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1. INTRODUCTION

We revisit the celebrated modularity result of confluence, due to Toyama [1987]. It
states that the union of two confluent rewrite systems is confluent, provided the partic-
ipating rewrite systems do not share function symbols. This result has been reproved
several times, using category theory [Lüth 1996], ordered completion [Jouannaud and
Toyama 2008], and decreasing diagrams [van Oostrom 2008]. While confluence is also
modular for rewriting modulo [Jouannaud and Toyama 2008; Jouannaud and Liu 2012],
the situation is different for higher-order rewriting [Appel et al. 2010]. In practice, mod-
ularity is of limited use. More useful techniques, in the sense that rewrite systems can
be decomposed into smaller systems that share function symbols and rules, are based
on type introduction [Aoto and Toyama 1997], layer-preservation [Ohlebusch 1994a],
and commutativity [Rosen 1973].

Type introduction [Zantema 1994] restricts the set of terms that have to be con-
sidered to the well-typed terms according to some many-sorted type discipline that is
compatible with the rewrite system under consideration. A property of (many-sorted)
rewrite systems that is preserved and reflected under type removal is called persistent,
and Aoto and Toyama [1997] showed that confluence is persistent. Aoto and Toyama
[1996] extended the latter result by considering an order-sorted type discipline. How-
ever, we show that the conditions imposed in [Aoto and Toyama 1996] are not sufficient
for confluence.
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14:2 B. Felgenhauer et al.

The proofs in Ohlebusch [1994a] and Aoto and Toyama [1996, 1997] are adaptations
of the proof of Toyama’s modularity result by Klop et al. [1994]. A more complicated
proof using concepts from Klop et al. [1994] has been given by Kahrs, who showed in
[Kahrs 1995] that confluence is preserved under currying [Kennaway et al. 1996]. In
this article, we introduce layer systems as a common framework to capture the results
of Aoto and Toyama [1997], Kahrs [1995], Ohlebusch [1994a], and Toyama [1987] and
to identify appropriate conditions to restore the persistence of confluence for order-
sorted rewriting [Aoto and Toyama 1996]. Layer systems identify the parts that are
available when decomposing terms. The key proof idea remains the same. We treat each
such layer independently from the others where possible and deal with interactions
between layers separately. The main advantage of and motivation for our proof is that
the result becomes reusable; rather than checking every detail of a complex proof, we
have to check a couple of comparatively simple, structural conditions on layer systems
instead. Such a common framework also facilitates a formalization of these results in
a theorem prover like Isabelle or Coq.

Besides the theoretical results of this article, we stress practical implications: due
to an implementation of Theorem 6.3 in our confluence tool CSI [Zankl et al. 2011b], it
supports a decomposition result based on ordered sorts, exceeding the criteria available
in other tools. A second result of practical importance is preservation and reflection of
confluence under currying [Kahrs 1995], which is used as a preprocessing step when
deciding confluence of ground term rewrite systems (TRSs) [Felgenhauer 2012].

The remainder of this article is organized as follows. In the next section, we re-
call preliminaries. Section 3 introduces layer systems and establishes results on how
rewriting interacts with layers. The main (abstract) results for confluence via layer sys-
tems are presented in Section 4 and instantiated in Section 5 to obtain various known
results. The new result on order-sorted persistence is covered in Section 6. Differences
to related work are discussed in Section 7, which might be consulted in advance by
readers familiar with the literature. We conclude in Section 8.

This article is an extended and significantly revised version of [Felgenhauer et al.
2011]. Since here we build upon [van Oostrom 2008], all our proofs are constructive.
Furthermore, this work is based on a more intuitive definition of layer systems. The
result for nonduplicating systems has been generalized to the strictly larger class of
bounded duplicating systems. The application of quasi-ground systems (Section 5.3)
is new. Moreover, all important concepts are demonstrated by examples, and detailed
proofs are provided.

2. PRELIMINARIES

We assume familiarity with rewriting [Baader and Nipkow 1998; Terese 2003] and the
decreasing diagrams technique [van Oostrom 1994].

Let V be a countably infinite set of variables and F a signature, that is, a set of
function symbols f ∈ F , each associated with a fixed arity, denoted by arity( f ). The
set of terms over F and V is denoted by T (F ,V). The sets of variables and function
symbols occurring in a term t are referred to by Var(t) and Fun(t), respectively. A term
is ground if it does not contain variables. The set of ground terms over F is denoted by
T (F). A term is linear if every variable occurs at most once.

Let � /∈ F ∪ V be a constant (i.e., a function symbol of arity 0) called hole and
abbreviate T (F∪{�},V) by C(F ,V). We write V� for the set of symbols V∪{�}. Contexts
are terms from C(F ,V) containing an arbitrary number of holes. They are partially
ordered by �, defined as the smallest reflexive and transitive relation that is monotone
and satisfies � � C for all C ∈ C(F ,V). There is a corresponding partial supremum
operation, � , which merges contexts. The strict order � is defined by C � D if C � D
and C �= D. The minimum context with respect to � is the empty context �. By
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C[t1, . . . , tn], we denote the result of replacing holes in C by the terms t1, . . . , tn from left
to right.

The size of a term t is denoted by |t|, and |t|W for a subset W ⊆ F ∪ V� denotes the
number of occurrences of function symbols and variables from W in t. We write |t|w for
|t|{w}. Positions of a term t are strings of positive natural numbers, ε for the root, and ip
if t = f (t1, . . . , ti, . . . , tn) and p is a position of ti. Then Pos(t) is the set of all positions of
t. Two positions p, q are parallel if neither p is a prefix of q nor q is a prefix of p. Given
terms t and s, t|p is the subterm at position p of t and t[s]p denotes the result of replacing
t|p by s in t. This operation is extended to sets of pairwise parallel positions P, resulting
in the notation t[sp]p∈P . By root(t) we denote the root symbol of t. For W ⊆ F ∪ V� and
w ∈ F ∪ V�, we let PosW (t) = {p ∈ Pos(t) | root(t|p) ∈ W} and Posw(t) = Pos{w}(t). A
substitution is a map σ : V → T (F ,V) which extends homomorphically to terms. For
terms s and t, we write s �· t if there exists a substitution σ such that sσ = t.

A rewrite rule is a pair of terms (�, r) ∈ T (F ,V)2, written � → r, such that � /∈ V and
Var(�) ⊇ Var(r). A rewrite rule � → r is left-linear if � is linear, duplicating if there is a
variable x ∈ V with |�|x < |r|x, and collapsing if its right-hand side is a variable. A TRS
consists of a signature and a set of rewrite rules. If we do not specify differently, a TRS
will always be over the signature F and variables V. The rewrite relation induced by a
TRS R is denoted →R. We write s →p,�→r t if s →R t using a rule � → r ∈ R at position
p. Two rewrite steps s →R t and s′ →R t′ mirror each other if both steps use the same
rule at the same position. This notion is extended to rewrite sequences. We write ←,
→=, →+, and →∗ to denote the inverse, the reflexive closure, the transitive closure,
and the reflexive and transitive closure of a relation →, respectively. A relation → is
terminating if →+ is well-founded and confluent if ∗← · →∗ ⊆ →∗ · ∗←. We say that →
is confluent on a set S of terms if S is closed under → and → ∩ (S × S) is confluent. A
TRS R inherits these properties from →R. A relative TRS R/S is a pair of TRSs R and
S with the induced rewrite relation →R/S = →∗

S · →R · →∗
S . It is terminating if →+

R/S is
well-founded.

Let > be a well-founded order on an index set I and → the union of →α for all α ∈ I.
We write →∨α1... αn for the union of →β , where αi > β for some 1 � i � n. A local peak
t α← s →β u is said to be decreasing if

t →∗
∨α · →=

β · →∗
∨αβ · ∗

∨αβ← · =
α← · ∗

∨β← u.

Furthermore, → is locally decreasing if for all α, β ∈ I every local peak α← · →β is
decreasing. Van Oostrom [1994] established the following result.

THEOREM 2.1. Every locally decreasing relation is confluent.

3. LAYER SYSTEMS

In this section, we introduce layer systems, which are sets of contexts satisfying special
properties. The top-down decomposition of a term into maximal layers admits the
notion of the rank of a term. Since for suitable layer systems rewriting does not increase
the rank, this is a valid measure for proofs by induction.

Definition 3.1. Let L ⊆ C(F ,V) be a set of contexts. Then L ∈ L is called a top of a
context C ∈ C(F ,V) (according to L) if L � C. A top is a max-top of C if it is maximal
with respect to � among the tops of C.

Note that terms are contexts without holes, so they have tops and max-tops as well.
In the sequel, we use subsets L ⊆ C(F ,V) to layer terms. The process is top-down,
taking the max-top of a term as layer and proceeding recursively.
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14:4 B. Felgenhauer et al.

Example 3.2. Let F consist of a binary function symbol f, a unary function symbol
g, and constants a, b, and c. We consider the following candidates for L:

L0 = ∅

L1 = {f(v,w), g(v), a, b, c, v | v,w ∈ V�}
L2 = {f(gn(v), gm(w)), gn(v), gn(c), a, b | v,w ∈ V�, n, m ∈ N}
L3 = {f(gn(v), gm(w)), gn(v), a, b | v,w ∈ V� ∪ {c}, n, m ∈ N}.

Regard the terms s = f(c, c) and t = f(c, g(c)). According to L0, neither s nor t has any
tops. According to L1, the tops of both s and t are � and f(�,�), and the latter is the
max-top of s and t. According to L2, � and f(�,�) are the tops of s and t, and f(�, g(�))
is a top of t but not of s. The max-tops of s and t are f(�,�) and f(�, g(�)), respectively.
Finally, the max-tops of s and t according to L3 are s and t themselves.

Our goal is to deduce confluence of R when rewriting is restricted to L ∩ T (F ,V). To
this end, we need to impose restrictions on L. This leads to the central definition of the
article.

Definition 3.3. Let F be a signature. A set L ⊆ C(F ,V) of contexts is called a layer
system if it satisfies properties (L1), (L2), and (L3). The elements of L are called layers.
A TRS R over F is weakly layered (according to a layer system L) if condition (W) is
satisfied for each � → r ∈ R. It is layered (according to a layer system L) if conditions
(W), (C1), and (C2) are satisfied. The conditions are as follows:

(L1) Each term in T (F ,V) has a nonempty top.
(L2) If x ∈ V and C ∈ C(F ,V), then C[x]p ∈ L if and only if C[�]p ∈ L.
(L3) If L, N ∈ L, p ∈ PosF (L), and L|p � N is defined, then L[L|p � N]p ∈ L.
(W) If M is a max-top of s, p ∈ PosF (M), and s →p,�→r t, then M →p,�→r L for some

L ∈ L.
(C1) In (W), either L is a max-top of t or L = �.
(C2) If L, N ∈ L and L � N, then L[N|p]p ∈ L for any p ∈ Pos�(L).

Example 3.4 (Example 3.2 revisited). Consider the TRS R1 consisting of the rewrite
rules

f(x, x) → a f(x, g(x)) → b c → g(c)

from Huet [1980]. It is nonconfluent because a R1← f(c, c) →R1 f(c, g(c)) →R1 b, and a, b
are in normal form. However, R1 is confluent on L0 ∩T (F ,V) and L2 ∩T (F ,V), and R1 is
confluent if rewriting is restricted to terms of L1 ∩ T (F ,V) (which rules out the rewrite
step c → g(c)), but R1 is not confluent on L3 ∩ T (F ,V), because a, f(c, c), f(c, g(c)), b ∈
L3 ∩ T (F ,V). Clearly L0 violates (L1), and therefore any attempt of proving confluence
of R1 by decomposing terms into a max-top and remaining subterms is doomed to
fail. Our basic idea for establishing confluence of a (weakly) layered TRS is to perform
rewrite steps on arbitrary terms on the corresponding elements of a layer system in
the terms’ decomposition, with subterms replaced by variables (this replacement is
enabled by (L2)).

Figure 1(a) depicts the rewrite step f(c, c) →R1 f(c, g(c)) with both terms decomposed
according to L1. Note that the subterm c rewrites to g(c), but the resulting subterm is
split into two layers. Note furthermore that f(c, g(c)) →R1 b, but the corresponding left-
hand side f(x, g(x)) does not match any part of the decomposition of f(c, g(c)). Condition
(W) (which is violated by L1) helps ensure that rewrite steps on terms can be adequately
simulated on layers.

Next, consider Figure 1(b), depicting the rewrite step f(c, c) →R1 f(c, g(c)) with terms
decomposed according to L2. Note that L2 satisfies (L1), (L2), and (W). Nevertheless,
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Fig. 1. Undesired behavior on layers.

the result of the rewrite step c →R1 g(c) is broken apart: only a part of g(c) is merged
with the max-top of f(c, g(c)). Condition (L3) prevents such partial fusion. We can see
that it is violated by L2: we have f(�, g(�)) ∈ L2 and g(c) ∈ L2, but f(�, g(�) � g(c)) =
f(�, g(c)) /∈ L2. Finally, L3 weakly layers R.

