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Abstract4

We discuss known modularity results stating a finite family of rewrite system to be terminating5

iff its union is, under various additional conditions. Taking a transformational approach, relating6

reductions in the union to reductions for the family members, we refine some of these results.7

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting8

Keywords and phrases Rewriting, modularity, disjunctive termination, jumping, perpetuality9

Background This draft note (3-7-2023) extends our earlier note [16] on preponement by applying its10

methodology of taking reductions as first-class citizens, to Podelski and Rybalchenko’s extension [20]11

of Geser’s result [8] on disjunctive termination from binary to arbitrary unions, and to Dawson,12

Dershowitz, and Goré’s similar extension [5] of Doornbos and von Karger’s result [7] on jumping.13
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Modularity of termination by transforming reductions. Our starting point is19

the modularity result that → :=
⋃

i∈I→i is terminating iff all →i are, if → is transitive, a20

result due to Geser [8]1 for #I ≤ 2, as generalised by Podelski and Rybalchenko [20, Thm. 1,21

Cor. 1] to index sets I of arbitrary finite cardinality, and by relaxing transitivity by Doornbos22

and von Karger [7] for #I ≤ 2 and subsequently by Dawson, Dershowitz and Goré [5] to23

index sets I of arbitrary finite cardinality.24

Throughout, our approach is based on transforming reductions, either finite or infinite [14,25

22]. That is, we treat reductions as first-class citizens. Here, a reduction from a given object26

a in a rewrite system → is either the empty reduction from a to itself, or a step ϕ : a→ b27

followed by a reduction from b, coinductively. A reduction is a reduction from some object,28

called its source. It is a reduction to some object, called its target, if it has the empty29

reduction to that object as tail (subreduction / suffix). Then the reduction is finite; otherwise30

infinite (then without target). Reductions / steps having the same source (target) are called31

co-initial (cofinal). To indicate the length α ≤ ω of a →-reduction we superscript the latter32

with the former, →α. We assume familiarity with rewriting (terminology) [1, 22].33

The transformational approach not only allows us to express that the union of a family34

of rewrite systems is terminating iff all its family members are, but to obtain this via35

transforming reductions in the former into reductions in the latter in the spirit of [14, 18].36

This in turn allows us to refine termination statements sec by also relating the shapes of the37

reductions. To stress this, we will speak of termination (all reductions are finite) instead of38

well-foundedness (every non-empty subset has a minimal element).239

To demarcate what we are interested in here, and what not, note that taking disjoint unions40

is useful but trivial; termination is trivially preserved.3 The other way around, without further41

1 See Thm. (termination inheritance by transitivity) on p. 31 of [8].
2 Though they are equivalent, assuming dependent choice. Beware that using our conventions [22]

termination of → corresponds to well-foundedness of its converse ←; cf. the conclusion.
3 Note that in term rewriting [1, 22] the study of modularity concerns taking the union of term rewrite

systems having disjoint signatures. Such disjoint unions do not preserve termination as shown by
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conditions non-disjoint unions trivially fail to preserve termination; consider e.g. the union42

of a ▶ b and b ▷ a. Moreover, unions of infinite families enable non-termination by ‘going43

through’ infinitely many family members; consider e.g. the family ({(n,m) | n < m})n∈N44

having trivially terminating (at most one step) members. Accordingly, we focus on non-45

disjoint unions of finite families of terminating rewrite systems, with conditions [20, 6, 5].46

Jumping. We first introduce some no(ta)tions to conveniently and concisely recapitulate47

and refine4 the result of [7], whose condition we will refer to as jumping following [5].48

We say a reduction δ protracts a reduction γ if it is co-initial to it and either δ is infinite49

or both are finite and also have the same target,5 and that δ is preferential (for γ) if replacing50

any tail headed by a ▷-step, by any reduction headed by a ▶-step does not protract γ; the51

intuition is that the reduction δ prefers ▶-steps, as long as they preserve reachability of the52

goal, of the target of γ, or are perpetual, i.e. preserve non-termination.6 Note that protracting53

is transitive and preserved under concatenation.754

▶ Lemma 1. For any →-reduction γ there is a preferential reduction γ̂ protracting γ of shape55

▶▶ ·▷▷ ·▶ω or ▶▶ ·▷α for α ≤ ω, if jumping holds: ▷ ·▶ ⊆ ▷ ∪ (▶ ·↠) for → := ▶ ∪▷.56

Proof. We proceed by iteratively constructing, starting with the empty reduction on the57

source of γ, ever longer8 finite reductions δ :a ▶▶ ·▷▷ b preferential for γ, that can be extended58

to reductions protracting γ.59

If b is the target of γ (if that exists) we conclude setting γ̂ := δ, and if it is the source60

of an infinite ▶-reduction ϵ, we conclude by setting γ̂ := δ · ϵ. Otherwise, all reductions61

extending δ to protract γ are non-empty and b is ▶-terminating. Then:62

If there exists a ▷-step ψ such that δ · ψ is a preferential reduction too, that can be63

extended to a reduction protracting γ, we iterate on δ · ψ.64

Otherwise, there must be a ▶-step ψ such that δ · ψ, again preferential, can be extended65

to a reduction protracting γ. If δ is empty or ends with a ▶-step, we iterate on δ · ψ.66

Otherwise, the last step of δ is a ▷-step, say ϕ. Then the jumping assumption applies to67

the pair ϕ · ψ of shape ▷ ·▶:68

The second disjunct cannot apply since then replacing the pair by ▶ ·↠ in (the69

extension of δ · ψ to) the reduction protracting γ would contradict δ being preferential.70

Hence the first disjunct applies, yielding another ▷-step ϕ′ to b′ having the same source71

(target) as ϕ (ψ). Then we iterate on δ′ obtained by replacing ϕ by ϕ′ in δ.72

Note that eventually a longer reduction is obtained as the final case cannot occur consecutively73

infinitely often since that would give rise to an infinite ▶-reduction through the targets74

b, b′, . . . of the successive reductions δ, δ′, . . ., contradicting ▶-termination of b. ◀75

Toyama’s counterexample [22, Ex. 5.9.1]; the point is that the rewrite system →T ∪S of the disjoint
union of two TRSs T and S is not the disjoint union →T ∪→S of their rewrite systems →T and →S ,
but rather a rewrite system on terms over the union of their (disjoint) signatures.

