Lam-steps. Despite being intensionally distinct, they are extensionally the same as they have the same sources $\operatorname{abs}(\lambda y \cdot \overline{(\lambda F S \cdot a p p(\operatorname{lam} \lambda x \cdot F(x), S))(\lambda x \cdot \operatorname{app}(x, x), y)}))=\operatorname{abs}(\lambda y \cdot \operatorname{app}(\operatorname{abs}(\lambda x \cdot \operatorname{app}(x, x)), y))=$ $(\lambda S \cdot \operatorname{lam}(\lambda x \cdot \operatorname{app}(S, x)))(\operatorname{abs}(\lambda x \cdot \operatorname{app}(x, x)))$ and targets abs $(\lambda y \cdot \overline{(\lambda F S \cdot F(S))(\lambda x \cdot \operatorname{app}(x, x), y)}))=$ $\operatorname{abs}(\lambda y \cdot \operatorname{app}(y, y))=\overline{(\lambda S \cdot S)(\operatorname{abs}(\lambda x \cdot \operatorname{app}(x, x)))}$.

Multisteps render traditional redex-orthogonality-talk obsolete [2]; redexes are orthogonal because there is a multistep contracting them. Note $\rightarrow \mathscr{P} \subseteq \rightarrow \mathfrak{P} \subseteq \rightarrow \mathscr{P}$ [9, Lemma 11.6.24(ii)].

The FMC as fragment of a PRS The untyped λ-calculus is embedded in a fragment of the $2^{\text {nd }}$-order PRS $\mathcal{L a m}$, namely in terms where all variables are of type term. We show the same holds for the FMC: its terms are embedded as a fragment of a $3^{\text {rd }}$-order PRS \mathcal{F} IMC. The embedding hinges on that although the FMC (Definition 1) has a non-standard notion of substitution, that may be represented by PRS substitution by replacing each \star by a variable χ, so that composition with N in the FMC is represented in $\mathcal{F M C}$ as substitution of N for χ.

Definition 6. The PRS FTMC has a signature comprising for every location a, symbols lam ${ }_{a}$: $(($ term \rightarrow term $) \rightarrow$ term $) \rightarrow$ term and app $_{a}:$ term $\rightarrow($ term \rightarrow term $) \rightarrow$ term, and rewrite rule schema:

$$
\operatorname{beta}_{H} \quad: \quad \lambda M \boldsymbol{P} N \cdot \operatorname{app}_{a}\left(H\left[\operatorname{lam}_{a}(\lambda x \cdot M(\boldsymbol{x}, x))\right], N\right) \quad \rightarrow \quad \lambda M \boldsymbol{P} N \cdot H[M(\boldsymbol{x}, N)]
$$

where N, \boldsymbol{x}, and x all have type term \rightarrow term (not η-expanded to avoid clutter) and H ranges over contexts, compositions of basic contexts with the empty context \square, with a basic context being of shape either $\operatorname{app}_{b}(\square, P(\boldsymbol{x}))$ or $\operatorname{lam}_{b}(\lambda x . \square)$, for any location b distinct from a, and each $P \in \boldsymbol{P}$ a fresh free variable having as parameters the variables bound by the contexts above it.

Terms of the FMC are represented by spines, \mathcal{F} MC-terms $\lambda \chi . S$ of type term \rightarrow term with:

$$
S::=\chi|x S| \operatorname{app}_{a}(S, \lambda \chi . S) \mid \operatorname{lam}_{a}(\lambda x . S)
$$

where χ is the unique variable of type term. We embed an FMC term M as $\lambda \chi \cdot\langle M\rangle$ and show this fragment of $\mathscr{F} M C$ is well-behaved, where \rangle maps the FMC constructs as follows: (i) \star is mapped by \rangle to χ, that is, to the coccyx of a spine; (ii) $x . M$ is mapped to $x\langle M\rangle$, that is, to the application of x to the embedding of M; (iii) $[N] a . M$ is mapped to $\operatorname{app}_{a}(\langle M\rangle, \lambda \chi \cdot\langle N\rangle)$; and (iv) $a\langle x\rangle . M$ is mapped to $\operatorname{lam}_{a}(\lambda x .\langle M\rangle)$.

Lemma 2. Embedding the FMC in the $\lambda \chi$. S-fragment yields a bisimulation for \rightarrow and $\rightarrow_{\text {beta }_{H}}$.

3 A Multi-One Critical Pair Criterion for the FMC

We generalise the critical pair criterion for confluence introduced in [5] from left-linear TRSs to positional PRSs to obtain confluence of $\mathcal{F} M \mathrm{C}$, and hence (Lemma 2) of its $\lambda \chi$. S-fragment.