In order to motivate (C1), we consider the TRS R2 consisting of the rewrite rules

f(x, x) → a f(x, g(x)) → b h(c, x) → g(h(x, x)),

which is closely related to R1; instead of the rewrite step c →R1 g(c), we have tc →R2

g(tc) for tc = h(c, c), and therefore a R2← f(tc, tc) →R2 f(tc, g(tc)) →R2 b. We define a layer
system L4 by

Lc = {v, h(v,w), h(c, v) | v,w ∈ V�}
L4 = {f(gn(s), gm(t)), gn(t), a, b, c, s | s, t ∈ Lc, n, m ∈ N}.

It is straightforward to verify that L4 weakly layers R2 and that R2 is confluent on
L4 ∩ T (F ,V). Figure 1(c) depicts the rewrite step tc →R2 g(tc). It affects the max-top of
tc, but the max-top of the result, g(h(c,�)), is larger than the result of rewriting the
max-top h(c,�) of tc: h(c,�) → g(h(�,�)). In the case of R2, there are rewrite sequences
in which such fusion from above happens infinitely often, and that presents another
obstacle to confluence. Condition (C1) is designed to rule out such fusion from above
completely, and indeed the rewrite step tc →R2 g(tc) shows that (C1) is violated by L4
and R2.

Finally, consider the layer system

L5 = {f(v,w), f(gn+1(c), gm+1(c)), a, gn(c), gn(v), v | v,w ∈ V�, n, m ∈ N},
which weakly layers the TRS R3 consisting of the rewrite rules

f(x, x) → a c → g(c)

and satisfies (C1). Figure 1(d) depicts the rewrite step f(g(c), c) →R3 f(g(c), g(c)). What
happens here is that the result of rewriting the subterm c → g(c) fuses with the
previous top, f(�,�), but only if the unrelated first subterm g(c) fuses at the same
time. This phenomenon causes problems in our proof, and (C2) prevents that. To wit,
we have f(�,�) ∈ L5 and f(g(c), g(c)) ∈ L5, so by (C2) with p = 1, there should be
f(� � g(c),�) ∈ L5, but this is not the case.

The following convention helps to differentiate various contexts.
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14:6 B. Felgenhauer et al.

CONVENTION 3.1. We use C and D to denote contexts, B to denote base contexts (to be
introduced in Section 4), L and N to denote arbitrary layers, and M to denote a max-top
of a term or context.

In the sequel, we implicitly assume a given layer system L. In light of the next
lemma, we speak of the max-top of a term or context.

LEMMA 3.5. Any nonempty context has a unique and nonempty max-top.

PROOF. Let C be a nonempty context. To show that C has a nonempty top, let x be
a variable not occurring in C and consider C[x, . . . , x], which has a nonempty top Lx
by (L1). Then L := Lxσ with dom(σ ) = {x} and σ (x) = � is a top of C since L ∈ L by
(L2) and L � C by construction. It is nonempty since L = � implies Lx = x; hence,
C[x, . . . , x] = x and consequently C = � because x is fresh, contradicting the premises.
Hence, the set S of nonempty tops of C is nonempty. Since it also is finite, it has a
(nonempty) maximal element.

To show uniqueness, let M and M′ be max-tops of C. Then M � C and M′ � C
ensures that M � M′ is defined, and a layer by (L3) (if � ∈ {M, M′}, then (L3) is not
needed). If M �= M′, then M � M � M′ or M′ � M � M′. Since M � M′ � C, this gives
the desired contradiction.

Next, we introduce the key notion of the rank of a term.

Definition 3.6. Let t = M[t1, . . . , tn], with M being the max-top of t. Then t1, . . . , tn
are the aliens of t. We define rank(t) = 1 + max{rank(ti) | 1 � i � n}, where max(∅) = 0
by convention.

Since the max-top of a term is uniquely defined (Lemma 3.5), it follows that also its
aliens are uniquely defined. The next example shows that rewriting might increase the
rank of a term. In Lemma 3.12, we show that this cannot happen in weakly layered
TRSs.

Example 3.7. Consider the layer system

L6 = {v, f(v), g(v), h(v), f(g(h(v))), g(g(v)), a | v ∈ V�}.
Note that (in contrast to modularity) subterms can have larger rank. For example, if
s = f(g(h(x))) and t = g(h(x)), then rank(s) = 1 < 2 = rank(t). Furthermore, s →R t
in the TRS R containing the rule f(g(x)) → g(x). Note that R is not weakly layered
according to L6.

The next lemma states a useful decomposition result.

LEMMA 3.8. Let t = L[t1, . . . , tn], L be a top of t, and k be the maximum of rank(ti) for
1 � i � n. Then rank(t) � k + 1 and aliens of t that are not rooted at hole positions of L
have rank less than k.

PROOF. Let M be the max-top of t. We show the (stronger) property for any context
C with C � M (instead of a top L of t). Note that L � M. The proof is by induction
on |t| − |C|F∪V , which is a natural number because C � t. If C = M, then rank(t) =
1 + max{rank(ti) | 1 � i � n} = 1 + k and all aliens of t are rooted at hole positions of
C, so we are done. Otherwise, let Mi be the max-top of ti. There is a unique maximal
context C ′ such that C ′ � C[M1, . . . , Mn] and C ′ � M. Furthermore, we have C � C ′
because the Mi are nonempty by Lemma 3.5. Because C ′ � M � t, t = C ′[t′

1, . . . , t′
m],

where t′
j is the subterm of t at the position of the jth hole in C ′. For each p ∈ Pos�(C),

there are three possibilities. Let C[t1, . . . , tn]|p = ti.
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(1) If p ∈ Pos�(C ′), then C ′[t′
1, . . . , t′

m]|p = t′
j and ti = t′

j for some j.
(2) If p ∈ PosV (C ′), then there are no holes below p in C ′.
(3) If p ∈ PosF (C ′), then p ∈ PosF (M) and M[M|p � Mi]p ∈ L by (L3). Because M is the

max-top of t, this implies Mi � M|p and therefore C ′|p = Mi by construction of C ′.
Hence, all t′

j corresponding to holes of C ′ below p are aliens of ti having rank less
than rank(ti).

We can now apply the induction hypothesis to C ′[t′
1, . . . , t′

m] since C � C ′ implies |t| −
|C|F∪V > |t| − |C ′|F∪V . To conclude, note that any alien rooted at a hole position of C ′
but not at a hole position of C equals a t′

j from Case (3) and therefore has rank less
than k.

LEMMA 3.9. Let R be a TRS that is weakly layered according to L. Then L is closed
under rewriting by R.

PROOF. Let L ∈ L and L →R N. Obviously, L[x, . . . , x] →R N[x, . . . , x] for a fresh
variable x. Since L[x, . . . , x] ∈ L by (L2), it is its own max-top. We conclude since
N[x, . . . , x] ∈ L by (W) and hence N ∈ L by (L2).

We now present technical results about rewriting contexts. In the sequel, we often
want to replace variables affected by some substitution σ by holes. We therefore denote
by σ�(x) the substitution obtained by letting σ�(x) = � for x ∈ dom(σ ) and σ�(x) = x
otherwise. For a context C, we denote by C� the context obtained from C by replacing
all variables by holes.

LEMMA 3.10. Let C be a context and � a nonvariable term. If � �· C|p, then there is a
term c such that

(1) � �· c|p and C = cσ� for some substitution σ , and
(2) if C � D for a context D and � �· D|p, then c �· D.

PROOF. Assume that C has n � 0 holes. We may assume without loss of generality
that C and � have no variables in common. Let c0 := C[x1, . . . , xn] with fresh variables
x1, . . . , xn. The context C witnesses the fact that c0 and c1 := c0[�]p are unifiable. Let
c be a most general instance of c0 and c1. Note that variables in c can be renamed
freely. If C � D, then D is an instance of c0. Furthermore, if � �· D|p, then D must be an
instance of c1 as well and therefore c �· D. In particular, c �· C and thus C = cσ for some
substitution σ . Let τ be a substitution such that c = c0τ . For x ∈ Var(C), σ (τ (x)) = x,
which implies that τ (x) is a variable. We can rename each τ (x) to x in c. Therefore,
we may assume without loss of generality that σ (x) = τ (x) = x for x ∈ Var(C). For the
variables xi, we have σ (τ (xi)) = � for all 1 � i � n, which is only possible if σ maps
those variables to �. Consequently, σ� = σ .

If a rewrite rule is applied to a context, then each hole may be erased, copied, or
duplicated. The same holds for the terms used to fill the holes in a context, as formalized
by the next lemma.

LEMMA 3.11. If C →p,�→r C ′ and � �· C[s1, . . . , sn]|p, then C[s1, . . . , sn] →p,�→r
C ′[t1, . . . , tm] and {t1, . . . , tm} ⊆ {s1, . . . , sn}.

PROOF. Since � �· C|p, Lemma 3.10(1) yields a term c and a substitution σ� such
that � �· c|p and C = cσ�. Furthermore, due to C � C[s1, . . . , sn] and � �· C[s1, . . . , sn]|p,
there is a substitution σ with cσ = C[s1, . . . , sn] by Lemma 3.10(2). Hence, C →p,�→r C ′
mirrors a rewrite step c →p,�→r c′ with C ′ = c′σ� and C ′[t1, . . . , tm] = c′σ . Since t1, . . . , tm
can only come from σ, we conclude.
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This section ends with a key lemma that enables the use of induction on the rank of
terms for proving confluence of R.

LEMMA 3.12. Let R be a weakly layered TRS. If s →R t, then rank(s) � rank(t).

PROOF. By induction on the rank of s. Let s →p t and s = M[s1, . . . , sn] be the
decomposition of s into max-top and aliens. We distinguish two cases.

If p ∈ PosF (M), then condition (W) yields M →p L and L is a top of t. Let
t = L[t1, . . . , tm]. By Lemma 3.11, {t1, . . . , tm} ⊆ {s1, . . . , sn} since M →p L. Hence,
rank(t) � 1 + max{rank(ti) | 1 � i � m} � 1 + max{rank(si) | 1 � i � n} = rank(s)
using Lemma 3.8.

If p /∈ PosF (M), then sj → s′
j and t = M[s1, . . . , s′

j, . . . , sn] for some 1 � j � n. The
induction hypothesis yields rank(sj) � rank(s′

j). Since M is a top of t, Lemma 3.8 yields
rank(t) � 1+max{rank(s′

j), rank(si) | 1 � i � n, i �= j} � 1+max{rank(si) | 1 � i � n} =
rank(s).

4. CONFLUENCE BY LAYER SYSTEMS

We start this long section by stating our main results. All results reduce the task of
proving confluence of a TRS to the easier task of proving confluence of the terms in a
suitable layer system, that is, the terms in L ∩ T (F ,V), which are precisely the terms
of rank one. The first result imposes left-linearity.

THEOREM 4.1. Let R be a weakly layered TRS that is confluent on terms of rank one.
If R is left-linear, then R is confluent.

The second result exchanges left-linearity for a condition that is weaker than
nonduplication.

Definition 4.2. Let R be a TRS and � a fresh unary function symbol. Then R is
bounded duplicating if the relative rewrite system {�(x) → x}/R is terminating.

THEOREM 4.3. Let R be a weakly layered TRS that is confluent on terms of rank one.
If R is bounded duplicating, then R is confluent.

LEMMA 4.4. Nonduplicating TRSs are bounded duplicating.

PROOF. LetR be a nonduplicating TRS. In order to show termination of {�(x) → x}/R,
we measure terms by counting the number of occurrences of the � symbol. Clearly, each
application of the �(x) → x rule decreases that number and rules of R do not increase
it because they do not duplicate � symbols and cannot introduce any new ones.

Bounded duplication strictly extends nonduplication; the TRS consisting of the
rewrite rule f(x, x) → g(x, x, x) is duplicating but still bounded duplicating. This can be
shown by the polynomial interpretation [Lankford 1979] given by

fN(x, y) = 2x + 2y gN(x, y, z) = x + y + z �N(x) = x + 1.

By combining Theorem 4.3 with Lemma 4.4, we obtain the following corollary.

COROLLARY 4.5. Let R be a weakly layered TRS that is confluent on terms of rank one.
If R is nonduplicating, then R is confluent.

The third result does not impose any conditions on R but further limits the layer
systems that can be employed to derive confluence.

THEOREM 4.6. Let R be a layered TRS that is confluent on terms of rank one. Then R
is confluent.
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Table I. Incomparability of the Main Results

Rewrite Rule Layer System Theorem 4.1 Theorem 4.3 Theorem 4.6
f(g(h(x))) → g(x) L6 � � ×
k(b, x) → k(x, x) L7 � × �
k(x, x) → k(x, x) L7 × � �

Hence, for duplicating TRSs, there are three possibilities to prove confluence, ei-
ther by weakly layering a left-linear rewrite system (Theorem 4.1), by establishing
bounded duplication for a weakly layered rewrite system (Theorem 4.3), or by layering
the rewrite system (Theorem 4.6). Table I shows that the three results are pairwise
incomparable where L7 = {v, k(v,w), b | v,w ∈ V�} and L6 is as in Example 3.7.

In the following subsections, we develop proofs for Theorems 4.1, 4.3, and 4.6. In
Section 4.1, we describe the proof setup and introduce auxiliary rewrite relations. In
Sections 4.2 and 4.3, we show that the auxiliary relations are locally decreasing. Finally,
we wrap up the proofs in Section 4.4.

