
Submitted to:
TERMGRAPH 2024

© V. van Oostrom
This work is licensed under the
Creative Commons Attribution License.

On naïvely implementing the λβ -calculus

Vincent van Oostrom
University of Sussex

School of Engineering and Informatics
Brighton, United Kingdom

vvo@sussex.ac.uk

We present naïve (Haskell) implementations of reduction to (weak-head) normal form in the λβ -
calculus. As known, a λ -term M can be lifted to a supercombinator term L (M) and TRS TM such
that left–outer (weak-)β -reduction from M to (wh)nf is isomorphic to supercombinator reduction in
TM from L (M), and this yields an efficient implementation by term graph rewriting. We show this is
naïvely achieved by supplying fresh variables to stuck terms, (λ -abstractions resp. supercombinators
with too few arguments) and recast it as naïve term graph rewriting modulo the�-calculus.

1 A naïve implementation of β -reduction to nf via whnf
We proffer a rewriting perspective on implementing the λβ -calculus. Since in the literature other per-
spectives are dominant, notably the machine view, cf. the SECD-machine [38] and the Krivine ma-
chine [34], and the semantic view as represented by normalisation-by-evaluation [14], we first make
the case for our rewriting view. Throughout, we assume familiarity with the λ -calculus [11, 64], term
rewriting [9, 64], and term graph rewriting [12]; if neither a definition / lemma nor an explicit reference
for a notion / result is given, it can be found in those works or our accompanying code [55]. Additional
clarifying notes, organised per section, can be found in the appendices. Fig. 1 presents a naïve but fully

data Lam = Lam Head [Lam] deriving (Show)
data Head = Var String | Abs String Lam deriving (Show)
subst x s (Lam h l) = let

(Lam h' l') = case h of
(Var y) | x == y -> s
(Abs y u) | x /= y -> Lam (Abs y (subst x s u)) []
_ -> Lam h [] in (Lam h' (l'++(map (subst x s) l)))

whnf (Lam (Abs x t) (u:l)) = let Lam h s = subst x u t in whnf (Lam h (s++l))
whnf t = t
nf = rnf (\x -> 1)
rnf f t = let

(Lam h l) = whnf t
f' x = \y -> f y + (if (x==y) then 1 else 0)
v x = x++"_"++show (f x) in case h of

(Abs x _) -> Lam (Abs (v x) (rnf (f' x) (Lam h [Lam (Var (v x)) []]))) []
_ -> Lam h (map (rnf f) l)

Figure 1: Naïve β -reduction of λ -terms to whnf and to nf by left–outer reduction in Haskell

functional Haskell implementation of reduction to (weak head) normal form in the (weak) λβ -calculus
by means of the left–outer strategy on (morally)1 closed λ -terms. The (partial) function whnf implements

1It fails on (λxy.x)y but succeeds on (λxy.x)z as substitution is naïve, performs no α-renaming; z acts as a constant, y not.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 On naïvely implementing the λβ -calculus

weak head β -reduction to weak head normal form [59]; λ -terms of shape λx.t or x⃗ t, and the (partial) function nf
implements β -reduction to normal form [11]; λ -terms recursively in whnf, based on the lo (left–outer; leftmost or
normal order) strategy. We implement nf on top of whnf in a context-free [64, Def. 9.1.29] way (§) recursing on
direct subterms of whnfs. On whnfs of shape λx.t this is implemented by calling nf recursively on (λx.t)xi and
returning λxi.s if that outputs s, where subscripting makes xi fresh (onus on user)(‡). To strike a balance between
Haskell and mathematical notation [11], we (1) omit empty argument vectors, (2) let the body of λ -abstractions
extend to the right as far as possible, (3) omit parentheses as much as possible without creating ambiguity.