4 Preliminary versions of Lem. 1 and its proof are in [13], [16], and [19, Lem. 3.5 and Fig. 7].
5 In the λ-calculus, that reductions have the same sources and targets is sometimes called Hindley-

equivalence. In graphs, such edges are called parallel.
6 Thinking of ▶-steps as being worse than ▷-steps [14], preferential reductions are particularly bad; there

are no worse ones, assuming that all infinite reductions are worse than all finite ones in that they don’t
even reach the goal, the target; cf. also [10] or [22, Sect. 9.5]. This could be made quantative using the
framework of [18].

7 Here we use the convention that concatenating to an infinite reduction yields the infinite reduction.
8 With only its final ▷-steps possibly non-stable.
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▶ Remark 2. To find γ̂ only the source and target (if there is one) of γ are used. In particular,76

unlike Lem. 15 below, the objects in γ̂ need not be among those of γ, as witnessed, e.g., by that77

the reduction γ : a ▷ b ▶ c is transformed into the preferential reduction γ̂ : a ▶ a′ ▶ a′ ▶ . . .78

of shape ▶ω, for rewrite systems ▶,▷ given by the steps in γ, γ̂ combined with a′ ▷ a to79

make the jumping criterion hold. In this example, one easily finds that in fact γ̂ is the80

only preferential reduction protracting γ, but in general the construction is ineffective as it81

involves checking reachability.82

We can be a bit more liberal while preserving the result, by allowing ▶ · →∞ as an83

additional, third, disjunct in the jumping condition, where →∞ is the rewrite system having84

a step a→∞ b for any object b and any infinite →-reduction from a; cf. [16, 18]. The idea is85

that it is sufficient to known that there is an infinite reduction starting with a ▶-step and86

that the second disjunct ▶ ·↠ of jumping is only one way in which that can be brought87

about (in case γ is infinite).9 For instance, we may omit a′ ▷ a in the above example.88

In [5] also a contrapositive (for the special case of an infinite reduction γ) is proven,89

showing that → is terminating if ▶ ∪▷♯ is, where ▷♯ denotes [5, Def. 15 (Constriction)] ▷90

with all steps from objects also allowing a ▶-step to a non-→-terminating object removed.10
91

Note that for infinite reductions γ this corresponds exactly to removing non-preferential92

▷-steps, i.e. steps from objects from which a ▶-step is preferred.11
93

▶ Corollary 3 ([16]). Let → := ▶ ∪▷.94

1. → is terminating iff ▶,▷ are, if ▷ ·▶ ⊆ ▷ ∪ (▶ ·↠) (jumping) [7];95

2. → is terminating iff ▶,▷ are, if → ·→ ⊆ → (transitivity) [8][22, Ex. 1.3.20];96

3. a ▶▶ ·▷ω if a is ▶-terminating, a→ω and ▷ ·▶ ⊆ ▶ ·▷ (diamond) [9, Lem. 51];97

4. ▷▷ ·▶ ·▷▷ is terminating iff ▶ is, if ▷ ·▶ ⊆ ▶ ·↠ (quasi-commutation) [2].98

Proof. 1. The only–if-direction being trivial, it suffices to note that the if-direction follows99

from Lem. 1, since that entails any infinite →-reduction γ would give rise to another such100

γ̂ protracting it, tailing off in either ▶ or ▷, with γ̂ infinite as a reduction protracting101

the infinite reduction γ;102

2. Immediate from item 1 since transitivity of → entails jumping of ▶,▷;103

3. Lem. 1 applied to the reduction γ :a→ω, yields a reduction γ̂ of shape either a ▶▶ ·▷▷ ·▶ω
104

or a ▶▶ ·▷ω. We conclude by the first disjunct being impossible, since diamond entails105

▷▷ ·▶ ⊆ ▶ ·▷▷ hence the infinite ▶-suffix would induce an infinite ▶-prefix contradicting106

▶-termination of a;107

4. The only–if-direction being trivial, for the if-direction suppose there were an infinite108

▷▷ ·▶ ·▷▷-reduction γ from a. Then γ is an infinite →-reduction and Lem. 1 applied to it109

would yield a reduction γ̂ of shape either a ▶▶ ·▷▷ ·▶ω or a ▶▶ ·▷ω. The first disjunct is110

impossible by the assumed termination of ▶. The second disjunct is seen to be impossible111

by noting that the reduction γ̂ constructed in the proof of Lem. 1 has at least as many112

▶-steps as γ (i.e. infinitely many here) in case of quasi-commutation (the right disjunct113

in the assumption of Lem. 1 always holds; its lhs (rhs) having (at least) one ▶). ◀114

▶ Remark 4. See e.g. [8, p. 32] for various consequences of Geser’s result, i.e. of Cor. 3(2).115

9 In fact, any reduction starting with a ▶-step yielding a reduction protracting γ would do, but that
condition seems not nicely captured by some operations on relations.

10 With further variations in [5, Lem. 19 and Def. 23].
11 For the case of an arbitrary reduction γ, finite or infinite, as in Lem. 1, ▷♯ should denote ▷ with all

steps from objects allowing a ▶-step to an object that is either non-→-terminating or from which the
target of γ can be reached by a →-reduction, removed.
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We recapitulate and refine the extension of Cor. 3(1) from two rewrite systems ▶,▷ to116

finite families of rewrite systems of [5]. To that end, we identify the set I of indices with117

{i | 1 ≤ i ≤ n} for n := #I totally ordered by ≤, yielding a family (→i)1≤i≤n of n rewrite118

systems →i. We then say a reduction is ind, short for index-non-decreasing, if its sequence119

of indices is non-decreasing with respect to the given total order on the indices of the family,120

i.e. of shape ↠1 ·↠2 · . . . ·↠n (·→ω
i ) with the last infinite part (for some index i) optional,121

for the less–than–or–equal order ≤ on the indices {1, . . . , n}. Note that the specification122

of the reductions obtained by Lem. 1 is equivalent to the special case of ind where n = 2,123

defining the family by →1 := ▶ and →2 := ▷, and that for that special case the notion of124

jumping in Lem. 6 coincides with the earlier one in its special case, Lem. 1.125

▶ Remark 5. Since reindexing is notationally cumbersome, we allow ourselves to also speak126

about families such as (→i)2≤i≤n+1, then meaning the family (→′
i)1≤i≤n with →′

i :=→i+1.127

▶ Lemma 6. For any →-reduction there is an ind reduction protracting it, if jumping holds:128