4.1. Proof Setup

Assume we are given a weakly layered TRS R such that R is confluent on terms of
rank one. We will show confluence of R on all terms by induction on the rank of terms.
In the sequel, we prepare for the induction step, hence:

We fix r and assume terms with rank at most r to be confluent.

Next, we generalize the crucial concepts of van Oostrom [2008] from the modularity
setting to layer systems. We have renamed nonnative to foreign because nonnative is
not the complement of native.

Definition 4.7. Terms with rank at most r + 1 are called native. An alien of a native
term is tall if its rank equals r and short otherwise. Foreign terms have rank less than
or equal to r.

Note that by definition, foreign terms are also native. However, we will only call
terms foreign if they are descendants of aliens of a native term.

Definition 4.8. Let t be a native term. Its base context B is obtained by replacing
all tall aliens in t with holes. The tall aliens form the base sequence t, which satisfies
t = B[t].

Definition 4.9. Sequences of foreign terms are called foreign sequences. The imbal-
ance of a foreign sequence t is the number of distinct terms in t. The imbalance of a
native term t is the imbalance of its base sequence. If s and t are sequences of length
n, then we write s ∝ t if si = sj implies ti = tj for all 1 � i, j � n.

Note that the relation ∝ is transitive. It is useful for analyzing the imbalance of
foreign sequences. If s ∝ t, then the imbalance of t is no larger than that of s.

Definition 4.10. Let s and t be native terms. A short step s ��s0 t is a sequence of
R-steps s →∗

R t that is mirrored by a rewrite sequence B →∗
R C from the base context

B of s. Short steps are labeled by terms s0 that are predecessors of the source: s0 →∗
R s.

We omit the label when it is irrelevant.

There are two ways in which short steps arise: either by rewriting short aliens (hence
the name) or by rewriting the max-top of a term. In the sequel, we will sometimes use
the fact that in Definition 4.10, C � t by Lemma 3.11, and when writing s = B[s] and
t = C[t], each element of t is an element of s.
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Table II. Properties for r = 2

Term Foreign Native Max-Top Base Context Base Sequence Imbalance
s = f(G(a), G(a)) × � f(�,�) f(�,�) (G(a), G(a)) 1
t = f(H(a), G(a)) × � f(�,�) f(�,�) (H(a), G(a)) 2
u = f(J, G(a)) × � f(�,�) f(J,�) (G(a)) 1
v = f(K, K) � � f(�,�) f(K, K) () 0

Definition 4.11. Let B and s be the base context and base sequence of a native term
s. If s →∗

R t, then s = B[s] ��ι B[t] = t is a tall step. Here, the label ι is the imbalance
of t.

Note that t in Definition 4.11 is a foreign sequence because R is weakly layered.
Further note that the imbalance of t may be smaller than ι (since B need not be the
base context of t). The following example illustrates these concepts.

Example 4.12. Consider the TRSs R1 = {f(x, x) → x} over F1 = {f, a} and R2 =
{G(x) → I, I → K, G(x) → H(x), H(x) → J, J → K} over F2 = {I, J, K, G, H} and let
R = R1∪R2. Then L = C(F1,V)∪C(F2,V) layersR1 andR2 (cf. the proof of Theorem 5.1).
Assume that r = 2. Table II demonstrates some properties and notions. We have
f(G(a), G(a)) �� G(a), but f(G(a), G(a)) �� I is not possible since the step G(a) →R I is
not in the base context of f(G(a), G(a)). (Here we have underlined the tall aliens.) We
also have f(G(a), G(a)) ��2 f(J, G(a)) = u, despite the imbalance of u being 1 (note that
f(�,�) is not the base context of u). Furthermore, (G(a), G(a)) �∝ (J, G(a)), but as the
latter can be further rewritten (J, G(a)) →∗

R (J, J), we obtain (G(a), G(a)) ∝ (J, J).

Remark 4.13. The constraint on short steps is subtle. It implies that the rewrite
steps do not overlap with any descendants of the tall aliens of s, but furthermore it also
has the effect of delaying fusion of those tall aliens with the base context until the end
of the rewrite sequence, in the sense of Felgenhauer et al. [2011].

We prove confluence of R on native terms by showing that any local peak consisting
of short steps and/or tall steps may be joined decreasingly. Steps are compared as
follows. Tall steps are ordered by their imbalance, tall steps are ordered above short
steps, and short steps are compared by a well-founded order introduced later (in the
proof of Lemma 4.33).

In the remainder of this section, we use s, t, and u to denote native terms.

4.2. Local Decreasingness of Peaks Involving Tall Steps

Based on Lemma 3.11, we obtain the following result:

LEMMA 4.14. Let s and t be sequences of contexts with s ∝ t and C →p,�→r C ′. If
� �· C[s]|p, then C[t] →p,�→r C ′[t′], with each element of t′ belonging to t.

PROOF. We extend the proof of Lemma 3.11 as follows. Let τ be the substitution

τ (x) =
{

ti if x ∈ dom(σ�) and σ (x) = si
x otherwise.

Note that C[t] = cτ because s ∝ t. We have cτ →p,�→r c′τ . Comparing c′τ and C ′ = c′σ�
establishes the claim that c′τ = C ′[t′], with each element of t′ equaling some element
of t.

LEMMA 4.15. Let s, t, u be foreign sequences. If s →∗
R t and s →∗

R u, then there is a
foreign sequence v such that t →∗

R v, u →∗
R v with t ∝ v and u ∝ v.

PROOF. Let m be the length of s. We use induction on the number of disequalities
ti �= ui for 1 � i � m. If this number is zero, then t = u and we can take v = t. Otherwise,
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ti �= ui for some 1 � i � m. Both ti and ui are reducts of si and thus have a common
reduct v since R is confluent on foreign terms. By replacing every occurrence of ti and
ui in t, u by v, we obtain new sequences t′, u′ that satisfy s →∗

R t →∗
R t′, s →∗

R u →∗
R u′,

t ∝ t′, and u ∝ u′. Since the number of disequalities t′
i �= u′

i is decreased, we conclude
by the induction hypothesis and the transitivity of ∝.

A step in the base context is short.

LEMMA 4.16. Let p be a nonhole position of the base context of s. If s →p t, then s �� t.

PROOF. Let B be the base context of s and let s →p t. We show B →p C for some
context C. Because left-hand sides of rules are not variables, p ∈ PosF (B). Let M be the
max-top of s, which is also the max-top of B. We distinguish two cases. If p ∈ PosF (M),
then consider the decomposition s = M[s]. According to (W), there is a layer L with
M →p L. We have B = M[s′], where s′

i = si if si is a short alien and s′
i = � if si is

tall. Clearly, s ∝ s′, and hence, we conclude by Lemma 4.14. If p /∈ PosF (M), then s|p
is a subterm of a short alien of s and thus B|p = s|p. Hence, B →p C for the context
C := B[t|p]p.

When doing a short step s = B[s] �� C[s′] = t, in general, the context C is not the
base context of t (because of fusion from above or conspiring aliens). Similarly, for a tall
step s = B[s] ��B[t] = t, in general, the context B is not the base context of t (because
of fusion caused by steps in the aliens of t), but both contexts (B and C) satisfy the
more general property defined next.

Definition 4.17. We call a context shallow if its rank is at most r and all its aliens
are terms from T (F ,V).

Note that the base contexts of native terms are shallow. The same holds for the
max-tops of native terms. Furthermore, shallow contexts are closed under rewriting,
as shown by the next lemma.

LEMMA 4.18. If C is a shallow context and C →R D, then D is a shallow context.

PROOF. Assume that C →p,�→r D. Then C[x, . . . , x] →p,�→r D[x, . . . , x] for a fresh
variable x. Let Mx be the max-top of C[x, . . . , x] and note that the max-top M of C is
obtained by replacing each occurrence of x by a hole in Mx. If p ∈ PosF (M) = PosF (Mx),
then by (W), there is a rewrite step Mx →p,�→r Lx, where Lx is a layer, and even a top
of D[x, . . . , x] by Lemma 3.11. There is a mirroring rewrite step M →p,�→r L, where L
is a top of D. By Lemma 3.11, each hole of L corresponds to a hole or a term without
holes in D. If p /∈ PosF (M), then we take L = M, which is a top of D. Again, each hole
of L corresponds to a hole or a term in D. In both cases, we conclude by noting that any
holes of D are holes of L and therefore also of the max-top of D and that the rank of D,
which equals the rank of Dx, is at most r by Lemma 3.12.

Let s = B[s] be the decomposition of s into base context and base sequence. From the
previous result, we get that B[s] �� C[s′] = t (with B →∗

R C) implies that C is shallow.
The next result establishes that the shallow context C is never larger than the base
context of t.

LEMMA 4.19. Let C be a shallow context and t a native term. If C � t, then C � B for
the base context B of t.

PROOF. Let C = M[s] be the decomposition of C into max-top and aliens. Since C is
shallow, elements of s are either holes or terms of rank less than r. From M � C � t,
we infer the existence of a sequence t′ such that t = M[t′] and si = t′

i whenever si �= �.
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By Lemma 3.8, every tall alien in t is a subterm of a term of rank at least r in t′. Hence,
C � B as desired.

Steps within shallow contexts are short steps.

LEMMA 4.20. Let p be a nonhole position in a shallow context C with s = C[s]. If
s →p t, then s �� t.

PROOF. By Lemmata 4.19 and 4.16.

Steps below a shallow context can be decomposed into tall and short steps.

LEMMA 4.21 (TALL–SHORT FACTORIZATION). Let s = C[s] with a shallow context C and
a foreign sequence s. If s →∗

R t and ι is the imbalance of t, then C[s] ���ι · ��∗ C[t].

PROOF. Let B and s′ be the base context and base sequence of s. Note that by
Lemma 3.8 (with L equal to the max-top of C), the tall aliens s′ of s are a subsequence
of s, because all aliens of C have rank less than r. For the corresponding subsequence t′
of t, we obtain s = B[s′] ���ι B[t′], while the remaining elements of s and t give rise to a
rewrite sequence B = C[s′′] →∗

R C[t′′], where s′′ (t′′) is obtained by replacing the terms
corresponding to the elements of s′ (t′) by holes. Consequently, B[t′] = C[s′′][t′] ��∗
C[t′′][t′] = C[t] by Lemma 4.20.

Example 4.22. Continuing Example 4.12. Let s = f(J, G(a)). Then s = C[s] for
the shallow context C = f(�,�) with s = (J, G(a)). Let t = (K, I). Since s →∗

R t, the
conditions of Lemma 4.21 hold and we have C[s] ���2 · ��∗ C[t]. The tall step arises
as s = f(J,�)[G(a)] ��1 f(J,�)[I] = f(J, I), while f(J, I) �� f(K, I) is a short step since f(J, I)
is its own base context.

LEMMA 4.23. Local peaks of tall steps are decreasing:

ι		 · ��κ ⊆ ���κ · ��∗ · ∗

 · �ι		 .

PROOF. Let t ι		 s ��κ u and let the base context and base sequence of s be B and
s. There are foreign sequences t and u such that t ∗

R← s →∗
R u and t = B[t], u = B[u].

By Lemma 4.15, we can find a foreign sequence v such that t →∗
R v ∗

R← u, t ∝ v, and
u ∝ v. Hence, the imbalance of v is less than or equal to both ι and κ and we conclude
by Lemma 4.21.

Example 4.24. To demonstrate Lemma 4.23, we extend Example 4.12. Let s =
f(G(a), G(a)). Then t = f(H(a), I) 2		 s ��2 f(I, H(a)) = u. Note that I →R K and H(a) →R
J →R K. The base contexts of t and u are f(�, I) and f(I,�), respectively. Consequently,
t ��1 f(K, I) �� f(K, K) 

 f(I, K) 1		 u.

LEMMA 4.25. Local peaks involving a tall and a short step are decreasing:

ι		 · �� ⊆ ��=
<ι · ��∗ · ∗

 · �ι		 .

PROOF. Let t ι		 s �� u and let the base context and base sequence of s be B and s.
We have t = B[t] with s →∗

R t for some foreign sequence t and u = C[u]. We construct
v and w such that B[t] ��=

<ι · ��∗ B[v] ��∗ C[w] ∗

 · �ι		 C[u]. We distinguish two
cases:

(1) If s ∝ t, then we let v = t. Hence, B[t] = B[v] and thus B[t] ��=
<ι · ��∗ B[v].

(2) Otherwise, using Lemma 4.15 with s →∗
R t and s →∗

R s, we can find a foreign
sequence v such that t →∗

R v, t ∝ v, and s ∝ v. Since the imbalance of v is less
than ι (s �∝ t means that there are i, j with si = sj and ti �= tj . By s ∝ v, we have
vi = v j , and t ∝ v ensures that all other equalities between elements of t carry
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over to v, so the imbalance becomes smaller) we obtain B[t] ��=
<ι · ��∗ B[v] from

Lemma 4.21.

By the definition of ��, we get B →∗
R C mirroring s = B[s] →∗

R C[u] = u. Hence, u is a
sequence of foreign terms such that all elements of u are elements of s, which follows
by repeated application of Lemma 3.11. We define wi = v j if ui = sj . Then u →∗

R w and
the imbalance of w is at most ι. Hence, C[u] ���ι · ��∗ C[w] by Lemma 4.21. We also
have B[v] →∗

R C[w] with no rewrite step affecting a tall alien and thus B[v] ��∗ C[w]
by Lemma 4.20.