Definition 7. Multipatterns ς and ζ in term t are overlapping if $\varsigma \sqcap \zeta \neq \perp$, where \sqcap denotes the meet w.r.t. refinement \sqsubseteq and \perp the least element (t). The overlap is critical if moreover $\varsigma \sqcup \zeta=(\lambda F . \hat{F}) t$ with \hat{F} the η-expansion of F. This extends to peaks $\Phi \leftarrow t \rightarrow_{\Psi}$ of multisteps $\Phi=\overline{(\lambda \boldsymbol{F} . s) \varrho}$ and $\Psi=\overline{(\lambda \boldsymbol{G} \cdot u) \boldsymbol{\theta}}$ for rules $\varrho: \boldsymbol{\ell} \rightarrow \boldsymbol{r}$ and $\boldsymbol{\theta}: \boldsymbol{g} \rightarrow \boldsymbol{d}$, via their multipatterns $(\lambda \boldsymbol{F} . s) \boldsymbol{\ell}$ and $(\lambda \boldsymbol{G} . u) \boldsymbol{g}$. If Ψ is a step, we speak of a multi-one (critical) peak.

Example 6. We give two multi-one critical peaks for the following TRS [5, Example 1], with our multi-one critical peaks corresponding to the critical pairs numbered (4) and (5) there:

$$
\begin{aligned}
& \qquad \begin{array}{c}
\alpha: \lambda x y z \cdot x+(y+z) \rightarrow \lambda x y z \cdot(x+y)+z \\
\gamma: \quad \lambda x y \cdot x+y \rightarrow \lambda x y \cdot y+x
\end{array} \\
& \lambda x y z \cdot(z+y)+x \frac{}{(\lambda F G x y z \cdot F(x, G(y, z))) \gamma \gamma} \leftarrow \lambda x y z \cdot x+(y+z) \rightarrow \overline{(\lambda H x y z \cdot H(x, y, z)) \alpha} \lambda x y z \cdot(x+y)+z \\
& \lambda \boldsymbol{w} \cdot((x+y)+z)+w \frac{}{(\lambda F G \boldsymbol{w} \cdot F(w, G(x, y, z))) \gamma \alpha} \leftarrow \lambda \boldsymbol{w} \cdot w+(x+(y+z)) \rightarrow \overline{(\lambda H \boldsymbol{w} \cdot H(w, x, y+z) \alpha} \lambda \boldsymbol{w} \cdot(w+x)+(y+z) \\
& \text { where } \boldsymbol{x}=\text { wxyz. The first multi-one peak has }\{111 \cdot\{\varepsilon, 1,11\}, 111 \cdot\{2,21,211\}\} \text { as multipat for } \\
& \text { the left multistep and }\{111 \cdot\{\varepsilon, 1,11,2,21,211\}\} \text { for the right. }
\end{aligned}
$$

Figure 2: Illustration of proof of Lemma 3 by splitting-off critical multi-one peak

Lemma 3. If for a positional PRS \mathscr{P} every critical multi-one peak is many-multi joinable, i.e. if $\Phi \hookleftarrow \cdot \rightarrow_{\Psi} \subseteq \rightarrow \mathscr{P} \cdot \mathscr{P} \leftarrow$ for Φ, Ψ critical, then multi-one peaks are many-multi joinable.

Proof idea. Let $s_{\Phi} \leftarrow t \rightarrow_{\Psi} u$ be a multi-one peak. The geometric view, justified by Lemma 1, for the following construction is illustrated in Figure 2 where the blue blob denotes t, the green blobs the multipat of the multistep \rightarrow_{Φ}, and the red blob that of the step \rightarrow_{Ψ}.

We may write the multipattern ς of Φ as $\left(\lambda \boldsymbol{G}^{\prime} \boldsymbol{G} \cdot s^{\prime}\right) \boldsymbol{\ell}^{\prime} \ell$, and the multipattern ζ of Ψ as $\left(\lambda F . u^{\prime}\right) g$, with ℓ those patterns in ς overlapping the pattern g (2 green blobs in the figure overlapping the red one), and ℓ^{\prime} (1 green blob) the non-overlapping ones;