Example 1. The self-applicator δ = λx.xx and Church-numeral 1 := λyz.yz are represented as:
delta = (Lam (Abs "x" (Lam (Var "x") [Lam (Var "x") []])) [])

one = (Lam (Abs "y" (Lam (Abs "z" (Lam (Var "y") [Lam (Var "z") []])) [])) [])
Evaluating nf (Lam (Abs "x" (Lam (Var "x") [Lam (Var "x") []])) [one]) represents β -normalising
δ 1 yielding Lam (Abs "z_1" (Lam (Abs "z_2" (Lam (Var "z_1") [Lam (Var "z_2") []])) [])) [].
Evaluating δ δ , i.e. nf (Lam (Abs "x" (Lam (Var "x") [Lam (Var "x") []])) [delta]) loops.

Below we use code [55] that is less clunky, it offers abbreviations and pretty-printing.2 We merely wanted to
showcase that a rewrite-based implementation can rival any other qua compactness and simplicity. But now we
show these ideas extend to implementing λ -calculus efficiently by graph rewriting along the lines of [10, 24] (†).

2 Implementations
Say a rewrite system [64, Defs. 8.2.2] implements another if they are isomorphic (so on objects and on steps). Note
that isomorphism is a very strong form of implementation; one usually makes do with weaker notions [62, 13].
We illustrate our notion of implementation by means of the rewrite systems in play here, the λβ -calculus [11],
supercombinators [31, 59], and term graph rewrite systems [64, Ch. 13], and translations between them [41, 10, 24].

From the λ -calculus to supercombinators (†) we base our developments on a syntax encompassing both,
PRSs [43] [64, Ch. 11]. To stay as light-weight as possible we adopt notational conventions that are a mixture of
those for the λ -calculus, leaving application implicit and using parentheses if association to the left is not intended
(as above), and those for term rewriting but using square brackets to enclose arguments. For each rule of a PRS
P we assume there is a corresponding rule symbol (§) in the signature [64, Sec. 8.2.2]. The P-multistep rewrite
system ◦−→P has P-terms with variables of base type over that signature (without rule-symbols) as steps (objects),
and src / tgt are the homomorphic extensions of mapping a rule-symbol to its lhs / rhs.3 Restricting multisteps to
have single occurrences of rule-symbols yields→P (single) steps, and to occurrences at disjoint positions q−→P

parallel steps.4 We use Φ,Ψ,X , . . . to range over (non-empty) multisteps and parallel steps and φ ,ψ,χ, . . . , . . .
for steps. Reductions arise as usual from this, as (possibly empty) sequences of steps, and will be denoted by
doubling the arrowhead; e.g. ↠P denotes a P-reduction of P-steps→P . The rewrite systems for the λ -calculus
arise from adjoining the rule-symbol β to the PRS [43, Ex. 3.4][64, Ex. 11.2.6(i)] having a signature comprising
application and abstraction, with src and tgt the extensions of mapping β [x.M[x],N] to (λx.M[x])N and M[N].

Example 2. Let δ := λx.xx and Ω := δ δ as usual, in the λ -term M := λy.(λ z.y)Ω. There are 4 multisteps from
M, i.e. having M as source: M (the empty multistep) and φ := λy.(λ z.y)β [x.xx,δ] (a loop) both to M, i.e. having
M as target, and ψ := λy.β [z.y,Ω] and X := λy.β [z.y,β [x.xx,δ]] both to λy.y.

That there are 4 multisteps ◦−→β from M corresponds to the fact that in the classical view [11] M contains
2 β -redexes, giving rise to 22 = 4 subsets that can be contracted / completely developed in one go. The second
step φ and third ψ are β -steps as they contain exactly one rule-symbol, contract one β -redex. The fourth X is a
β -multistep but not a parallel β -step because the Ω-redex is nested inside the redex β [z.y,β [x.xx,δ]], as β [x.xx,δ].

We use wCHβ (weak-CH-β [19]) to denote the restriction of β to redexes not containing variables bound
outside them, and wβ (weak-β [59]) the further restriction to not being a redex below a λ -abstraction at all.