Example 4.26. We revisit Example 4.12. Let s = f(f(G(a), G(a)), I). The base context
of s is f(f(�,�), I). Then t = f(f(I, H(a)), I) 2		 s �� f(G(a), K) = u. The base context of t is
f(f(I,�), I), and we have t ��1 f(f(I, K), I) �� f(f(K, K), K) �� f(K, K) = v, whereas the base
context of u is f(�, K) and u ��1 v.

LEMMA 4.27 (MAIN LEMMA). If �� is locally decreasing, then R is confluent on native
terms.

PROOF. Every rewrite step s →R t can be written as s �� t by Lemma 4.16 or s �� t if
the rewrite rule is applied to a tall alien of s. Hence, →R ⊆ �� ∪ �� ⊆ →∗

R and thus the
claim follows from the confluence of �� ∪ ��. The latter is a consequence of Theorem
2.1 in connection with the assumption and Lemmata 4.23 and 4.25.

The various versions of the main theorem will follow from Lemma 4.27.

4.3. Local Decreasingness of Short Steps

In this section, we study conditions to make short steps locally decreasing. The following
result allows one to represent a native term s by a foreign term s′ and a substitution
π such that s = s′π . This will be the key for joining the peak originating from s by the
confluence assumption of s′.

LEMMA 4.28 (PEAK ANALYSIS). For a local peak t 

 s �� u, there are foreign terms s′,
t′, u′, v′ and substitutions π , π� such that

(1) π is a bijection with dom(π ) ∩ Var(s) = ∅;
(2) s′π = s, t′π = t, u′π = u, s′π� is the base context of s, and t′π� and u′π� are shallow

contexts of t and u; and
(3) v′ ∗

R← t′ ∗
R← s′ →∗

R u′ →∗
R v′ and t →∗

R v ∗
R← u with v = v′π .

PROOF. Let s = B[s] be the decomposition of s into base context and base sequence,
and recall that base contexts are shallow. According to the definition of ��, there
are rewrite sequences B →∗

R Ct, B →∗
R Cu mirroring s →∗

R t, s →∗
R u, respectively.

Using Lemma 4.18 repeatedly, we find that Ct and Cu are shallow contexts. Let π be
a bijection between the tall aliens of s and fresh variables, and define s′ = B[π−1(s)].
We have s ∝ π−1(s), and therefore repeated application of Lemma 4.14 yields rewrite
sequences s′ →∗

R t′ and s′ →∗
R u′ mirroring s′π = s →∗

R t = t′π and s′π = s →∗
R u = u′π .

Since s′ is a foreign term and therefore confluent, t′ and u′ have a common reduct:
t′ →∗

R v′ ∗
R← u′. By applying π to this valley, we obtain t →∗

R v ∗
R← u. Note that

s′π� = B, t′π� = Ct, and u′π� = Cu are shallow contexts as claimed.

Example 4.29. Consider the layer system L given by

L0 = {v, a, b, f(v), g(v), g(b) | v ∈ V�}
L = L0 ∪ {h(C, C ′, C ′′) | C, C ′, C ′′ ∈ L0},

which weakly layers the TRS R = {h(x, y, z) → h(y, x, z), f(x) → g(x), a → b}. Assume
that r = 1 and let s = h(a, f(a), f(b)). The base context of s is h(a, f(�), f(�)). There is a
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peak of short steps:

t = h(b, g(a), f(b)) 

 s �� h(f(a), a, g(b)) = u.

From Lemma 4.28, we may obtain π = {a/x, b/y}, s′ = h(a, f(x), g(y)), t′ = h(b, g(x), f(y)),
u′ = h(f(x), a, g(y)), and v′ = h(g(x), b, g(y)). Note that t′π� = h(b, g(�), f(�)) is the base
context of t, but u′π� = h(f(�), a, g(�)) does not equal h(f(�), a, g(b)), the base context
of u.

LEMMA 4.30. If R is left-linear, then �� is locally decreasing.

PROOF. Consider a local peak ts0

 s ��s1 u. First we apply Lemma 4.28. Let t′′ be a
linearization of t′, which we obtain by replacing each variable in t′ by a fresh variable.
Because R is left-linear, t′ →∗

R v′ can be mirrored as t′′ →∗
R v′′. Let Bt be the base

context of t and Ct = t′π�. We have Ct � Bt by Lemma 4.19, which implies t′′ �· Bt
and thus Bt = t′′σ for some substitution σ . We have Bt →∗

R v′′σ . Together with t →∗
R v,

which mirrors Bt →∗
R v′′σ , we obtain t �� v. This step can be labeled with s1 because

s1 →∗
R s →∗

R t. By symmetry, we obtain u��s0 v and hence �� is locally decreasing.

Next, we deal with bounded duplicating TRSs. In order to exploit relative termina-
tion, we insert � symbols in front of tall aliens as follows.

Definition 4.31. Let s be a native term with base context B and base sequence s.
Then s� = B[�(s)], where �(s) denotes the result of replacing each element u of s by
�(u).

LEMMA 4.32. If s →R t, then s� →R · →∗
�(x)→x t�.

PROOF. Let s →p,�→r t and let B be the base context of s. If p ∈ PosF (B), then
by Lemma 4.14, we obtain a term t′ and a context C such that s� →p,�→r t′ and
B →p,�→r C. Decomposing t as t = C[t], we find that t′ = C[�(t)]. If p /∈ PosF (B), then
the rewrite step is within a tall alien of s. Hence, letting C = B and decomposing t as
C[t], we find that s� = C[�(s)] →R C[�(t)]. In either case, Lemma 3.8 (with L equal to
the max-top of C) shows that the tall aliens of t are a subsequence of t, and therefore
C[�(t)] →∗

�(x)→x t�, using that �(ti) →�(x)→x ti for those ti that are not tall aliens.

LEMMA 4.33. If R is bounded duplicating, then �� is locally decreasing.

PROOF. Since R is bounded duplicating, we may assume a fresh function symbol
� such that {�(x) → x}/R is terminating. In order to compare the labels, we define
a well-founded order on terms by s0 > s1 if s�

0 →+
{�(x)→x}/R s�

1 . Consider a local peak
ts0

 s ��s1 u, which we first subject to Lemma 4.28. We analyze the sequence t →∗

R v
resulting from the peak analysis by distinguishing two cases:

(1) If t′π� is the base context of t, then the rewrite sequence t′π� →∗
R v′π� mirrors

t →∗
R v. Hence, we obtain t ��s1 v, noting that the label s1 satisfies s1 →∗

R s →∗
R t.

(2) If t′π� is not the base context, then like in the proof of Lemma 4.32, we can
decompose t as t = t′π�[t′] in order to obtain s� →∗

R t′π�[�(t′)]. Since t′π� is not
the base context, the tall aliens of t are a proper subsequence of t′, and therefore,
t′π�[�(t′)] →+

�(x)→x t�. We also have s1 →∗
R s, which implies s�

1 →∗
R∪{�(x)→x} s by

Lemma 4.32. As a consequence, s�
1 →+

R/{�(x)→x} t� and s1 > t follow. By repeated
application of Lemma 4.16, we obtain t ��∗

t v and thus t ��∗
∨s1

v.

The analogous analysis of u →∗
R v yields u��s0 v or u ��∗

∨s0
v, and hence �� is locally

decreasing.
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Finally, we prepare for the main result about layered TRSs, where condition (C1) of
Definition 3.3 is crucial.

LEMMA 4.34. Let R be a layered TRS and t →p,�→r t′ for native terms t and t′. If
p ∈ PosF (B) for the base context B of t, then either B →p,�→r B′ for the base context B′
of t′ or t′ is its own base context.

PROOF. Let M and M′ be the max-tops of t and t′. We distinguish two cases:

(1) If p ∈ PosF (M), then by (C1), either M →p,�→r � or M →p,�→r M′. In the former
case, t′ equals an alien of t. Since the rank of t′ is at most r, t′ is its own base context.
So assume M →p,�→r M′. By Lemma 3.10, there exist a term m and a substitution
σ such that m →p,�→r m′ for some m′ (since � �· m|p), t = mσ , and M = mσ�. Define
a substitution τ as follows:

τ (x) =
{� if x ∈ dom(σ�) and σ (x) is a tall alien of t
σ (x) otherwise.

We have B = mτ by construction of τ . Let B′ = m′τ . Clearly, B →p,�→r B′. By
comparing m′τ to M′ = m′σ�, we see that B′ is the base context of t′.

(2) If p /∈ PosF (M), then a short alien of t is rewritten. By letting B and t be the
base context and base sequence of t, by Lemma 3.11, we obtain a rewrite step
t = B[t] →p,�→r B′[t′] = t′ with t′ = t because p is parallel to the hole positions of
B. We claim that B′ is the base context of t′. Suppose to the contrary that some ti is
not a tall alien of t′. Let q be its position in t, which is also its position in t′. Since
q ∈ Pos�(M) and q /∈ Pos�(M′), M � M[M′|q]q. Hence, M[M′|q]q ∈ L by (C2) and
thus M[M′|q]q � t, contradicting the fact that M is a max-top of t.

The following example shows that (C2) is essential for Lemma 4.34.

Example 4.35. Recall Figure 1 and the underlying layer system L, which satisfies
(W) and (C1). However, (C2) is violated; for example, we have L = k(�,�) ∈ L and
N = k(h(�), h(�)) ∈ L but L[N|2]2 = k(�, h(�)) /∈ L. Consider the term t = k(f(a), h(a))
of rank 3. Its base context is B = k(f(a),�). We have t → k(h(a), h(a)) =: t′. The base
context of t′ is k(h(�), h(�)) =: B′ but B �→R B′.

LEMMA 4.36. If R is layered, then �� is locally decreasing.

PROOF. Consider a local peak t s0

 s ��s1 u. First, we analyze the peak by
Lemma 4.28. The rewrite sequence t′π� →∗

R v′π� mirrors t = t′π →∗
R v′π = v. We

find by repeated application of Lemma 4.34 that the base context Bt of t equals t′π� or
t. In both cases, we have t ��s1 v, noting that t →∗

R v mirrors itself, and that s1 →∗
R t.

We obtain u ��s0 v in the same way, and hence �� is locally decreasing.

4.4. Proof of Main Theorems

Because the proofs are similar, we prove all main results in one go.

PROOF OF THEOREMS 4.1, 4.3, AND 4.6. By assumption, the TRS R is weakly layered
and confluent on terms of rank one. We have to show that

—if R is left-linear, then R is confluent (Theorem 4.1);
—if R is bounded duplicating, then R is confluent (Theorem 4.3); and
—if R is layered, then R is confluent (Theorem 4.6).

We show confluence of all terms by induction on the rank r of a term. In the base
case, we consider terms of rank one, which are confluent by assumption. Assume as
induction hypothesis that confluence of terms of rank r or less has been established.
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We consider terms of rank r + 1, to which the analysis of Sections 4.1 to 4.3 applies.
By Lemma 4.27 in conjunction with Lemma 4.30 (for weakly layered left-linear R),
Lemma 4.33 (for weakly layered bounded duplicating R), or Lemma 4.36 (for layered
R), we obtain confluence of R on terms of rank up to r + 1, completing the induction
step.

5. APPLICATIONS

In this section, the abstract confluence results via layer systems are instantiated by
concrete applications. Section 5.1 treats the plain modularity case [Toyama 1987], and
Section 5.2 covers layer-preservation [Ohlebusch 1994a]. The result for quasi-ground
systems [Kitahara et al. 1995] is less known but also fits our framework, as outlined
in Section 5.3. Currying [Kahrs 1995] is the topic of Section 5.4, before many-sorted
persistence [Aoto and Toyama 1997] is discussed in Section 5.5.

For the results in this section, the reverse directions also hold. We do not give the
(easy) proofs since they do not require layer systems.

In Sections 5.1, 5.2, and 5.3, we deal with two TRSs R1 and R2 that are defined over
the respective signatures F1 and F2. We let R = R1 ∪ R2 and F = F1 ∪ F2.

5.1. Modularity

We recall the classical modularity result for confluence [Toyama 1987].

THEOREM 5.1. Suppose F1 ∩ F2 = ∅. If R1 and R2 are confluent, then R is confluent.

PROOF. Define

L := C(F1,V) ∪ C(F2,V).

We show that R is layered. Since V ⊆ L and f (�, . . . ,�) ∈ L for all function symbols
f ∈ F1 ∪ F2, every term in T (F ,V) has a nonempty top. Hence, condition (L1) holds.
Also, condition (L2) holds because L is closed under the operation of interchanging
variables and holes. For condition (L3), we observe that if L ∈ C(Fi,V), p ∈ PosF (L),
and N ∈ L such that L|p � N is defined, then root(L|p) ∈ Fi and thus N ∈ C(Fi,V).
Consequently, L[L|p � N]p ∈ C(Fi,V) ⊆ L. Since each rule is over a single signature,
and layers are closed under rewriting, condition (W) follows easily. For condition (C1),
we consider a term s with max-top M, p ∈ PosF (M), and rewrite step s →p,�→r t, which
is mirrored by M →p,�→r L. Suppose M ∈ C(Fi,V). We have L ∈ C(Fi,V). The case
L = � is obtained when t is an alien of s, which is only possible if the rule � → r is
collapsing. Otherwise, L is the max-top of t since the root symbols of aliens of s belong
to F3−i and hence cannot fuse with L to form a larger top. Finally, condition (C2) holds
because if N ∈ C(Fi,V), then L � N implies L ∈ C(Fi,V) and thus also L[N|p]p belongs
to C(Fi,V).