→>i · →i ⊆ →>i ∪ (→i ·↠≥i) for all 1 ≤ i ≤ n, where → :=
⋃

1≤i≤n→i.129

Proof. By induction on n. In the base case there’s only 1 rewrite system. In the step case,130

given a →-reduction δ, Lem. 1 for ▶ :=→1 and ▷ :=
⋃

2≤i≤n yields there is a preferential131

reduction δ̂ protracting δ of shape either ▶▶ ·▷▷ ·▶ω or ▶▶ ·▷α for α ≤ ω. In either case let132

γ be the ▷-subreduction, i.e. comprising steps having indices ≥ 2. The induction hypothesis133

for γ applies to it since jumping is preserved for the subset {2, . . . , n} of indices, and yields134

an ind reduction γ̂ protracting γ. That is, γ̂ is of shape ↠2 · . . . ·↠n (·→ω
i ) with the last135

infinite part, for some index i, optional. We see that the reduction obtained by replacing12 γ136

in δ̂ by γ̂ is as desired, i.e. protracting δ13 and satisfying the ind-criterion. ◀137

▶ Corollary 7 ([5]). 1. → :=
⋃

1≤i≤n→i is terminating iff all →i are, if jumping holds;138

2. → := ▶∪▷∪≫ is terminating iff each of ▶,▷,≫ is, if ≫·▷ ⊆ ≫∪ (▷ · (▷∪≫)∗) and139

(▷ ∪≫) ·▶ ⊆ (▷ ∪≫) ∪ (▶ · →∗) [5, Thm. 8 (Jumping II)].140

Proof. 1. As for Cor. 3(1) but using Lem. 6 (instead of Lem. 1);141

2. The instance of item 1 for n := 3 and →1 := ▶ and →2 := ▷ and →3 :=≫. ◀142

▶ Remark 8. Jumping can be iterated both downward and upward. We only address the143

former here, but note that the latter was addressed in [5, Thm. 7 and Cor. 20 (Jumping I)].144

Affluence. We introduce some further no(ta)tions to conveniently and concisely state our145

refinement14 of the disjunctive termination result of [8, 20].146

We say ▶,▷ is affluent [19, Def. 3]15 if ▷ · ▶ ⊆ ▷ ∪ ▶, and that ▶,▷ is affluent for a147

(▶ ∪ ▷)-reduction γ if for all a, b, c in γ, if a ▷ b ▶ c, then a ▷ c or a ▶ c. Observe that148

affluence of ▶,▷ entails its affluence for any (▶ ∪▷)-reduction.149

▶ Remark 9. Though affluence is a special case of jumping, both are incomparable when150

generalised to families; due to that affluence does not introduce objects16 it affords a stronger151

invariant, namely that we obtain a reduction through objects of the original one (that typically152

fails for jumping as was noted above).153

12 By our convention on concatenation, if the γ̂ is infinite any part of δ̂ after it is dropped by replacing.
13 By transitivity and preservation under concatenation of protracting as δ̂ protracts δ and γ̂ protracts γ.
14 See the appendix for our original account [12] of it.
15 Formally, this is one-step affluence of ◁,▶ in the nomenclature of [19].
16 Jumping may introduce objects, namely, when replacing consecutive steps ▷ ·▶ by a reduction of shape

▶ ·↠ all objects along the latter reduction, other than its source and target, are introduced.
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We say for a reduction γ that an object is on γ if it is the source of a step in γ, and that γ is154

▶-normal if each source of a ▷-step in γ is ▶↾γ-normal, i.e. on γ and in normal form w.r.t.155

▶↾γ := {ϕ : b ▶ c | b is on γ & c is in γ}.17 We say a reduction δ is through a reduction γ if156

all objects in the former are objects in the latter. The idea is then the usual one in Ramsey157

theory, to zoom-in on (constrict to) a subset of the objects that has good closure properties,158

here: that preserves reachability of the target / having an infinite reduction.18
159

▶ Lemma 10. For any →-reduction γ there is a ▶-normal ind reduction γ̂ protracting and160

through γ, for → := ▶ ∪▷, if ▶,▷ is affluent for γ.161

infinite reduction
ϵ through

▶↾γ-normal objects

b̂

c ĉ

d̂

e ê

a

c′

δ

infinite (▶
∪
▷)-reduction

γ

Figure 1 Transformation of γ into reduction of shape ▶▶ ·▷ω in (∗) in the proof of Lem. 15

▶ Remark 11. In Fig. 1 we visualised the simple but key idea of the proof of Lem. 15, the162

transformation in the iteration step marked (∗) below. The figure displays a situation where163

there are no infinite ▶-reductions through the objects of the infinite (▶∪▷)-reduction γ, and164

we find an infinite reduction δ · ϵ of shape a ▶▶ b̂ ▷ ĉ ▷ . . ., with its ▶-tail through objects165

b̂, ĉ, d̂, ê, . . . in normal form w.r.t. ▶ restricted to objects on γ, as visualised by lightnings.19
166

Note that whereas the original reduction γ was not ind, the resulting reduction δ · ϵ is; ▶s167

precede ▷s.168

Proof of Lem. 10. Given a reduction γ from a, we construct a ▶-normal ind reduction γ̂169

through γ that protracts γ. If a is not ▶↾γ-terminating, i.e. if there is an infinite ▶-reduction170

from a through objects on γ, we may define γ̂ to be that reduction as it clearly protracts γ,171

is ▶-normal and satisfies the ind-criterion. Otherwise, a is ▶↾γ-terminating and we let δ be172

a maximal such reduction from a.20 If its target is not on γ (but still in γ), it is the target173

of γ and we conclude as before.174

17 Note that we do not require the ϕ to be steps in γ, only that they are ▶-steps between objects in γ.
18 See e.g. [10, Sect. 5 (Conclusion and related work)] or [22, Sect. 9.5] for more on the history and usage of

perpetual and maximal strategies in term rewriting, by constriction or other means, including first-order
TRSs and the λ-calculus. See e.g. [14, 18] for more on establishing perpetuality and maximality (for
abstract rewriting) by means of local diagrams in the spirit of [11].