2The experiments reported here were done with GHCi 8.10.7 on a MacBook Pro (2019, 16 inch, Intel) with macOS 13.6.
3Cf. [52, Sec. 3] for a progenitor of this idea, of introducing rule-symbols to have steps as terms / graphs [64, Rem. 9.4.30].
4Beware the definition of parallel step differs in the literature on the λ -calculus and TRSs; ours is that of the latter.

V. van Oostrom 3

Example 3. In Ex. 2 φ is weak-CH-β but not weak-β , and ψ is β but neither weak-β nor weak-CH-β . We have
M is in weak-β -nf, but loops M→wCHβ M and in fact M has no weak-CH-β -nf, yet ψ : M→β λy.y, which is in
β -nf. (The first and last can be checked by evaluating whnf and nf on example2M in the Haskell code of [55].)

Given a signature comprising application and a finite number of supercombinators κi, a supercombinator
rewrite system arises by adjoining for every supercombinator κi of arity n, a rule-symbol γi of arity n + 1, with src
and tgt the extensions of mapping γi[x1, . . . ,xn,x0] to κi[x1, . . . ,xn]x0 respectively r, with r a term over x0, . . . ,xn
and the supercombinators it depends on. Dependency is required to be well-founded (for the system as a whole).
Example 4. Using the format rule : lhs→rhs, the following constitutes a supercombinator system T :

γ0[y,x] :κ0[y]x → y γ1[x] :κ1[]x → xx γ2[y,x] :κ2[y]x → κ0[x]y

Dependency is well-founded indeed: the only dependency is of κ2 on κ0 as seen by the rhs of the last rule.
Stuck terms, of shape κi [⃗t], are the supercombinator equivalent of λ -abstractions. Just like the latter, they can

come unstuck by supplying a further argument; fresh variable arguments allow to observe the function body / rhs:
Example 5. For the supercombinator system of Ex. 4, the supercombinator term t := κ2[κ1[]κ1[]] only allows the
looping step φ ′ := κ2[γ1[κ1[]]] (checked by evaluating swchnf on arguments example4trs and example4trm).
The term t is stuck. Supplying the fresh variable y, allows to reach an nf / to observe its function body; informally:
t→y κ0[y(κ1[]κ1[])]→ y where the first step is enabled by supplying y and the second step is γ0[y,(κ1[]κ1[])].

Since that t y reduces to the nf y means t is (β -)equivalent to λy.y, the nf-computations in Ex. 3 and 5 are in
fact the same. This is no coincidence, but a consequence (†) of that the supercombinator system T and the term t
were obtained by lifting the λ -term M (evaluating lift example2M in our code yields the pair of (the rhss of) the
supercombinator system T and t). We describe lifting, referring to [65, 31, 59, 10, 24, 55] for details and code:
Description 1. Lifting L transforms a λ -term M into a TRS TM and a term L (M) over its signature. It acts ho-
momorphically on variables and applications, but on a λ -abstraction subterm λx.N, first N is recursively lifted and
then the resulting supercombinator term is split (by split) into the vector of its maximal x-free subexpressions and
its skeleton r (having only xs at its leaves), giving rise to a new supercombinator with arity the length of the vector,
and rule for it having r as rhs. (By M being finite L terminates, with well-founded dependencies.) Expanding E
transforms a supercombinator term back into a λ -term by recursively mapping each n-ary supercombinator κi with
rhs ri to its λ -abstracted rhs λ [x1, . . . ,xn]x0.ri. (E terminates by well-foundedness of dependencies.)