According to Theorem 4.6, R is confluent if we show that R is confluent on terms
of rank one. The latter follows from the fact that rewriting does not increase the rank
of a term (Lemma 3.12) together with the observation that nonvariable terms of rank
one belong to either T (F1,V) or T (F2,V) and only rewrite rules of Ri apply to terms in
T (Fi,V), in connection with the confluence assumptions of R1 and R2.

5.2. Layer-Preservation

Layer-preserving TRSs are a special class of TRSs with shared function symbols for
which confluence is modular as shown in Ohlebusch [1994a]. In this section, we reprove
this result using layer systems. Let TX(F ,V) denote the set of terms with root symbol
from X. LetB := F1∩F2,D1 := F1\F2 andD2 := F2\F1. The result on layer-preservation
can be stated as follows.
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THEOREM 5.2. Let R1 ⊆ T (B,V)2 ∪ TD1 (F1,V)2, R2 ⊆ T (B,V)2 ∪ TD2 (F2,V)2, and
R1 ∩ T (B,V)2 = R2 ∩ T (B,V)2. If R1 and R2 are confluent, then R is confluent.

PROOF. We define

L := C(B,V) ∪ TD1 (F1 ∪ {�},V) ∪ TD2 (F2 ∪ {�},V).

It is easy to verify that L layers R := R1 ∪ R2, much like in the modularity case.
In particular, L is closed under rewriting. Consider a term s of rank one and a peak
t ∗

R← s →∗
R u. Let i ∈ {1, 2} be such that s ∈ T (Fi,V). The only rules of R3−i that

can be used in the peak come from T (B,V)2 and hence also appear in Ri. Since Ri is
confluent on T (Fi,V), we obtain joinability of t and u in Ri and thus also in R. Hence,
R is confluent on terms of rank one and we conclude by Theorem 4.6.

Toyama’s modularity result has been adapted by Ohlebusch [1994b] to constructor-
sharing combinations in which the participating TRSs may share constructor symbols
under the additional condition that neither collapsing nor constructor-lifting rules are
present. This result is subsumed by Theorem 5.2 (cf. [Ohlebusch 2002, p. 249]). Still,
layer preservation and modularity are incomparable (since layer-preservation places
collapsing rules in both systems).

5.3. Quasi-Ground Systems

We show modularity of quasi-ground TRSs [Kitahara et al. 1995, Theorem 1] using
layer systems.

Definition 5.3. We call a context C quasi-ground if for all p ∈ Pos(C) with root(C|p) ∈
F1 ∩ F2, C|p is ground over F , that is, C|p ∈ T (F).

THEOREM 5.4. Suppose root(�) /∈ F1 ∩ F2 and � and r are quasi-ground, for all
� → r ∈ R. If R1 and R2 are confluent, then R is confluent.

PROOF. We define a layer system L := L1 ∪ L2 ∪ Lc with

Li = {C ∈ C(Fi,V) | C is quasi-ground} for i = 1, 2
Lc = { f (v1, . . . , vn) | f ∈ F1 ∩ F2 and vi ∈ V� for 1 � i � n}.

We readily check that (L1) and (L2) are satisfied. For (L3), L1, L2, and Lc are individually
closed under merging at function positions. Fix i ∈ {1, 2}. If we merge L ∈ Li with
N ∈ L3−i ∪ Lc at p ∈ PosF (L), then either N = � and L[L|p � N] = L ∈ Li, or
root(L|p) ∈ F1 ∩F2, which implies L|p ∈ T (F) and hence L[L|p � N]p = L[L|p]p = L ∈ Li.
Note that L ∈ Lc can be merged with N ∈ Li only at position p = ε. If N = �, then
L � � = L ∈ Lc, and otherwise L � N = N ∈ Li. For (W), we let M be the max-top
of s, p ∈ PosF (M), and consider a rewrite step s →p,�→r t. We assume without loss of
generality that � → r ∈ R1. Hence, M ∈ L1 because root(�) ∈ F1 \ F2. Note that L1
is closed under taking subterms and that for any substitution τ : V → L1, we have
�τ ∈ L1. Let σ be a substitution such that s|p = �σ, and let τ be the substitution that
maps each variable x ∈ Var(�) to the L1-max-top of σ (x). We have M = M[�τ ]p and thus
M →p,�→r L with L = M[rτ ]p ∈ L1. For (C1), it is easy to see that L is the L1-max-top
of t. Suppose L �= �. We claim that L is the max-top (with respect to L) of t. This
follows from the observation that if there is a top of t that comes from L2 or Lc, then
root(L) ∈ F1 ∩ F2 and thus L ∈ T (F), which cannot be made larger. Condition (C2)
follows as in the proof of Theorem 5.1.

Now let R1 and R2 be confluent. We show that R is confluent on terms of rank one.
Consider a term of rank one. Note that rules from R1 only apply to elements of L1.
Furthermore, L1 is closed under rewriting by R1. Likewise, rules from R2 only apply to
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elements of L2, which is closed under rewriting by R2. We conclude that R is confluent
on terms of rank one, and by Theorem 4.6, this implies that R is confluent.

5.4. Currying

Currying is a transformation of TRSs such that the resulting TRS has only one noncon-
stant function symbol Ap that represents partial applications. It is useful in the con-
struction of polynomial-time procedures for deciding properties of TRSs (e.g., [Comon
et al. 2001]). Kahrs [1995] proved that confluence is preserved by currying.

Definition 5.5. Given a TRS R over a signature F , let FC = {Ap} ∪ { f0 | f ∈ F},
where Ap is a fresh binary function symbol and all function symbols in F become
constants. The curried version Cu(R) of R is the TRS over the signature FC with
rules {Cu(�) → Cu(r) | � → r ∈ R}. Here, Cu(t) = t if t is a variable or a constant
and Cu( f (t1, . . . , tn)) = Ap(· · · Ap( f0, Cu(t1)) · · · , Cu(tn)) (with n occurrences of Ap). Let
FU = {Ap} ∪ { fi | f ∈ F and 0 � i � arity( f )}, where each fi has arity i and farity( f ) is
identified with f . The partial parameterization PP(R) of R is the TRS R ∪ U over the
signature FU , where U consists of all uncurrying rules:

Ap( fi(x1, . . . , xi), xi+1) → fi+1(x1, . . . , xi+1)

for all f ∈ F and 0 � i < arity( f ).

The next example familiarizes the reader with the previous concepts.

Example 5.6. For the TRS R = {f(x, x) → f(a, b)}, we have

Cu(R) = {Ap(Ap(f0, x), x) → Ap(Ap(f0, a), b)}
U = {Ap(f0, x) → f1(x), Ap(f1(x), y) → f(x, y)}

PP(R) = R ∪ U .

Note that for a term s = Ap(Ap(Ap(f0, x), x), x),we have

s →Cu(R) Ap(Ap(Ap(f0, a), b), x)

and

s →U Ap(Ap(f1(x), x), x) →U Ap(f(x, x), x) →R Ap(f(a, b), x),

so the partial parameterization is closely related to currying.

Note that U is both terminating and orthogonal, hence confluent. By s↓U , we denote
the unique U-normal form of a term s.

LEMMA 5.7 [KAHRS 1995, PROPOSITION 3.1]. Let R be a TRS. If PP(R) is confluent, then
Cu(R) is confluent.

THEOREM 5.8 [KAHRS 1995, THEOREM 5.2]. Let R be a TRS. If R is confluent, then
Cu(R) is confluent.

PROOF. According to Lemma 5.7, it suffices to show that PP(R) is confluent. To this
end, we let L := L1 ∪ L2, where L1 is the smallest extension of V� such that

Ap(· · · Ap( fm(s1, . . . , sm), sm+1) · · · , sn) ∈ L1

for all fm ∈ FU \ {Ap}, s1, . . . , sn ∈ L1, with n less than or equal to the arity of f in the
original TRS R, and

L2 = {Ap(v, t) | v ∈ V� and t ∈ L1}.
It is not difficult to see that L1 consists of those contexts in C(FU ,V) whose U-normal
form contains no occurrences of Ap. See Figure 2 for some layered terms.

ACM Transactions on Computational Logic, Vol. 16, No. 2, Article 14, Publication date: March 2015.



Layer Systems for Proving Confluence 14:19

Fig. 2. Layering terms in PP(R) for the TRS R in Example 5.6.

We claim that PP(R) is layered. Conditions (L1) and (L2) are trivial and conditions
(L3) and (C2) are easily shown by induction on the definition of L1. The interesting case
for (L3) is when L ∈ L1. Since merging cannot create new Ap symbols above any fm,
the result is in L1, whenever defined. For (W) and (C1), we let M be the max-top of s,
p ∈ PosF (M), and consider a rewrite step s →p,�→r t with � → r ∈ PP(R). Because L is
closed under taking subterms, M|p is a top of s|p. It is the max-top because otherwise
we could merge the max-top of s|p with M at position p and obtain a larger top of s.
Note that �� ∈ L1 (recall that �� is obtained by replacing all variables in � by �). We
have �� � s|p and therefore �� � M|p. As a matter of fact, M|p is obtained from �� by
replacing each hole at position q by the max-top (in L1) of s|pq. Because equal subterms
have equal max-tops, s �· M|p, and hence there is a rewrite step M →p,�→r L. We have
L ∈ L1 because L1 is closed under rewriting by PP(R). Furthermore, the max-tops of
the aliens of s do not belong to L1, and therefore the aliens of s are still aliens of L,
unless L = �. It follows that both (W) and (C1) hold.

To show confluence of PP(R) on terms of rank one, first note that elements of L2 allow
no root steps, and therefore it suffices to show confluence on terms in L1. It is easy to
see that s →R∪U t implies s↓U →=

R t↓U . Hence, for a peak t ∗
R∪U← s →∗

R∪U u, there is
a corresponding peak t↓U

∗
R← s↓U →∗

R u↓U , which is joinable by the confluence of R.
Hence, t and u are joinable in PP(R). We conclude by Theorem 4.6.

5.5. Many-Sorted Persistence

In this subsection, we prove persistence of confluence [Aoto and Toyama 1996]. We
begin by recalling many-sorted terms and rewriting.

Definition 5.9. Let S be a set of sorts. A sort attachment S associates with each
function symbol f ∈ F of arity n a type f : α1 × · · ·×αn → α with αi, α ∈ S for 1 � i � n,
and with each variable x ∈ V a sort from S. Let Vα denote the set of variables of sort α.
We assume that each Vα is countably infinite.

Note that Vα ∩ Vβ = ∅ for all α, β ∈ S whenever α �= β.

Definition 5.10. Let S be a sort attachment. We define terms of sort α inductively by
Tα(F ,V) = Vα ∪ { f (t1, . . . , tn) | f : α1 × · · · × αn → α and ti ∈ Tαi (F ,V) for 1 � i � n}. The
set of many-sorted terms is defined as TS (F ,V) = ⋃

α∈S Tα(F ,V).

Definition 5.11. A TRS R is compatible with a sort attachment S if for each rule
� → r ∈ R, there is a sort α ∈ S with �, r ∈ Tα(F ,V).
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Remark 5.12. If a TRS R is compatible with a sort attachment S, then Tα(F ,V) is
closed under rewriting by R, for each α ∈ S.

The following theorem states that confluence is a persistent property of TRSs.

THEOREM 5.13. Let a TRS R be compatible with a sort attachment S. If R is confluent
on TS (F ,V), then R is confluent.

PROOF. Assume that R is confluent on TS (F ,V). We let L be the smallest set such
that TS (F ,V) ⊆ L and L is closed under replacing variables by holes and vice versa (cf.
(L2)). It is easy to see that R is layered according to L. (W) and (C1) follow from the
compatibility assumption and Remark 5.12. Also, (C2) is confirmed easily. We show that
R is confluent on terms of rank one. To this end, consider a term s ∈ L ∩ T (F ,V). The
confluence assumption on TS (F ,V) does not immediately apply to s since the variables
need not match the type of their context. If s is a variable, then s is confluent. Otherwise,
there is a term s′ in TS (F ,V) that has s as an instance. Because subterms of sort α are
interchangeable in many-sorted terms, we may choose s′ in such a way that s′|p = s′|q
if s′|p, s′|q ∈ Vα for some α and s|p = s|q. Note that for each p, the sort of s′|p is uniquely
determined by s. Because the sets Tα(F ,V) are pairwise disjoint, any rewrite sequence
on s ∈ L ∩T (F ,V) is mirrored by a rewrite sequence from s′ ∈ TS (F ,V). By assumption,
s′ is confluent and hence s is confluent as well. We conclude that R is confluent on
terms of rank one and hence confluent by Theorem 4.6.