19 The figure is similar to [19, Fig. 7] (indeed we used the same source file; there used to illustrate the
proof of a result corresponding to Lem. 1 here), but note that the lightnings mean different things: In
Fig. 1 a lightning means that from that object there is no ▶-step to an object in the reduction γ itself.
In [19, Fig. 7] a lightning means that no ▶-step from that object could be extended to a reduction
protracting the original reduction γ; since there the original reduction was assumed infinite, this boils
down to there not being an infinite reduction from the target of any ▶-step.

20 Recall [22] a reduction is maximal if it cannot be extended, either is infinite or ends in a normal form.
Computations in [20] are maximal reductions.
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Otherwise, the target of δ is ▶↾γ-normal. We claim that any ▶↾γ-normal object b̂ is the175

source of a step ϕ : b̂ ▷ c with ĉ in γ, such that ĉ is either ▶↾γ-normal too or not on γ or176

not ▶↾γ-terminating. From the claim we conclude (∗) by defining ϵ to be a reduction from177

the target of δ maximally concatenating such steps through ▶-normal objects. Then ϵ is178

▶-normal per construction. We distinguish cases on whether or not ϵ is finite. If ϵ is finite,179

we define γ̂ to be the concatenation of δ, ϵ, followed by an infinite ▶-reduction if the target180

of ϵ is not ▶↾γ-terminating. Per construction these do compose since if ϵ is finite then (using181

the claim) its target is in but not on γ, i.e. it is the target of γ, and γ̂ is ▶-normal and ind,182

by δ comprising ▶-steps, ϵ comprising ▷-steps from ▶↾γ-normal objects, and any trailing183

infinite reduction comprising only ▶-steps. If ϵ is infinite, we define γ̂ to be the concatenation184

of δ and ϵ. Then that γ̂ protracts γ is trivial, and γ̂ is ▶-normal and ind as before.185

To prove the claim, assume b̂ is ▶↾γ-normal so the source of a step of shape b̂ ▷ c by b̂186

being ▶-normal, with c in γ. If c is ▶↾γ-normal too or is not on γ, we conclude by setting187

ĉ := c. Otherwise, there is a step c ▶↾γ c′ with c′ in γ. By the assumed affluence for γ188

and ▶↾γ-normality of b̂ there exists b̂ ▷ c′. Repeating the second case, we either eventually189

end up in the first case, or find an infinite reduction c ▶↾γ c′ ▶↾γ . . . so may set ĉ to c. ◀190

▶ Corollary 12. → := ▶ ∪▷ is terminating iff ▶,▷ are, if ▶,▷ is affluent.191

This allows to factor Geser’s result [8], i.e. Cor. 3(2), through Lem. 10, noting that transitivity192

of → entails affluence of ▶,▷.193

▶ Example 13. Though it is trivial to observe that affluence is symmetric in its two194

constituting rewrite systems, it may be instructive to spell out some consequences:195

If ▶,▷ are terminating, then any →-reduction γ from a not only is finite by Cor. 12, but196

if it has, say, target b we have both a ▶▶ ·▷▷ b and a ▷▷ ·▶▶ b (by switching rôles).197

If there is an infinite →-reduction from a, then there are infinite reductions from a of198

shape (▶▶ ·▷▷ ·▶ω or ▶▶ ·▷ω) and of shape (▷▷ ·▶ω or ▷▷ ·▶▶ ·▷ω).21
199

These considerations extend to families of rewrite systems if affluence holds.200

▶ Remark 14. In general, the transformation from γ into γ̂ in the proof of Lem. 10 is not201

effective since it requires deciding whether or not a given object is ▶↾γ-terminating. However,202

if we assume ▶ is terminating, as is the case in Cor. 16 below, then the decision is always203

‘yes’. Assuming also the other actions (choosing a step in γ given its source object in γ, and204

finding a step witnessing transitivity) are effective, the transformation itself is.205

To obtain the generalisation of Cor. 12 for two rewrite systems, to finite families of rewrite206

systems [20], we accordingly extend Lem. 10 from two rewrite systems ▶,▷ to finite families207

of rewrite systems. The extension and its proof structure are analogous to how Lem. 6208

extends Lem. 1, differing only in the invariant employed (using the ▷-reduction is preferential209

there vs. ▶-normal and through objects of the original reduction here). The notions and210

result coincide with those of Lem. 10 for the case n = 2 and →1 := ▶ and →2 := ▷.211

▶ Lemma 15. Let → be the union of the family (→i)1≤i≤n. For any →-reduction ϵ there is212

an ind reduction protracting and through it, if affluence of the family holds for ϵ: for all213

a, b, c in ϵ and 1 ≤ i < k ≤ n, if a→k b→i c then a→ c.214

21 In general, it’s not true that the conjunction of any pair, one from each disjunct, holds. E.g. we cannot
find infinite reductions from 0 of both shapes ▶▶ ·▷ω and ▷▷ ·▶ω, for ▶ the predecessor relation on even
natural numbers and ▷ the difference of the less-than order and ▶; so ▶ ∪▷ = < is trivially transitive.
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Proof. By induction on n. In the base case there’s only 1 rewrite system. In the step case,215

given a →-reduction δ, Lem. 10 applies to ▶ :=→1 and ▷ :=
⋃

2≤i≤n→i since affluence of216

the original family for δ entails affluence of ▶,▷ for δ (seen as a (▶∪▷)-reduction), yielding217

there is a ▶-normal reduction δ̂ protracting δ and through it of shape either ▶▶ · ▷▷ · ▶ω
218

or ▶▶ · ▷α for α ≤ ω. In either case let γ be the ▷-subreduction, i.e. having indices ≥ 2.219

Then γ is a ▷↾γ-reduction (any reduction is a reduction for the rewrite system restricted to220

the steps in the reduction) with ▷↾γ =
⋃

2≤i≤n→i↾γ by distributivity of intersection over221

union. Observe that affluence of the latter family holds for γ: if a→k↾γ b→i↾γ c for i < k,222

then a→j c for some 1 ≤ j ≤ n by affluence of the original family for δ, and j ≥ 2 since a is223