Lifting commutes with wβ -reduction in the sense that if M→wβ N then TN is a sub-TRS (up to naming of
supercombinators) of TM and L (M)→TM L (N) (up to naming again). From that, the implementation result (†)
of [10, 24] follows; using our not(at)ions and letting ⟨a→⟩ denote the restriction of a rewrite system→ to objects
reachable from a, it can be succinctly expressed as that ⟨L (M)→TM ⟩ implements ⟨M→wCHβ ⟩. That could be
(para)phrased, cf. [41], as the catchy slogan lazy functional programming is orthogonal term rewriting. There’s
a catch however. Ex. 3 exhibits a discrepancy between wβ as in lazy functional programming and wCHβ as in
the implementation result: the latter may not terminate in cases where the former does (even if it has a β -nf). Our
naïve idea (‡) to reconcile wβ with wCHβ , reflected in the code above and in [55], is based on two observations:

First, the left–outer strategies for wβ and wCHβ coincide on any λ -term M until reaching a whnf ; only after
wβ and wCHβ may diverge. Lifting such β -reductions to whnf yields left–outer supercombinator reductions from
L (M) to whnf, where whnf now means a supercombinator term that is either stuck or of shape x⃗t. Using whβ and
wh to denote the respective weak head steps, we thus have ⟨L (M)→wh⟩ implements ⟨M→whβ ⟩.

Second, both λ -abstractions and stuck supercombinator terms may be released by applying them to a fresh
variable as in Ex. 5. L commutes with such α-steps as it acts homomorphically on applications and variables.5

Using loβ and lo to denote the respective left–outer steps, where on whnfs we either perform an α-step supplying
a fresh variable and repeat, or recurse on the subterms (note that being in whnf or not is trivially decidable and
whnfs are stable under reduction [23, 45], in either case), we have ⟨L (M)→lo⟩ implements ⟨M→loβ ⟩.

Per construction, the generated supercombinator systems have a simple shape (†): they are orthogonal, left-
normal, and all lhss of rules are in applicator–constructor format. That shape is shared by the λ -calculus and combi-
natory logic, all of them ISs (interaction systems [6, 7]) and left–outer Dyck systems [58] affording nice properties,
e.g. confluence [64, Thm. 11.6.19] and (hyper-)normalisation of the left–outer strategy [58, Def. 27,Thm. 50]:
Lemma 1. For nf M′, we have M is β -convertible to M′ iff M loβ -reduces to M′ iff L (M) lo-reduces to M′ in TM .

5L would not act homomorphically if α-steps were to introduce λ -abstractions; think of λ s as being adjoined a posteriori.

4 On naïvely implementing the λβ -calculus

From supercombinators to maximal sharing graphs we view TRSs and TGRSs (term graph rewrite
systems [64, Ch. 13][16, 60, 8]) as systems rewriting structures (terms resp. term graphs) modulo a substitution
calculus (*) [57, 50, 61][64, Sec. 11.3.2]. On that basis we implement TRSs by TGRSs [60, 64, 8, 24], by example:
Example 6. Let ρ be the rule ℓ := g[x,a]→ a =: r of a TRS T . It can be instantiated by substituting an arbitrary
term for x; the variable x is implicitly universally quantified in ρ . The idea is to make substitution explicit by means
of some calculus. A naïve way to do so is to take the simply typed λ -calculus λ→;6 in λ→ the substitution of s for
x in t (implicit) can be brought about as the result of β -normalising (x.t)s (we leave λ implicit). Accordingly, we
λ -abstract x in both the lhs ℓ and the rhs r of the rule yielding a, now closed, rule ρ : x.g[x,a]→ x.a; no free xs.

Contracting a ρ-redex is then enacted in three stages: matching (β -expansion), followed by replacement (ac-
cording to ρ), and substitution (β -reduction). E.g., contracting the rightmost redex in t := f [a,g[a,a],g[a,a]] by
f [a,g[a,a],ρ a] proceeds as t β↞ f [a,g[a,a],(x.g[x,a])a]→ρ f [a,g[a,a],(x.a)a]↠β f [a,g[a,a],a] =: s. Both re-
dexes in t can be contracted in one go via the parallel step Φ := f [a,ρ a,ρ a]. The matching stage serves to search
and exhibit an occurrence of a lhs in a term, and the substitution stage serves to obtain a term, a unique substitution-
normal form, by expansion respectively reduction steps of the explicit substitution calculus λ→. To implement T