6. ORDER-SORTED PERSISTENCE

In this section, we establish order-sorted persistence. Section 6.1 introduces order-
sorted rewriting, states the main result, and explains how to exploit it for establishing
confluence. In Section 6.2, we prove the result for left-linear systems before Section 6.3
shows that layer systems cannot immediately cover arbitrary TRSs. We refine them
such that they become suitable and give an alternative proof for many-sorted persis-
tence (Section 6.4) before we finally prove order-sorted persistence in Section 6.5. We
compare our result with the earlier result by Aoto and Toyama [1996] in Section 7.1.

6.1. Confluence via Order-Sorted Persistence

To obtain order-sorted terms, we equip a set of sorts S with a precedence > and modify
Definition 5.10 as follows.

Definition 6.1. Let S be a sort attachment. We define terms of sort α inductively
by Tα(F ,V) = Vα ∪ { f (t1, . . . , tn) | f : α1 × · · · × αn → α, ti ∈ Tβi (F ,V), αi � βi, and
1 � i � n}. The set of order-sorted terms is TS (F ,V) = ⋃

α∈S Tα(F ,V). A term t is strictly
order-sorted if root(t|p) : α1 ×· · ·×αn → α and t|pi ∈ Vβ imply αi = β, for all p ∈ PosF (t).

Note that we obtain many-sorted terms by letting > = ∅. Next, we define when a
TRS is compatible with a sort attachment S in the order-sorted setting.

Definition 6.2. A TRSR is compatible with a sort attachment S if each rule � → r ∈ R
satisfies condition (1) and strongly compatible with S if condition (2) is satisfied as well.

(1) If � ∈ Tα(F ,V) and r ∈ Tβ(F ,V), then α � β and � is strictly order-sorted.
(2) If r ∈ Vβ , then β is maximal in S. If r /∈ V, then r is strictly order-sorted.

Note that condition (1) ensures that well-typed terms are closed under rewriting.
The main result on order-sorted persistence is stated later.

THEOREM 6.3. Let R be compatible with a sort attachment S. Furthermore, assume
thatR is left-linear, bounded duplicating, or strongly compatible with S. IfR is confluent
on TS (F ,V), then it is confluent.
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Theorem 6.3 gives rise to a decomposition result (presented in [Aoto and Toyama
1996, 1997]) based on order-sorted persistence. The decomposition is based on the
observation that the sort of a term restricts the rules that can be applied when rewriting
it; therefore, we can decompose a TRS R that is compatible with a sort attachment S
into several TRSs Rα (α ∈ S), each containing the rules applicable to terms of sort α
or less. Formally, we define � on sorts as the smallest transitive relation such that
> ⊆ � and α � αi whenever f : α1 × · · · × αn → α, and then define Rα = {� → r |
� → r ∈ R, � ∈ Tβ(F ,V), and α � β}.

The next example shows that order-sorted persistence is more powerful than many-
sorted persistence for decomposing TRSs.

Example 6.4 (adapted from Aoto and Toyama [1996]). Consider the TRS R consisting
of the rewrite rules

(1) f(x, a) → g(x) (2) f(x, f(x, b)) → b (3) g(c) → c (4) h(x) → h(g(x))

and the set of sorts S = {0, 1, 2} with 1 � 0. Let the sort attachment be given by a, b : 1,
c : 0, f : 0 × 1 → 1, g : 0 → 0, h : 0 → 2, and x : 0. It is straightforward to check that R
is consistent with S. In the order-sorted TRS, only rules (1), (2), and (3) can be applied
to terms of sort 1 and their reducts; rules (3) and (4) can be applied to terms of sort
2; and only rule (3) can be applied to terms of sort 0. Hence, since R1 = {(1), (2), (3)}
(which is terminating and has no critical pairs), R2 = {(3), (4)} (which is orthogonal),
and R0 = {(3)} (orthogonal) are confluent, R is confluent. No such decomposition can
be obtained with many-sorted persistence. Consider a most general sort attachment
making all rules many sorted: a, b, c, x : 0, f : 0 × 0 → 0, g : 0 → 0, and h : 0 → 2. Since
terms of sort 2 can have subterms of sort 0, no decomposition is possible.

The weaker conditions in Definition 6.2 for left-linear TRSs are beneficial.

Example 6.5. Consider the TRS R consisting of the rewrite rules

f(a) → f(f(h(c))) g(b) → g(g(h(c))) h(x) → x

and the set of sorts S = {0, 1, 2} with 1, 2 � 0. Let the sort attachment be given by a : 1,
b : 2, c, x : 0, f : 1 → 1, g : 2 → 2, and h : 0 → 0. Note that R is compatible with S. We
can decompose R into the component induced by sort 1: R1 = {f(a) → f(f(h(c))), h(x) →
x}, sort 2: R2 = {g(b) → g(g(h(c))), h(x) → x}, and sort 0: R0 = {h(x) → x}. If we add the
restrictions for non-left-linear systems, the collapsing rule h(x) → x enforces h : α → α
for a maximal sort α. Hence, also, the arguments of f and g have sort α, and α is greater
than or equal to the sort of a, b, c, f(x), g(x). So the component induced by α contains all
rules.

6.2. Order-Sorted Persistence for Left-linear Systems

In this section, we show that layer systems can establish order-sorted persistence for
left-linear TRSs.

THEOREM 6.6. Let R be compatible with a sort attachment S. If R is left-linear and
confluent on TS (F ,V), then it is confluent.

PROOF. Let L be the smallest set such that TS (F ,V) ⊆ L and L is closed under (L2).
First, we show that R is weakly layered according to L. In the sequel, we call contexts
weakly order-sorted if they are order-sorted except that arbitrary variables may occur
at any position. (These are exactly the elements of L and weakly order-sorted terms
are those in L ∩ T (F ,V).)

Condition (L1) holds trivially and condition (L2) holds by assumption. For (L3), we
assume that L|p � N = N′ with p ∈ PosF (L) is defined. Since L, N ∈ L, obviously N′ is
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weakly order-sorted and so is L[N′]p since root(L|p) = root(N′) and hence L[N′]p ∈ L.
The final condition is (W). So let s →p,�→r t with p ∈ PosF (M) for the max-top M of s. We
have root(M|p) = root(�), and hence M[�]p is a layer. Since M is the max-top of s and � is
left-linear, there is a substitution σ such that M[�σ ]p = M. Hence, M →p,�→r M[rσ ]p.
By compatibility with the sort attachment S, we have rσ ∈ L. Furthermore, if α and
β are the sorts of � and r, then α � β ensures that M[rσ ]p is weakly order-sorted and
hence a member of L.

Next, we show confluence of terms of rank one. To this end, let s ∈ L ∩ T (F ,V). Then
there are a term s′ ∈ TS (F ,V) and a variable substitution χ such that s = s′χ . Let
t ∗
R← s →∗

R u. By left-linearity of R, there are terms t′ and u′ with t = t′χ and u = u′χ
such that t′ ∗

R← s′ →∗
R u′. The confluence assumption on TS (F ,V) yields t′ →∗

R v′ ∗
R← u′.

Hence, t = t′χ →∗
R v′χ ∗

R← u′χ = t. We conclude by Theorem 4.1.

6.3. Variable-Restricted Layer Systems

The following example shows that Theorem 4.6 alone cannot establish Theorem 6.3 for
TRSs that are neither left-linear nor bounded duplicating.

Example 6.7. Consider the set of sorts S = {0, 1, 2, 3, 4}, where 2 � 0 and 2 � 1. The
sort attachment S is given by

u : 0 v : 1 f : 3 × 3 → 4 h : 2 × 2 × 0 × 1 → 3
x : 2 y : 3 g : 3 → 3 a, b : 4,

and the TRS R consists of the rules

f(y, y) → a f(y, g(y)) → b h(x, x, u, v) → g(h(u, v, u, v)).

Then R is confluent on TS (F ,V) because it is locally confluent and terminating on order-
sorted terms, noting that u and v never represent equal terms due to sort constraints.
However, if we take L to be the closure of TS (F ,V) under (L2), then the term f(t, t) with
t = h(z, z, z, z) is not confluent because a ← f(t, t) → f(t, g(t)) → b. Note that f(t, t) is not
order-sorted but contained in L. Furthermore, observe that R is layered according to
L. Finally, note that L is the smallest layer system with this property that contains
TS (F ,V).

The previous example does not contradict Theorem 6.3 since R is not strongly com-
patible with S; the right-hand sides of R are not strictly order-sorted, although R is
neither left-linear nor bounded duplicating. In particular, we have an infinite reduction
h(z, z,�(z),�(z)) →R g(h(�(z),�(z),�(z),�(z))) →+

�(x)→x g(h(z, z,�(z),�(z))) →R · · · .
The problem is that layer systems allow one to replace variables by variables of a

different sort and hence contain terms that are not order-sorted, enabling new rewrite
steps (which never happens in the many-sorted case or for left-linear systems in the
order-sorted setting). Since TS (F ,V) � L ∩ T (F ,V), we have to study when confluence
on TS (F ,V) implies confluence on L ∩ T (F ,V) in order to apply Theorem 4.6. Instead of
proving the missing implication directly, we again pursue a general approach. To this
end, we relax condition (L2) such that variables need not be replaced by variables of
different sort to enable the representation of TS (F ,V) as L ∩ T (F ,V), where L satisfies
the following refined notion of layer systems.

Definition 6.8. Recall the conditions from Definition 3.3. We introduce the following
condition:

(L′
2) If C[x]p ∈ L, then C[�]p ∈ L. If C[�]p ∈ L, then {x ∈ V | C[x]p ∈ L} is an infinite

set.
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We call L ⊆ C(F ,V) a variable-restricted layer system if it satisfies the conditions (L1),
(L′

2), and (L3). Analogously, a variable-restricted layer system weakly layers R if (W) is
satisfied and layers R if (W), (C1), and (C2) are satisfied.

To distinguish between variable-restricted and (unrestricted) layer systems, we de-
note the former by V in the future. Note that (L2) implies (L′

2), and hence any layer sys-
tem is also a variable-restricted layer system. Furthermore, for each variable-restricted
layer system V, there is a corresponding (unrestricted) layer system LV = V ∪ {C[x]p |
C[�]p ∈ V and x ∈ V}. Obviously, V ⊆ LV.

With the new condition (L′
2), it is now possible to adequately represent TS (F ,V) by a

variable-restricted layer system.

Example 6.9 (Example 6.7 revisited). To obtain a variable-restricted layer system,
let V be the smallest set such that TS (F ,V) ⊆ V and V is closed under replacing
variables by holes. Then it satisfies (L′

2). Note that V ∩ T (F ,V) = TS (F ,V), and hence
t = h(z, z, z, z) /∈ V and thus f(t, t) /∈ V.

For a weakly layered TRS, the reduct of a rank one term again is a rank one term.

LEMMA 6.10. Let V be a variable-restricted layer system that weakly layers a TRS R.
Then V ∩ T (F ,V) is closed under rewriting by R.

PROOF. Let t ∈ V ∩ T (F ,V) and t →R u. Note that t is its own max-top. By (W), its
reduct u is a layer and hence u ∈ V ∩ T (F ,V).

In the remainder of this section, we show the analogs of Theorems 4.1, 4.3, and 4.6
for variable-restricted layer systems (cf. Corollary 6.24).

The case of left-linear systems is straightforward.

LEMMA 6.11. Let V be a variable-restricted layer system that weakly layers a left-linear
TRS R. If R is confluent on V ∩ T (F ,V), then R is confluent on LV ∩ T (F ,V).

PROOF. Let s ∈ LV ∩ T (F ,V). By (L2) and (L′
2), a term s′ ∈ V ∩ T (F ,V) and a variable

substitution χ exist such that s′χ = s. Now consider rewrite sequences t ∗
R← s →∗

R u.
Thanks to left-linearity, there are terms t′ and u′ with t′χ = t, u′χ = u, and t′ ∗

R←
s′ →∗

R u′. By repeated application of Lemma 6.10, t′, u′, and all intermediate terms
are elements of V ∩ T (F ,V). From the assumption, we obtain a valley t′ →∗

R v′ ∗
R← u′,

inducing a valley t = t′χ →∗
R v′χ ∗

R← u′χ = u. Note that v′χ ∈ LV (by Lemma 3.9) and
obviously v′χ ∈ T (F ,V).

To prepare for a result concerning bounded duplicating TRSs, we generalize bounded
duplication to weakly bounded duplication, which turns out to be more suitable for the
proof of Lemma 6.14.

Definition 6.12. We call R weakly bounded duplicating if {� → ⊥}/R is terminating
for fresh constants � and ⊥.

LEMMA 6.13. Any bounded duplicating TRS is weakly bounded duplicating.

PROOF. Assume that R is not weakly bounded duplicating. So there exists an in-
finite rewrite sequence t0 → t1 → · · · in R ∪ {� → ⊥} that contains infinitely many
applications of the rule � → ⊥. Let t′

i be obtained from ti by replacing all occurrences
of � by �(⊥). Since � does not appear in the rules of R, we obtain an infinite rewrite
sequence t′

0 → t′
1 → · · · in R ∪ {�(x) → x} with infinitely many applications of the

instance �(⊥) → ⊥ of �(x) → x. Hence, R is not bounded duplicating.

To see that weakly bounded duplication generalizes bounded duplication, consider
the TRS R consisting of the single rule f(a, x) → f(x, x), which is not bounded
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duplicating since f(a,�(a)) →R f(�(a),�(a)) →�(x)→x f(a,�(a)) →R · · · , but weakly
bounded duplicating.