▶-normal per construction of δ̂ (and selection of γ from δ̂), so a→j↾γ c as a ▷ c and a is on224

γ by a→k↾γ b, and c in γ by b→k↾γ c. Hence the induction hypothesis applies to γ yielding225

an ind reduction γ̂ protracting and through γ. Thus, γ̂ is of shape ↠2 · . . . ·↠n (·→ω
i )226

with the last infinite part, for some index i, optional. We see that the reduction obtained227

by replacing12 γ in δ̂ by γ̂ is as desired, i.e. protracting and through δ and satisfying the228

ind-criterion.13 ◀229

Observe that affluence of the family: →k ·→i ⊆ → for all 1 ≤ i < k ≤ n, entails its affluence230

for any →-reduction.231

▶ Corollary 16. 1. → :=
⋃

1≤i≤n→i is terminating iff all →i are, if → is transitive [20,232

Thm. 1,Cor. 1];233

2. → := ▶ ∪▷ ∪≫ is terminating iff ▶,▷,≫ are, if (▷ ·▶) ∪ (≫ ·▶) ∪ (≫ ·▷) ⊆ → [5,234

Thm. 2].235

Proof. 1. By Lem. 15 using that transitivity of → implies affluence of the family;236

2. The instance of item 1 for n := 3 and →1 := ▶ and →2 := ▷ and →3 :=≫. ◀237

▶ Remark 17. We are puzzled by the following remark in [21] (our boldface): “As observed238

by Geser in [13, pag 31], the fact that given any two well-founded binary relations if their239

union is transitive then it is well-founded has been remarked before Podelski and Rybalchenko.240

However the Termination Theorem is a non-trivial generalization of this result. In fact it241

cannot be directly proved from it by induction over the number of the relations, since242

we cannot keep the transitivity through the inductive steps.” True though that may be, it243

doesn’t rule out the possibility that termination of the transitive family
⋃

1≤i≤n→i follows244

from termination of the transitive family of restrictions
⋃

2≤i≤n→i↾γ, which as we showed245

does suffice for a direct proof by induction from the case n = 2; cf. also the appendix.246

Given that the strands of work of [5] and [20] are similar in spirit, both extending [8]247

from two rewrite systems to arbitrary finite families of such, and the absence of [20] from248

the references of [5], it seems that the authors of the latter were not aware of the former.249

Note that though the results and techniques of both are similar, as we show here, they are250

incomporable; cf. the text below Rem. 14.251

Partite. Inspired by [5, Thm. 4] we present the notion of a family being (n-)partite, a252

variation on affluence, that is on the one hand more strict than affluence in that the index of253

the steps in its conclusion must have (weakly) increased, but on the other hand more liberal254

in that steps for the transitive closure are allowed. It is a generalisation of (the basis for; see255

below) the notion of tripartite [5, Thm. 4].22
256

22 Below, it will be used as a building block to regain [5, Thm. 22 (Preferential Commutation)].
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We call a family→ :=
⋃

1≤i≤n→i (n-)partite if: →>i ·→+
i ⊆ →>i∪→+

i for 1 ≤ i ≤ n. and257

say it is (n-)partite for a →-reduction γ, if for all a, b, c in γ and 1 ≤ i < n, if a→>i b→+
i c,258

then a →>i c or a →+
i c. Note that a family being (n-)partite entails the same for any259

→-reduction.260

▶ Lemma 18. For any →-reduction ϵ there is an ind ≫-reduction ϵ̂ protracting and through261

ϵ, for → :=
⋃

1≤i≤n→i partite for ϵ, and ≫ the union of (→+
i )1≤i<n and →n.262

Proof. By induction on n, with the base case n = 1 being trivial. For the step case suppose263

γ is a →-reduction for a family of size n+ 1. Then γ can be seen as a (▶ ∪▷)-reduction for264

▶ :=→+
1 and ▷ :=→>1, for which Lem. 10 yields an ind (▶ ∪▷)-reduction γ̂ protracting265

and through γ, since affluence of ▶,▷ for γ follows from the original family for γ being266

partite for i = 1.267

Let δ be the ▷-subreduction of γ̂. It is a →-reduction for the family (→i)2≤i≤n+1 with268

the family being partite for δ inherited (via γ̂) from that of the original family for γ. The269

induction hypothesis for δ then yields an ind ((
⋃

2≤i≤n(→i)+)∪→n+1)-reduction (hence also270

an ind ≫-reduction) δ̂ protracting and through δ. Finally, we obtain an ind ≫-reduction271

protracting13 and through γ, by replacing12 δ by δ̂ in γ̂. ◀272

Jumping, affluence and partite being special cases of commutation / factorisaton makes that273

known methods [15, 17] for localising [11] the latter are at our disposal for the former. In274

particular, the transitive closure in the assumption of a family being partite may be elided.275

▶ Remark 19. Being local bipartite ▷ · ▶ ⊆ ▷ ∪ ▶+ entails ▷ · ▶+ ⊆ ▷ ∪ ▶+, i.e. ▶,▷276

being bipartite.23 This follows from ▷ · ▶n ⊆ ▷ ∪ ▶+ for all n, which can be proven by277

induction on n; cf. the proof of Lem. 25. This is the analogon of Hindley’s Lemma [15,278

Ex. 15] and of that semi-confluence entails confluence [1]. Combining that if ▷ ·▶ ⊆ ▷ ∪▶279

then ▷+ ·▶+ ⊆ ▷+ ∪▶+ [19, Lem. 2.4] with the above, yields that if ▷ ·▶ ⊆ ▷ ∪▶+ then280

▷+ ·▶+ ⊆ ▷+ ∪▶+, by + being a closure operation.281

▶ Remark 20. The ≫-reduction obtained in Lem. 18 can be trivially transformed into a282

→-reduction, by unfolding →+
i -steps into (non-empty) →i-reductions, preserving ind and283

protracting the original reduction again, but not necessarily through its objects as the objects284

introduced by unfolding need not satisfy that constraint; cf. footnote 16. (Of course, if we285

drop the transitive closures in being partite, the unfolding is trivial, does not introduce286

objects, and the resulting reduction is through the original one per Lem. 15.)287