a

g

ρ

h h h→

h
I

ρ

f

ρ

a

tgt srcsrc tgt

:ρ

a

g a

→→

maximal sharing substitution calculus �

graph rewrite rule for g[x,a]→ a

ΦG :=

C

E

f

a

g

f

a

f

a

g

f

a
f

a

f

g

a

f

a

f

g

a

a

a

g

a

g

ρ

Figure 2: Maximal sharing term graph rewrite steps corresponding to T q←−- and→T -steps from term t

via a TGRS G we employ msg’s (maximal sharing directed term graphs [17, 60, 26]). Needing to implement finite
terms only, makes we are in a sweet spot: msgs are finite and acyclic and only have horizontal sharing [16]. As
signature of G we take an indirection symbol • [16, Sec. 3.3] having 1 output and for each function / rule-symbol
h of arity n of the TRS T , a corresponding symbol having n outputs. The three rule schemes of the substitution
calculus � are given at the bottom–left in Fig. 2, cf. [16, Fig. 3.9]), and we denote �-steps and reductions by→
and ↠. Given a TGRS G its multisteps ◦−→G (objects) are msgs3 over the signature (without rule-symbols) with
src / tgt on a msg G defined by first replacing each rule-symbol by its lhs / rhs (see the top–left of Fig. 2 for ρ),
followed by→-normalisation yielding a unique msg (up to graph isomorphism). Parallel steps q−→G are multisteps
where rule-symbols are not reachable from each other, and (single) steps→G have exactly 1 rule-symbol to which
there is 1 path from the root (the multistep toward the left in Fig. 2 is parallel since though ρ occurs only once it
is reachable via 2 paths from the root; the one to the right is a step). By being only an alternate account of msgs
in the literature ⟨tG→G ⟩ implements ⟨t→T ⟩ for any t in T ; cf. [60, 8, 24]. This extends seamlessly to parallel
and multisteps, ⟨tG q−→G ⟩ implements ⟨t q−→T ⟩ and ⟨tG ◦−→G ⟩ implements ⟨t ◦−→T ⟩ (e.g. mapping the parallel
T -step Φ := f [a,ρ a,ρ a] above to its tree and collapsing that to an msg yields the parallel step ΦG as displayed
(with indirection nodes inserted) in Fig. 2), and to strategies considered here owing to that they are positional [64,
Ch. 9] and positions in a term t are the same as access paths in its msg tG ; finally, prepending an @-node applied
to a fresh variable, to an msg implements α-steps on stuck supercombinator terms.

From supercombinators to sharing graphs we now assume TRSs are orthogonal and have lhss in applicator–
constructor shape [41] (†). We study minimising usage of the�-calculus. To that end, we omit the E-rule and allow
no C-reduction and C-expansion only to exhibit lhss [65] of rules as in Fig. 3, calling the resulting→-normal forms

6Beware, here λ→ is only used to model substitution in TRSs; it is independent of the (untyped) λ -calculus above.

V. van Oostrom 5

ς ′

· · ·s1 sn

s0
· · ·

(ς ,ε)

(ς , p j)

(ς , p) r

κi

@

κiκi

ζ

ξ
ς

ς ′ ς ′

@

T

T

T

L

T

T

T

T

T

T

T

x

T

· · ·s1 sn

s0

ςγi[s1, . . . ,sn],s0

ς•r

ς

@

κi

ςκi[s1, . . . ,sn]s0

ς

ζ

ξ

Figure 3: exhibiting redex-pattern (left) Lévy-labelling rule (middle) ((22)2)2 and