The join $\varsigma \sqcup \zeta$ is then of shape $\left(\lambda G^{\prime} F^{\prime} . v\right) \ell^{\prime} \pi$ with π being the minimal pattern refinable into both ℓ and g. Thus, $\varsigma=\left(\lambda G^{\prime} G \cdot \overline{\left(\lambda G^{\prime} F^{\prime} \cdot v\right) G^{\prime} s^{\prime \prime}}\right) \ell^{\prime} \ell$ and $\zeta=\left(\lambda F \cdot \overline{\left(\lambda G^{\prime} F^{\prime} \cdot v\right) \ell^{\prime} u^{\prime \prime}}\right) g$ for some $s^{\prime \prime}$ and $u^{\prime \prime}$, with the multisteps Φ and Ψ obtained by replacing the left-hand sides $\ell^{\prime} \ell$ in ς and g in ζ by rule symbols, and with $\overline{\left(\lambda \boldsymbol{G}^{\prime} \boldsymbol{G} \cdot\left(\lambda \boldsymbol{G}^{\prime} F^{\prime} \cdot v\right) \boldsymbol{G}^{\prime} s^{\prime \prime}\right) \boldsymbol{\ell}^{\prime} \boldsymbol{\ell}}=\varsigma \sqcup \zeta=\overline{\left(\lambda F \cdot\left(\lambda \boldsymbol{G}^{\prime} F^{\prime} \cdot v\right) \boldsymbol{\ell}^{\prime} u^{\prime \prime}\right) g}$. By minimality, π is the source of the critical multi-one peak for multistep $\hat{\Phi}$ and step $\hat{\Psi}$ having multipatterns $\left(\lambda \boldsymbol{G} . s^{\prime \prime}\right) \boldsymbol{\ell}$ and $\left(\lambda F . u^{\prime \prime}\right) g$, which is many-multi joinable by assumption, say by valley $\rightarrow_{\hat{\Psi}^{\prime} \cdot \hat{\Phi}^{\prime}} \leftarrow 0$ for reduction $\hat{\Psi}^{\prime}$ and multistep $\hat{\Phi}^{\prime}$. We conclude by plugging these into context as in Figure 2 (right), yielding the reduction $\left(\lambda \boldsymbol{G}^{\prime} F^{\prime} . v\right) \boldsymbol{r}^{\prime} \hat{\Psi}^{\prime}$ and the multistep $\left(\lambda \boldsymbol{G}^{\prime} F^{\prime} . v\right) \varrho^{\prime} \hat{\Phi}^{\prime}$, for \boldsymbol{r}^{\prime} and ϱ^{\prime} the right-hand sides respectively the rules, corresponding to ℓ^{\prime}.

Theorem 1. A positional PRS is confluent if multi-one critical peaks are many-multi joinable.
Proof. By Lemma 3 using $\rightarrow \mathscr{P} \subseteq \rightarrow \mathscr{P} \subseteq \rightarrow \mathscr{P}$ for any positional PRS \mathscr{P}.
Theorem 2. FMC reduction is confluent.
Proof. By Theorem 1 and Lemma 2 it suffices that all multi-one critical peaks of $\mathcal{F} W C$ are many-multi joinable. There are still infinitely many such peaks, but these are uniformly shown to be many-multi joinable: since in the FMC all patterns in a critical peak are on the same spine, and patterns on the spine are not replicated, the peaks are even one-multi joinable.

References

[1] C. Barrett, W. Heijltjes, and G. McCusker. The functional machine calculus, 2022. To appear in Mathematical Foundations of Programming Semantics (MFPS 2022). Available at http://people. bath.ac.uk/wbh22/index.html\#FMC2022.
[2] N. Hirokawa, J. Nagele, V. van Oostrom, and M. Oyamaguchi. Confluence by critical pair analysis revisited. In CADE 27, volume 11716 of $L N C S$, pages 319-336. Springer, 2019.
[3] P.B. Levy. Call-by-push-value: A functional/imperative synthesis, volume 2 of Semantic Structures in Computation. Springer Netherlands, 2003.
[4] R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. TCS, 192(1):3-29, 1998.
[5] S. Okui. Simultaneous critical pairs and Church-Rosser property. In T. Nipkow, editor, RTA-98, volume 1379 of $L N C S$, pages 2-16. Springer, 1998.
[6] V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije Universiteit, Amsterdam, March 1994.
[7] V. van Oostrom. Finite family developments. In H. Comon, editor, RTA-97, volume 1232 of LNCS, pages 308-322. Springer, 1997.
[8] V. van Oostrom and F. van Raamsdonk. Weak orthogonality implies confluence: The higher order case. In LFCS'94, volume 813 of LNCS, pages 379-392. Springer, 1994.
[9] Terese. Term Rewriting Systems, volume 55 of CTTCS. CUP, 2003.

[^0]: *Supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with sharing and unsharing.

[^1]: ${ }^{1}$ We employ $t_{\mid p} / t(p)$ to denote the subterm / symbol at position p in $t([4, \mathrm{p} .5]$ uses t / p for the former).