Combining. As known and shown in [5, Sect. 3] simply taking the ‘union’ of the conditions288

of modular termination results typically fails. For instance, one could surmise that → :=289 ⋃
1≤i≤n→i is terminating iff all →i are, if →>i ·→i ⊆ →∪ (→i ·↠≥i) (†) holds, a condition290

‘unifying’ the jumping and affluence conditions (of Lem. 6 and 15). But this fails already for291

n = 3, as can be seen by reusing [5, Ex. 9(a)].24
292

▶ Example 21. b ▶ d, c ▷ d ▷ a ▷ b, and a≫ d, b≫ c are terminating but their union is293

not, e.g. a≫ d ▷ a, despite satisfying condition (†) for →1 := ▶, →2 := ▷ and →3 :=≫.294

Still, sometimes one can ‘stack’ the results ‘on top of’ each other. This technique was already295

employed to good effect in [5, Sect. 4 and 7]. Here we give further examples of such a modular296

23 By taking the converse being an anti-automorphic involution, this is equivalent to that if ▶ ·▷ ⊆ ▶+ ∪▷
then ▶+ ·▷ ⊆ ▶+ ∪▷.

24 Such finite counterexamples are also easily found automatically by the tool Carpa [24].
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approach using the above three results (jumping, affluence, partite) as basic building blocks,297

and also show that these can be used to refactor some known results.298

We first stack affluence on top of jumping for n = 2, i.e. on top of Lem. 1. The idea299

is that given a reduction γ jumping yields a reduction γ̂ through preferential objects, and300

affluence can be stacked on top of it due to that it zooms-in on a subset of the objects of γ̂,301

still preferential.302

Formally, call an object preferential (for γ) if any ▶-step from it yields a →-terminating303

object from which the target (if any) of γ cannot be reached (by →-steps), for → = ▶ ∪▷.304

▶ Lemma 22. For any →-reduction there is an ind reduction protracting it, for → :=305 ⋃
0≤i≤n→i, if jumping affluence holds: →>i · →i ⊆ →>0 ∪ (→0 ·↠) for 0 ≤ i ≤ n.306

Proof. Suppose to have a →-reduction δ. Since jumping affluence entails jumping for307

▶ :=→0 and ▷ :=
⋃

1≤i≤n→i and → = ▶ ∪▷, by Lem. 1 there is a preferential (▶ ∪▷)-308

reduction δ̂ protracting δ of shape either ▶▶ · ▷▷ · ▶ω or ▶▶ · ▷α for α ≤ ω. Let γ be the309

▷-part of δ̂, in either case. By δ̂ being preferential for δ, each object on γ is preferential for δ.310

By definition, γ is a ▷↾γ =
⋃

1≤i≤n(→i↾γ)-reduction. We claim affluence of this family311

holds, yielding an ind (▷↾γ)-reduction γ̂ protracting γ by Lem. 15. By replacing γ by γ̂ in312

δ̂, we then obtain an ind →-reduction protracting δ̂, hence δ.313

To prove the claim, suppose a (→k↾γ) · (→i↾γ) b for some 1 ≤ i < k ≤ n. Then314

a→k · →i b and a is on γ and b is in γ, so by jumping affluence either a→j b for some j > 0315

or a→0 ·↠ b. In the former case, we conclude to a→j↾γ b as desired, whereas the latter316

case cannot hold as that would contradict the object a on δ̂ being preferential, as it then317

would allow a reduction headed by a ▶-step and protracting it, via b. ◀318

▶ Corollary 23. → :=
⋃

0≤i≤n→i is terminating iff all →i are, if jumping affluence holds.319

▶ Remark 24. Note that for the rewrite systems in Ex. 21, jumping affluence fails: a≫ ·▷ a320

but neither a (▷ ∪≫) a nor a ▶ ·↠ a.321

Similarly, being partite may be stacked on top of jumping for n = 2, i.e. on top of Lem. 1.322

▶ Lemma 25. For any →-reduction there is an ind reduction protracting it, for → :=323 ⋃
0≤i≤n→i if jumping partite holds: →>i · →i ⊆ →>i ∪→+

i ∪ (→0 ·↠) for 0 ≤ i < n.324

Proof. Suppose to have a→-reduction δ. Since jumping partite entails jumping for ▶ :=→0325

and ▷ :=
⋃

1≤i≤n→i and → = ▶ ∪▷, by Lem. 1 there is a preferential (▶ ∪▷)-reduction δ̂326

protracting δ of shape either ▶▶ ·▷▷ ·▶ω or ▶▶ ·▷α for α ≤ ω. Let γ be the ▷-part of δ̂, in327

either case. By δ̂ being preferential for δ, each object on γ is preferential for δ.328

Jumping partite entails →>i · →+
i ⊆ →>i ∪→+

i ∪ (→0 ·↠) for 1 ≤ i < n, as shown by329

an easy induction; cf. Rem. 19. We claim that from this it follows that the family (→i)1≤i≤n330

is partite for γ, yielding an ind ▷-reduction γ̂ protracting γ by Lem. 18 and using Rem. 20.331

By replacing γ by γ̂ in δ̂, we then obtain an ind →-reduction protracting δ̂, hence δ.332

To prove the claim, note that if a →>i b →i c for a, b, c in γ and 1 ≤ i < n, then333

a→0 ·↠ c cannot hold, as that would contradict (via c) a being preferential for δ. ◀334

▶ Corollary 26 ([5]). 1. → :=
⋃

0≤i≤n is terminating iff all →i are, if jumping partite335

holds [5, Thm. 22 (Preferential Commutation)];25
336

25Jumping partite is our systematic naming arising from (re)factoring into jumping and partite. It is
called preferential commutation in [5].
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2. ▶∪▷∪≫ is terminating iff each of ▶,▷,≫ is, if (▷∪≫) ·▶ ⊆ ▷∪≫∪(▶ ·(▶∪▷∪≫)∗)337

and ≫ ·▷ ⊆ ≫∪▷+ ∪ (▶ · (▶ ∪▷ ∪≫)∗) [5, Thm. 4 (Tripartite)].338

Proof. 1. As for Cor. 3(1) but using Lem. 25 (instead of Lem. 1);339

2. The instance of item 1 for n := 2 and →0 := ▶ and →1 := ▷ and →2 :=≫. ◀340

One can recombine the results in many ways. Here we present but two examples illustrating341

that: we stack jumping on top of jumping affluence and jumping partite, respectively.342