8︷ ︸︸ ︷
2 · . . . ·2 xs (right)

sg’s (sharing graphs). Observe then we have (1) no garbage-collection, (2) no maximisation of sharing during re-
duction, and (3) no unsharing of redex-patterns, only of constructors in them. Due to left-linearity steps cannot be
blocked despite (2). By (3) each single step on an sg G corresponds to a parallel step contracting some redexes
of the corresponding term t, but which ones? Maranget’s precise answer [41] is: ⟨G→G ⟩ implements ⟨t q−→F ⟩
where F denotes that we contract families, all redex-patterns with the same labelling, as exemplified by:

Example 7. Renaming the result of lifting M := 22 so of lift (ap two two) for the Church numeral 2 :=
λyz.y(yz) into more palatable TRS notation yields the term t := @[L,L] for rules @[T [y,z],x]→@[y,@[z,x]] and
@[L,x]→ T [x,x], where @ is application and T / L are the supercombinators for the λy- / λ z-abstractions. Then
R :@[L,L]→ T [L,L]→x @[T [L,L],x]→@[L,@[L,x]]→ T [@[L,x],@[L,x]] q−→ T [T [x,x],T [x,x]] by lo-reduction
supplying the fresh variable x to the stuck term T [L,L]. Supplying another fresh variables yields 4.

Labelling the rules per Fig. 3 enumerating the (5 resp. 3) subterms of the rhss yields: @[ς T [y,z],x] →
(ς ,0)@[(ς ,1)y, (ς ,2)@[(ς ,3)z, (ς ,4)x]] and @[ς L,x]→ (ς ,0)T [(ς ,1)x, (ς ,2)x]. Labelling R for initially labelled term tI :=
a@[bL, cL] yields (omitting the last step): tI → ζ T [(b,1)cL, (b,1)cL]→x

d@[ζ T [(b,1)cL, (b,1)cL], ex]→
d(ζ ,0)@[ξ L, (ζ ,2)@[(ζ ,3)(b,2)cL, (ζ ,4)ex]]→ d(ζ ,0)(ξ ,0)T [(ξ ,1)(ζ ,2))s, (ξ ,2)(ζ ,2)s] where s :=@[(ζ ,3)(b,2)cL, (ζ ,4)ex] and ζ :=
a(b,0) and ξ := (ζ ,1)(b,1)c. The copies of s belong to the same family both having label (ζ ,3)(b,2)c.

3 Some naïve conclusions on complexity

Example 8. Sharing can be seen at play at the intermediate stages and their interpretation when computing
(22)(22) as shown in Fig. 3, after computing the wCHβ -nf (in 16 steps) and after supplying a fresh variable
x (in 359 steps); supplying another y yields (in 256 steps) the Church numeral 256.

In msg rewriting of G each step can only cause constant change in width and height of G; e.g. change is not
more than 1 in Ex. 7. It follows from the implementation results that measuring the complexity of a reduction to
nf via its number of steps is reasonable [8, 2] for TRSs, and via lifting into a supercombinator system first, it also
is for the lo-strategy in the λ -calculus. Despite that sg rewriting does not maximise sharing during a reduction
it still has the constant change property, so again is reasonable, and (in the absence of family-duplication) lo is a
normalising and minimal / optimal strategy in the standard sense of [53, Thm. 2].

We have argued that factoring reduction to nf in the λ -calculus through reduction to whnf (i) allows for a trivial
implementation of the λ -calculus in Haskell, and (ii) makes it clear that loβ -reduction can be efficiently imple-
mented via the standard techniques of lifting and maximal sharing graphs. Next, (iii) relying on standard theory for
PRSs, and (iv) using graph rewriting modulo a substitution calculus, enabled connecting various implementation
results in a smooth and compact way. Still this is about first-order TRS (encodings of λ -calculus) only; whether
implemented in msgs, sgs, or via a let-construct, horizontal sharing can only do so much [4, Fig. 3]; our interest
lies more in cyclic sharing and beyond.

6 On naïvely implementing the λβ -calculus

References
[1] S. Abramsky (1990): The Lazy λ -Calculus. In D. Turner, editor: Research Topics in Functional Program-

ming, Addison Wesley, pp. 65–117.