Next, we will establish the following two lemmata.

LEMMA 6.14. Let V be a variable-restricted layer system that weakly layers a weakly
bounded duplicating TRS R. If R is confluent on V ∩ T (F ,V), then R is confluent on
LV ∩ T (F ,V).

LEMMA 6.15. Let V be a variable-restricted layer system that layers a TRS R. If R is
confluent on V ∩ T (F ,V), then R is confluent on LV ∩ T (F ,V).

For both proofs, we are given a variable-restricted layer system V that weakly layers
a TRS R. We fix an initial term s ∈ LV ∩ T (F ,V) and show that it is confluent. Since
V ⊆ LV, the confluence assumption on V ∩ T (F ,V) may not apply to s. To overcome
this problem, we use (L2) and (L′

2) to construct a term s′ ∈ V ∩ T (F ,V) and a variable
substitution χ such that s = s′χ and fix a well-order � on Var(s′). We extend � to terms
by closing it under contexts and transitivity.

Let s ∈ LV ∩ T (F ,V), s′ ∈ V ∩ T (F ,V), and χ with s = s′χ be fixed.

Definition 6.16. A term t′ ∈ V ∩ T (F ,V) is a representative of t ∈ LV ∩ T (F ,V) if
t = t′χ and Var(t′) ⊆ Var(s′). A representative t′ of t is called minimal if it is minimal
with respect to �.

Note that s′ is a representative of s. Before proving key properties for representatives,
we show how they help to avoid the situation of Example 6.7.

Example 6.17 (Example 6.7 revisited). Consider the variables with sorts

x1, x2, x5, x6 : 2 x3, x7 : 0 x4, x8 : 1

and order x8 � x7 � · · · � x1. The term s = f(t, t) ∈ LV ∩ T (F ,V) has the repre-
sentative s′ = f(h(x1, x2, x3, x4), h(x5, x6, x7, x8)) ∈ V ∩ T (F ,V) and the (unique) min-
imal representative ŝ = f(t̂, t̂) ∈ V ∩ T (F ,V), where t̂ = h(x1, x1, x3, x4). The peak
a ← f(t, t) → f(t, g(t)) → b in LV ∩ T (F ,V) is simulated by

a ← f(t̂, t̂) → f(t̂, g(h(x3, x4, x3, x4))) � f(t̂, g(t̂)) → b

in V ∩ T (F ,V). Note that the � step replaces f(t̂, g(h(x3, x4, x3, x4))) by the least repre-
sentative f(t̂, g(t̂)) of f(t, g(t)).

The key operation on representatives and related terms is copying variables between
them, as justified by the following lemma.

LEMMA 6.18. Let L, N ∈ V be layers with L� = N�. If p ∈ PosV�(L), then L[N|p]p ∈ V.

PROOF. If p = ε, then the claim is trivial. Otherwise, let L′ = L[�]p and N′ =
N[�]q∈PosV� (L)\{p}. We have L′, N′ ∈ V by applications of property (L′

2) and L[N|p]p =
L′ � N′ by assumption. Property (L3) yields the desired L[N|p]p ∈ V.

The next lemma establishes that the minimal representative (if it exists) is unique,
justifying the name least representative. The proof makes the construction in Exam-
ple 6.17 explicit and is illustrated by Example 6.20.

LEMMA 6.19. If t ∈ LV∩T (F ,V) has a representative, then it has a least representative.

PROOF. We have to show the existence and uniqueness of a minimal representative
of t. From a representative t′ we obtain t′

� ∈ V using (L′
2) repeatedly. Consider Vp = {x ∈

Var(s′) | χ (x) = t|p and t′
�[x]p ∈ V} for each p ∈ PosV (t′). Note that t′|p ∈ Vp because we
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can insert the variable t′|p into t′
� at position p by Lemma 6.18 to obtain a layer in V.

Hence, Vp is nonempty. Since it is also finite, it has a minimum element min(Vp) with
respect to �. Let ṫ = t′

�[min(Vp)]p∈PosV (t′). We have ṫ ∈ V by (L′
2) and the definition of

Vp. Clearly, ṫ ∈ T (F ,V) and Var(ṫ) ⊆ Var(s′) because all holes are replaced by some
variable from Var(s′). Moreover, ṫχ = t by construction, in particular the definition of
Vp. It follows that ṫ is a representative of t. Note that ṫ does not depend on the choice
of t′ because t′

� = t�. Therefore, t′ �= ṫ for any representative t′ of t, which makes ṫ the
least representative of t.

Example 6.20 (Example 6.17 revisited). Consider s = f(h(z, z, z, z), h(z, z, z, z)) and
s′ = f(h(x1, x2, x3, x4), h(x5, x6, x7, x8)) with χ (xi) = z for all 1 � i � 8. Then s′

� =
f(h(�,�,�,�), h(�,�,�,�)). Since V11 = V12 = V21 = V22 = {x1, . . . , x8}, V13 = V23 =
{x3, x7}, and V14 = V24 = {x4, x8}, we obtain ṡ = f(h(x1, x1, x3, x4), h(x1, x1, x3, x4)).

We denote the least representative term of a representable term t ∈ LV ∩ T (F ,V) by
t̂ ∈ V ∩ T (F ,V). The following lemma states that a rewrite step performed on a term in
LV can be mirrored on its least representative in V. Recall that in Example 6.17, the
representative s′ is a normal form but the step from s can be mirrored on ŝ.

LEMMA 6.21. Let t, u ∈ LV ∩ T (F ,V) with t →R u such that t̂ exists.

(1) If V weakly layers R, then t̂ →R u′ for some representative u′ of u.
(2) If V layers R, then u′ = û or u′ ∈ V in (1).

PROOF.

(1) Assume that t̂ is the least representative of t and let t →p,�→r u. We obtain a
context C ∈ V by replacing all variables in t by �. By Lemma 3.10, there is a
term c with C = cσ� and � �· c|p. To ensure c �· t̂, we need to show t̂|q = t̂|r for
all x ∈ Var(c) and q, r ∈ Posx(c). To that end, fix x and let P = Posx(c). For each
q ∈ P, t̂|q is a variable. Let y = min {t̂|q | q ∈ P}. We will show that t̂|q = y for
all q ∈ P. Consider the max-top M ∈ V of C[y, . . . , y]. Note that c �· C[y, . . . , y],
so that � �· C[y, . . . , y]|p. From condition (W), we obtain � �· M|p and thus c �· M
by Lemma 3.10(2) since C � M. By construction, t̂|q = y for some q ∈ P. Since
C[y]q is a layer by Lemma 6.18, M � C[y]q is a layer according to (L3). Because
M is the max-top of C[y, . . . , y], M � C[y]q = M and thus M|q = y. It follows that
M|q = y for all q ∈ P, since otherwise M would fail to be an instance of c. Repeated
applications of Lemma 6.18 yield t′ = t̂[y]q∈P ∈ V. We have t′ = t̂ by the choice of y
and the minimality of t̂. We conclude that c �· t̂ and hence � �· t̂|p, which induces
a rewrite step t̂ →p,�→r u′ as claimed. The term u′ is a representative of u because
u′χ = u, u′ ∈ V by Lemma 6.10, and rewriting does not introduce variables.

(2) Assume that u′ is not a least representative of u. We have u′ � û, so there is a
position q ∈ PosV (u) with z = u′|q � û|q = y. Let C = cσ� as in the proof of part (1).
There is a rewrite step c →p,�→r d for some term d and C →p,�→r D = dσ�. Let M ∈
V and L ∈ V be the max-tops of Cy = C[y, . . . , y] and Dy = D[y, . . . , y]. Note that
Cy →p,�→r Dy, which implies M →p,�→r L by (C1) except when M →p,�→r �. In the
latter case, r and thus also u′ is a variable, and we are done. So assume M →p,�→r L.
Consider the variable x = d|q. We must have L|q = y because otherwise we could
copy û|q = y to L by Lemma 6.18. The term t̂ and the context M are instances of c
and so there are substitutions σt̂ and σM such that cσt̂ = t̂ and cσM = M. We have
σt̂(x) = u′|q = z and σM(x) = y because dσM = L. Since x ∈ Var(d) and c →R d,
the set Posx(c) is nonempty. Let q′ ∈ Posx(c). The layer C[y]q′ ∈ V can be obtained
by copying M|q′ = y to C using Lemma 6.18. Since t̂|q′ = σt̂(x) = z, we obtain

ACM Transactions on Computational Logic, Vol. 16, No. 2, Article 14, Publication date: March 2015.



14:26 B. Felgenhauer et al.

t̂ � t̂[y]q′ ∈ V. The term t̂[y]q′ is a representative of t because χ (y) = χ (z) (recall
that u = u′χ = ûχ ). Hence, we obtained a contradiction with the minimality of t̂.

The following lemma shows that instead of adding a single rule � → ⊥, we can extend
a weakly bounded duplicating TRS with any terminating ARS, where the objects are
regarded as fresh constants, and still obtain relative termination. The induced well-
founded order will be used in the proof of Lemma 6.14.

LEMMA 6.22. Let R be a weakly bounded duplicating TRS and A a terminating ARS.
If R and A share no constants, then A is terminating relative to R.

PROOF. We use reduction pairs for this proof, which are pairs consisting of a quasi-
order � and a well-founded strict order > that are compatible: � · > · � ⊆ >. Reduction
pairs give rise to a multiset extension in a straightforward way (e.g., the definitions of
>gms and �gms in [Thieman et al. 2012]). We denote the objects in A by O. Let F be
the signature of R. From the termination of A, we obtain a well-founded order > on O
such that A ⊆ >. For each α ∈ O, define a map πα from T (F ∪O,V) to T (F ∪ {�,⊥},V)
as follows:

πα(t) =

⎧⎪⎨
⎪⎩

� if t = α
⊥ if t ∈ O \ {α}
f (πα(t1), . . . , πα(tn)) if t = f (t1, . . . , tn) with f ∈ F
t if t ∈ V.

We measure terms by the set #t = {(α, πα(t)) | α ∈ Fun(t) ∩ O}. The measures of
two terms are compared by the multiset extension of the lexicographic product of the
precedence > on O and the reduction pair consisting of the well-founded (by the weakly
bounded termination assumption) order →+

{�→⊥}/R and the compatible quasi-order →∗
R.

Each application of a rule α → β from A decreases the component associated with α
in #t and introduces or modifies a component associated with β in #t, giving rise to
a decrease in the strict part of the multiset extension. Moreover, if t →R u, then
πα(t) →R πα(u), for all α ∈ O. Hence, the terms are related by the nonstrict part of the
multiset extension. It follows that A is terminating relative to R.

PROOF OF LEMMA 6.14. To show confluence of s, we introduce a relation �� that allows
one to map an R-peak from s to a ��-peak. Afterward, we show confluence of �� and
conclude by �� ⊆ →∗

R.
We write t ��t′

0
u if t′

0 →∗
R t̂ and s →∗

R t →∗
R u such that t →∗

R u is mirrored by t̂ →∗
R u′

with u = u′χ . Labels are compared using the order > := →+
�/R, which is well-founded

according to Lemma 6.22 applied to the ARS (Var(s′),�), where we regard the elements
of Var(s′) as constants for this purpose.

First, we show that a peak consisting of R-steps can be represented as a peak of
��-steps. To this end, we claim that t ��t̂ u whenever s →∗

R t →R u. To show the claim,
note that s has a least representative by Lemma 6.19, and that by Lemmata 6.21(1)
and Lemma 6.19, each immediate successor of a term with a least representative also
has a least representative. Therefore, t has a least representative, and we conclude by
another application of Lemma 6.21(1). Next, we establish that �� is locally decreasing
and hence confluent by Theorem 2.1. Consider a local peak u t′

0
	
 t ��t′

1
v. By definition

of ��, there are representatives u′ and v′ of u and v such that u′ ∗
R← t̂ →∗

R v′. We obtain
u′ →∗

R w′ ∗
R← v′ from the confluence assumption on V∩T (F ,V). Consider the sequence

u′ →∗
R w′. If u′ = û, then u ��t′

1
w′χ , noting that t′

1 →∗
R t̂ →∗

R u′. Otherwise, there is a
rewrite sequence u = u′χ = u1 →R · · · →R un = w′χ = w, such that u′ � û →∗

�∪R ûi
and thus u′ > ûi for all 1 � i � n. Hence, we obtain u ��∗

∨t′
1

w by repeated use of the
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previous claim. Analogously, we obtain v ��t′
0
w or v ��∗

∨t′
0
w. The proof is concluded by

the obvious observation that �� ⊆ →∗
R.

PROOF OF LEMMA 6.15. Consider a peak t ∗
R← s →∗

R u. Obviously s has a representative
and hence also a least representative ŝ by Lemma 6.19. Using Lemma 6.21 repeatedly,
we obtain a peak t′ ∗

R← ŝ →∗
R u′, noting that all reducts of ŝ are least representatives of

the corresponding reducts of s or variables, but since variables are normal forms, the
latter can only happen in the last step. From the confluence assumption on V∩T (F ,V),
we obtain t′ →∗

R v′ ∗
R ← u′. Applying the variable substitution χ yields t = t′χ →∗

R
v′χ ∗

R← u′χ = u on LV ∩ T (F ,V).