▶ Corollary 27 (Family packs). → :=
⋃

0≤i≤n is terminating iff all →i are,343

1. if for some 0 ≤ k ≤ n, →>i · →i ⊆ →>0 ∪ (→0 ·↠) for 0 ≤ i < k, and →>i · →i ⊆344

→>i ∪ (→i ·↠≥i) for k ≤ i < n; or345

2. if for some 0 ≤ k ≤ n, →>i · →i ⊆ →>i ∪ →+
i ∪ (→0 · ↠) for 0 ≤ i < k, and346

→>i · →i ⊆ →>i ∪ (→i ·↠≥i) for k ≤ i < n [5, Thm. 28 (Preferential Jumping)]; cf.347

p. 80 of the accompanying presentation slides).348

Proof. 1. Suppose there were an infinite →-reduction γ. This induces ‘the same’ infinite349

reduction for the family (→′
i)0≤i≤k where →′

i :=→i for 0 ≤ i < k and →′
k :=

⋃
k≤i≤n→i350

(combining all →i for k ≤ i ≤ n). Then →′ = → (as relations) and jumping affluence351

holds, →′
>i · →′

i ⊆ →′
>0 ∪ (→′

0 ·↠′) for 0 ≤ i < k, by assumption for the original family,352

as →′
>i =→>i, →′

i =→i and →′
0 =→0 for such i. Hence Lem. 22 applies yielding an353

infinite ind-reduction tailing off in an infinite →′
i-reduction δ for some 0 ≤ i ≤ k.354

Since →′
i =→i is assumed terminating for 0 ≤ i < k, we must in fact have that δ is an355

infinite →′
k-reduction, inducing ‘the same’ infinite reduction for the family (→i)k≤i≤n.356

for which jumping holds by assumption. Hence Lem. 6 applies yielding an infinite357

ind-reduction tailing off in an infinite →i-reduction for some k ≤ i ≤ n; contradiction.358

2. Suppose there were an infinite →-reduction γ. This induces ‘the same’ infinite reduction359

for the family (→′
i)0≤i≤k where →′

i := →i for 0 ≤ i < k and →′
k :=

⋃
k≤i≤n→i360

(combining all →i for k ≤ i ≤ n). Then →′ =→ (as relations) and jumping partite holds,361

→′
>i ·→′

i ⊆ →′
>i ∪ (→′

i)+ ∪ (→′
0 ·↠′) for 0 ≤ i < k, by assumption for the original family,362

as →′
>i =→>i, →′

i =→i and →′
0 =→0 for such i. Hence Lem. 25 applies yielding an363

infinite ind-reduction tailing off in an infinite →′
i-reduction δ for some 0 ≤ i ≤ k.364

We then proceed as in the previous item. ◀365

▶ Remark 28. As before the proof shows more (than preservation of termination); ind366

reductions are obtained in both cases.367

Conclusion and future work. We have presented more modular termination results26
368

much in the spirit of [6, 5] but without the (direct) aim of applying the results to path orders;369

the aims here were mainly methodological in nature. Though we do expect our refined results370

to have applications to path orders and also in the study of transition invariants [20]. We371

leave that to further research, but illustrate the idea by the following simple example [20].372

▶ Example 29. Collapsing non-positive integers, the program in [20, Fig. 2 (CHOICE)] is373

faithfully modelled (qua termination) by the transition relation R relating pairs of natural374

numbers (x, y) and (x′, y′) if the latter is either (x −̇ 1, x) or (y −̇ 2, x+ 1), assuming x, y > 0375

(which we leave implicit below). Consider moreover ▶ := ¬P (x, y) ∧ (Q ∨ P (x′, y′)) and376

▷ := P (x, y) ∧ Q ∧ P (x′, y′) for Q := x + y > x′ + y′ and P (n,m) := m −̇ 2 ≤ n ≤ m −̇ 1.377

26 Both (more modular) (termination results) and more (modular termination results).
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Then R ⊆ → for → := ▶ ∪ ▷ since P is created by the first and preserved by the second378

R-transition, and Q holds for the second, and both ▶ and ▷ are terminating since Q is and379

since P and ¬P do not compose for ▶. For the same reason ▷ ·▶ = ∅ yielding affluence of380

▶,▷ hence termination of → by Cor. 12, so R is terminating.381

The modular termination technique of [20] relies on checking that the transitive closure R+
382

of the transition relation is included in the so-called transition invariant27 and it is reliance383

on this that “makes the method more difficult in practice” [4, sidebar on p. 90]. The above384

exemplifies that checking affluence is in general easier than checking transitivity, gives rise to385

fewer constraints, suggesting it might be profitable to use instead.386

▶ Remark 30. We arrived at the properties P and Q by hand: first seeing the decrease of387

the sum in the second R-transition (modelled by Q), and then seeing that though the388

first R-transition may increase that sum in general, we then end up in a state (modelled389

by P ) from which on it will not. This gives rise to the question how to automate this.390

The analysis of the CHOICE example in [20] is based on their notion of transition391

invariant [20, Def. 1]: a superset of the transitive closure of the transition relation R of a392

program restricted to its accessible states. For CHOICE, first the transition invariant393

T = T1 ∪ T2 ∪ T3 for T1 := x′ < x and T2 := x′ + y′ < x+ y and T3 := y′ < y is proposed394

in [20, Sect. 3], and next a so-called inductive transition invariant I = I1 ∪ I2 ∪ I3 ∪ I4 for395

I1 := x′ < x ∧ y′ ≤ x and I2 := x′ < y − 1 ∧ y′ ≤ x+ 1 and I3 := x′ < y − 1 ∧ y′ < y and396

I4 := x′ < x ∧ y′ < y is proposed in [20, Sect. 5] (we again omitted positivity conditions).397

How T, I were arrived at was not given in [20],28 but methods to find such automatically398

has since been the subject of a flurry of follow-up research (tools); see e.g. [4]. We think it399

should be interesting to try to rebase those developments, instead of on the termination400

theorem of [20], on the methods presented here, in particular on affluence (introduced),401

jumping [7], partite [5], and on the combinations thereof.402

Termination of CHOICE itself is (and was in 2004) automatic: the transition relation R403

can be faithfully modelled29 by the reduction relation of the TRS with rules:404

p(s(x), s(y)) → p(x, s(x))405

p(s(x), s(s(y))) → p(y, s(s(x)))406

where natural numbers are represented in unary, and termination of the TRS is easily407

shown by termination tools for TRSs such as Aprove and TTT2, e.g. by the polynomial408

interpretation p(n,m) := 9n+m+ 15 and s(n) := 4n+ 1, which entails termination of R.409

We have opted for presenting the results in a 2D way: as transformations on transformations410

(reductions), extending our earlier basic approach in [16] to also cover [20, 5]. We go beyond411

the latter in two ways: (1) by dealing not only with infinite reductions but also with finite412

reductions, opening up the possibility of comparing / transforming reduction lengths; (2)413

by precisely characterising the shapes of the transformed reductions (as reductions whose414

indices are sorted in non-decreasing-order with the possible exception of an infinite tail for415

one of the indices). We leave reaping potential benefits from this to future work.416

Due to its relationship to Ramsey Theory, (some of the) problems and results considered417

here have attracted attention in proof theory and constructive mathematics, studying them418

27 Cf. the specialisation of the proof rule of [20, Fig. 5] to termination, as proposed there; see Remark 30.
28 Also that T, I are transition invariants is not shown but is suggested to follow by noting that I is

inductive, i.e. R ∪ (I ·R) ⊆ I, and that I entails T .
29 Terminating before not after a negative components would be obtained though.
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using various tools, e.g. inductive termination (which holds for an object if it does for each of419

its one-step reducts, inductively), almost fulness (which holds for a relation if its complement420

does not allow a homogeneous sequence [22, App. A.5]), well-quasi orders (WQOs; well-421

founded orders without infinite anti-chains), better-quasi orders, open induction, bar recursion,422

calculational proofs, . . . ; see e.g. [3, 23] and other literature cited (or not) above for more.423

We leave adapting those analyses for later / to others, and have focussed exclusively on424

(structuring) the results (and their proofs) and on the transformational 2D perspective.425

That being said, we foremost hope the results and their proofs are correct, that they can426

be useful for (formalised) termination proofs, and that our structuring constitutes a good427

basis for further extensions and tools.428
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Appendix. We recapitulate our original30 proof [12] of the disjunctive termination theorem484

of [20], for the (extension of the) predicate P on objects defined by:485

P := {a | a is →-perpetual and all single-step →n+1-reducts of a are →-terminating}486

where we (re)call an object (is) perpetual if there is an infinite reduction from it.31
487

Proof. Assume → :=
⋃

i≤n+1→i is transitive.488

To show transitivity of ▶ :=→′↾P := {ϕ : a→′ b | a, b ∈ P} for →′ :=
⋃

i≤n→i, suppose489

a ▶ b ▶ c. For a ▶ c to hold, a →′ b and a, b ∈ P must hold. That a ∈ P holds follows490

from a ▶ b, and that c ∈ P holds from b ▶ c. To see that a→′ c, it suffices that a ▶ b ▶ c491

entails a → b → c by ▶ ⊆ →′ ⊆ →, hence a → c by the assumed transitivity of →, from492

which we conclude to a→′ c by observing that if all single-step →n+1-reducts of an object493

d are →-terminating and d→ e with e →-perpetual then d→′ e, (as otherwise e would be494

→-terminating as single-step →n+1-reduct of d), with the conditions of the observation met495

for a→ c by a, c ∈ P .496

Combining transitivity of →′↾P with →↾P =→′↾P =
⋃

i≤n(→i↾P ), which hold respect-497

ively by the same observation and distributivity of intersection over union, the induction498

hypothesis is seen to apply to yield termination of →↾P , since each →i↾P is terminating as499

restriction of →i, with the latter terminating by assumption.500

We claim that for any →-perpetual object b there is a c ∈ P such that the following501

two properties hold: (I) b ↠n+1 c; and (II) for any a whose single-step →n+1-reducts502

are →-terminating, if a → b then a →′ c. From the claim it follows that all a ∈ P are503

→↾P -perpetual, since by a ∈ P we have a→ b for some →-perpetual b, hence by (II) there504

is a c ∈ P such that a→′ c, using that the single-step →n+1-reducts are →-terminating by505

a ∈ P .506

Combining the two previous paragraphs we have on the one hand that objects in P are507

→↾P -perpetual, but on the other hand that →↾P is terminating, so that P must be empty.508

But then by (I), there are no →-perpetual objects, i.e. → is terminating, as desired.509

30 Translated from Dutch into English.
31 Perpetual objects are named in line with the perpetual strategy [22, Def. 4.9.16 and Sect. 9.5], selecting

such an object if one is available. Perpetual objects are called immortal in [5].
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It remains to prove (the two items of) the claim. We proceed by well-founded induction510

on b ordered by n+1←, distinguishing cases on whether or not b ∈ P :511

if b ∈ P , then we trivially conclude by the observation setting c := b; and512

if b ̸∈ P , then since b is →-perpetual there exists a →-perpetual b′ such that b→n+1 b
′.513

By the induction hypothesis for b′, there is an object a c′ ∈ P such that (i) b′ ↠n+1 c
′;514

and (ii) for any a whose single-step →n+1-reducts are →-terminating, if a → b′ then515

a →′ c′. Setting c := c′ we conclude to (I) by b →n+1 b
′ ↠n+1 c

′ = c using (i); and to516

(II) since for any a whose single-step →n+1-reducts are →-terminating, if a → b then517

a → b′ by b →n+1 b
′ and the assumed transitivity of →, from which we conclude to518

a→′ c′ = c using (ii). ◀519

Note that as for the proof of Lem. 15 a restricted form of transitivity suffices for the proof to520

go through, but in this case it suffices to have →i · →k ⊆ → only for i < k. However, since521

the order on the indices of the relations →i was chosen arbitrarily, this is equivalent.522