LEMMA 6.23. If a TRS is (weakly) layered according to a variable-restricted layer
system, then it is (weakly) layered according to the corresponding (unrestricted) layer
system.

PROOF. The result for weakly layered TRSs is obvious. The result for layered TRSs
follows from Lemma 6.21.

COROLLARY 6.24. The statements of Theorems 4.1, 4.3, and 4.6 remain true when
based on a variable-restricted layer system.

PROOF. In case of left-linear TRSs, we conclude by Theorem 4.1 and Lemmata 6.11
and 6.23. For bounded duplicating TRSs, we use Theorem 4.3 and Lemmata 6.13, 6.14,
and 6.23. For TRSs that are layered according to a variable-restricted layer system, we
use Theorem 4.6 and Lemmata 6.15 and 6.23.

6.4. Many-Sorted Persistence by Variable-Restricted Layer Systems

We demonstrate the usefulness of variable-restricted layer systems by the following
alternative proof of Theorem 5.13, which avoids the complication of establishing con-
fluence on L ∩ T (F ,V).

PROOF OF THEOREM 5.13. Assume that R is confluent on TS (F ,V). We let V be the
smallest set such that TS (F ,V) ⊆ V and V is closed under replacing variables by holes.
So V trivially satisfies (L′

2). Hence, V ∩ T (F ,V) = TS (F ,V), and thus R is confluent on
V ∩ T (F ,V) by the assumption. It is easy to see that V is a variable-restricted layer
system layering R; conditions (W) and (C1) follow from the compatibility assumption.
Therefore, R is confluent by Corollary 6.24.

6.5. Order-Sorted Persistence by Variable-Restricted Layer Systems

In this section, we prove the main result on order-sorted persistence.

PROOF OF THEOREM 6.3. Assume that R is compatible with S. To define layers as
order-sorted terms, we add a fresh, minimum sort ⊥ with � : ⊥ and require that no
variable has sort ⊥. The set V := TS∪{⊥}(F ∪{�},V) is a variable-restricted layer system
that satisfies (C2).

We show that V satisfies condition (W). So let M be the max-top of s, p ∈ PosF (M),
and s →p,�→r t. Because � is order-sorted, Pos(�) ⊆ Pos(M|p). We claim that � �· M|p.
If �|q = �|q′ ∈ Vα, then M|pq = M|pq′ ∈ Tα′ (F ∪ {�},V) for some α′ with α � α′, due to the
fact that � is strictly order-sorted. Let σ be a substitution such that �σ = M|p. Using
the compatibility condition (of Definition 6.1), we readily obtain L = M[rσ ]p ∈ V.

Next, we show that if R is strongly compatible with S, then condition (C1) holds.
So assume that R is neither left-linear nor bounded duplicating and L �= �. We show
that L is the max-top of t. Let L′ be the max-top of t. First of all, if r is not a variable
and �|q = r|q′ ∈ Vα, then L′|pq′ = M|pq = L|pq′ because � and r are strictly order-sorted.
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This implies L = L′. Next, suppose that r = x ∈ Vβ . Let p′ be the position directly
above p and let root(L|p′) : β1 × · · · × βn → β ′. We have p = p′i for some 1 � i � n. We
claim that βi = β. Let α be the sort of �. We have α � β and βi � α. According to the
second compatibility condition, β is maximal in S and thus β = α = βi. It follows that
L′|p = M|pq = L|p for any q ∈ Posx(�).

Note that V ∩ T (F ,V) = TS (F ,V) = V ∩ TS (F ,V). The proof is concluded with an
appeal to Corollary 6.24.

7. RELATED WORK

As we already mentioned in the introduction, modularity of term rewrite systems
has been re-proved several times. A number of related results have been proved by
adapting the proof of Klop et al. [1994], and there have been several previous attempts
to make the result more reusable. Ohlebusch [1994b] casts the modularity result in
terms of a collapsing reduction →c and shows that for composable TRSs, confluence
is modular if →c is normalizing. Toyama’s theorem arises as a special case. Kahrs
[1995] proposes an abstract framework, based on so-called preconfluences and context
selectors constructed from preconfluences. The latter can be seen as a precursor of layer
systems. In particular, the selection of max-tops gives rise to a (proper) context selector.
However, the notion of preconfluences is geared toward the uncurrying application and
too restrictive to encompass modularity of confluence [Kahrs 2011]. A third approach
to abstraction is taken in Lüth [1996]. In this work, modularity of confluence is proved
using category theory, exploiting the fact that terms can conveniently be modeled by a
monad. Unfortunately, the development is flawed and only applies to TRSs over unary
function symbols and constants.1

In the remainder of this section, we discuss specific issues, starting with a comparison
of our result on order-sorted persistence to Aoto and Toyama [1996] in Section 7.1. In
Section 7.2, we reflect on the differences between [Klop et al. 1994] and [van Oostrom
2008], which correspond to changes from the earlier conference paper [Felgenhauer
et al. 2011] to the present article. In Section 7.3, we elaborate on the constructivity
claim made in Section 1.

7.1. Order-Sorted Persistence

In this section, we compare our result from Section 6 to the main result of Aoto and
Toyama [1996], which can be stated as follows.

Definition 7.1. A sort attachment S is compatible� with a TRS R if condition (�) is
satisfied for each rewrite rule � → r ∈ R:

(�) If � ∈ Tα(F ,V) and r ∈ Tβ(F ,V), then α � β and �, r are strictly order-sorted.

The main claim in [Aoto and Toyama 1996] is that Theorem 6.3 holds for compatible�

systems. We show that this is incorrect. The counterexample presented here is simpler
than our previous example in [Felgenhauer et al. 2011].

Example 7.2. We use {0, 1, 2, 3} as sorts where 1 � 0 and sort attachment S
x : 0 f : 0 → 2 h : 1 × 0 → 2 e : 0 → 1 c : 1
y : 2 g : 2 → 2 i : 2 × 2 → 3 a, b : 3

1The article claims that for any TRS , the monad T is strongly finitary, which implies that it preserves
coequalizers. This is not true in general. As an example, let � be the trivial category and consider the
coequalizer Q : � + � → � of the injections ι1, ι2 : � → � + �. Furthermore, let  = {f(x, x) → x}. Then T(Q)
equates f(´ι1�, ´ι1�) and f(´ι1�, ´ι2�), but the coequalizer of T(ι1) and T(ι2) does not, because f(´ι1�, ´ι1�) is not
in the image of either of these functors.
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Fig. 3. Nonconfluence in Example 7.2.

Consider the TRS R consisting of the rules

f(x) → h(e(x), x) h(c, x) → g(f(x)) e(x) → x i(y, y) → a i(y, g(y)) → b.

This TRS is compatible� with S. On order-sorted terms, it is locally confluent and
terminating and thus confluent (note that x may not be instantiated by c due to the
sort constraints). It is not confluent on arbitrary terms because

a ← i(f(c), f(c)) →∗ i(f(c), g(f(c))) → b.

Note that any compatible� TRS is strongly compatible (cf. Definition 6.2), unless it is
neither left-linear nor bounded duplicating, and contains a collapsing rule. Indeed, the
TRS R of Example 7.2 has all these features. Ultimately, the culprit is the collapsing
rule e(x) → x, causing fusion from above (cf. Figure 3). This case is not considered in
the proof of Aoto and Toyama [1996, Proposition 3.9]. Definition 6.2 takes care of the
problem with collapsing rules in Definition 7.1. Furthermore, it puts fewer constraints
on the right-hand sides in case of left-linear or bounded duplicating systems, which is
beneficial (cf. Example 6.5).

7.2. Modularity

We compare the proof setups of Klop et al. [1994] and van Oostrom [2008].
The first difference concerns the decomposition of terms. Whereas Klop et al. split

a term into its max-top and aliens, van Oostrom splits it into a base context and a
sequence of tall aliens. This is the key for making the proof constructive: while fusion
of an alien may cause many new aliens to appear, none of them will be tall, so they do
not have to be tracked explicitly. In contrast, Klop et al. start by constructing witnesses,
and thus prevent aliens from fusing while establishing confluence.

The other ingredients of the proofs are quite similar: the proof setup is an induction
on the rank of the starting term. One distinguishes inner (→∗

i , acting on aliens) and
outer (→∗

o, acting on the max-top) steps (Klop et al.) or tall (��ι, acting on the tall aliens)
and short (��, acting on the base context) steps (van Oostrom). One then argues as
follows:

(1) Outer (short) steps are confluent because one can replace the principal (tall) sub-
terms by suitable variables in the top (base) context and then invoke the induction
hypothesis.

(2) Inner (tall) steps are confluent because they only act on principal subterms (tall
aliens). In joining these subterms, one can ensure that any equalities between them
are preserved (we call such sequences of inner steps balanced). In van Oostrom’s
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proof, the resulting joining sequences may involve fusion and therefore short steps,
but by ranking short steps below tall steps, a locally decreasing diagram is obtained.

(3) Balanced inner steps (tall steps) and outer steps (short steps) commute (can be
joined decreasingly). The idea is to replace the principal subterms (tall aliens) of
source and target of the inner steps by the same variables, so that the outer steps
can be simulated on the result. In van Oostrom’s proof, the target term has to be
balanced (with respect to the source) first.

When specialized to modularity, the same differences and similarities can be encoun-
tered when comparing [Felgenhauer et al. 2011] to the present work. Short steps differ
in two ways from [van Oostrom 2008]. The imbalance is defined differently and the
underlying rewrite sequences are less restricted here. Nevertheless, they define the
same relation on native terms. This covers Theorem 4.6. For Theorems 4.1 and 4.3,
our proof deals with a new effect, namely, fusion from above. This makes confluence of
short short steps (��) a nontrivial matter.

We remark that layer systems according to Definition 3.3 differ from those in
[Felgenhauer et al. 2011]. The latter are closer to variable-restricted layer systems
(Definition 6.8). Since the weakened condition (L′

2) is only needed for the order-sorted
setting, we decided to base the theory on the easier condition (L2) instead and then de-
rive the main results for variable-restricted layer systems separately (cf. Section 6.3).
Furthermore, we remark that the notions of weakly layered and layered (which are re-
lated to weakly consistent and consistent in [Felgenhauer et al. 2011]) have changed in
an incomparable way, even for variable-restricted layer systems. This is due to the new
condition (C2), which is required for our constructive proof, as shown in Example 4.35.

7.3. Constructivity

We say that a TRS is constructively confluent if there is a procedure that, given a peak
t ∗← s →∗ u, constructs a valley t →∗ v ∗← u. In [van Oostrom 2008], constructive
confluence is proved to be a modular property for disjoint TRSs.

Most previous proofs of modularity and related results rely on the reduction of terms
until they allow no further fusion, which requires checking whether the top layer of a
term may collapse, a property that is undecidable. This includes the proofs by [Toyama
1987], [Klop et al. 1994], [Ohlebusch 1994b], [Kahrs 1995], [Aoto and Toyama 1996,
1997], [Jouannaud and Toyama 2008], and [Jouannaud and Liu 2012]. Interestingly,
Lüth’s proof [Lüth 1996] is constructive, but not applicable in general as observed at
the beginning of this section.

The key observation for obtaining a constructive result is that our main tool for
establishing confluence, the decreasing diagrams technique, is constructive: if any
given local peak can be joined decreasingly in a constructive way, then any conversion
becomes joinable by exhaustively replacing local peaks by smaller conversions until
none are left.

For our proofs to be constructive, the TRS needs to be constructively confluent on
terms of rank one. Furthermore, the proofs rely on the decomposition of arbitrary terms
into their max-top and aliens. Consequently, we must be able to decide whether a given
context C � t is a max-top of t. In the applications from Section 5, this is indeed the
case.

If these two assumptions are satisfied, then our proofs are constructive and we obtain
the following corollary.

COROLLARY 7.3. Let R be a TRS. Assume that R is left-linear and weakly layered, or
bounded duplicating and weakly layered, or layered. If R is constructively confluent on
terms of rank one and for any context C and term t it is decidable if C is a max-top of t,
then R is constructively confluent.
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We remark that the previous corollary extends to variable-restricted layer systems,
and thus to the order-sorted application in Section 6.

8. CONCLUSION

In this article, we have presented an abstract layer framework that covers several
known results about the modularity and persistence of confluence. The framework
enabled us to correct the result claimed in [Aoto and Toyama 1996] on order-sorted
persistence and, by placing weaker conditions on left-linear or bounded duplicating
systems, to increase its applicability. We have incorporated a decomposition technique
based on order-sorted persistence (Theorem 6.3) into CSI [Zankl et al. 2011a], our
confluence prover. In the implementation, we approximate bounded duplication by
nonduplication. We also showed how Kahrs’s confluence result for curried systems is
obtained as an instance of our layer framework.

As future work, we plan to investigate how to apply layer systems to other properties
of TRSs, like termination or having unique normal forms. Finally, we worked out the
technical details of our main results to prepare for future certification efforts in a
theorem prover like Isabelle or Coq. For the latter, it is essential that here (compared
to our previous work [Felgenhauer et al. 2011]) we based our setting on the constructive
modularity proof in van Oostrom [2008]. The underlying proof technique, decreasing
diagrams, has already been formalized in Isabelle [Zankl 2013a, 2013b].
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