[2] B. Accattoli & U. Dal Lago (2016): (Leftmost-Outermost) Beta Reduction is Invariant, Indeed. Logical
Methods in Computer Science 12(1), doi:10.2168/LMCS-12(1:4)2016.

[3] C. Appel, V. van Oostrom & J.G. Simonsen (2010): Higher-Order (Non-)Modularity. In C. Lynch, editor:
Proceedings of the 21st International Conference on Rewriting Techniques and Applications, RTA 2010, July
11–13, 2010, Edinburgh, Scotland, UK, LIPIcs 6, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp.
17–32, doi:10.4230/LIPIcs.RTA.2010.17.

[4] A. Asperti (2017): About the efficient reduction of lambda terms, doi:10.48550/arXiv.1701.04240.

[5] A. Asperti & S. Guerrini (1998): The optimal implementation of functional programming languages. Cam-
bridge Tracts in Theoretical Computer Science 45, Cambridge University Press.

[6] A. Asperti & C. Laneve (1995): Interaction Systems I: the theory of optimal reductions. Mathematical
Structures in Computer Science 4(4), pp. 457–504, doi:10.1017/S0960129500000566.

[7] A. Asperti & C. Laneve (1996): Interaction Systems II: the practice of optimal reductions. Theoretical
Computer Science 159(2), pp. 191–244, doi:10.1016/0304-3975(95)00062-3.

[8] M. Avanzini & G. Moser (2010): Closing the Gap Between Runtime Complexity and Polytime Computability.
In C. Lynch, editor: Proceedings of the 21st International Conference on Rewriting Techniques and Applica-
tions, RTA 2010, July 11–13, 2010, Edinburgh, Scotland, UK, LIPIcs 6, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, pp. 33–48, doi:10.4230/LIPICS.RTA.2010.33.

[9] F. Baader & T. Nipkow (1998): Term Rewriting and All That. Cambridge University Press.

[10] T. Balabonski (2012): A unified approach to fully lazy sharing. In J. Field & M. Hicks, editors: Proceedings
of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012,
Philadelphia, Pennsylvania, USA, January 22-28, 2012, ACM, pp. 469–480, doi:10.1145/2103656.2103713.

[11] H.P. Barendregt (1984): The Lambda Calculus: Its Syntax and Semantics, 2nd revised edition. Studies in
Logic and the Foundations of Mathematics 103, North-Holland, Amsterdam.

[12] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, R. Kennaway, M.J. Plasmeijer & M.R. Sleep (1987):
Term Graph Rewriting. In J.W. de Bakker, A.J. Nijman & P.C. Treleaven, editors: PARLE, Parallel Architec-
tures and Languages Europe, Volume II: Parallel Languages, Eindhoven, The Netherlands, June 15–19, 1987,
Proceedings, Lecture Notes in Computer Science 259, Springer, pp. 141–158, doi:10.1007/3-540-17945-3_8.

[13] G. Barthe, J. Hatcliff & M.H. Sørensen (1997): Reflections on Reflections. In H. Glaser, P.H. Hartel &
H. Kuchen, editors: Programming Languages: Implementations, Logics, and Programs, 9th International
Symposium, PLILP’97, Including a Special Trach on Declarative Programming Languages in Education,
Southampton, UK, September 3–5, 1997, Proceedings, Lecture Notes in Computer Science 1292, Springer,
pp. 241–258, doi:10.1007/BFB0033848.

[14] U. Berger & H. Schwichtenberg (1991): An Inverse of the Evaluation Functional for Typed lambda-calculus.
In: Proceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Amsterdam,
The Netherlands, July 15–18, 1991, IEEE Computer Society, pp. 203–211, doi:10.1109/LICS.1991.151645.

[15] T. Blanc, J.-J. Lévy & L. Maranget (2005): Sharing in the Weak Lambda-Calculus. In A. Middeldorp, V. van
Oostrom, F. van Raamsdonk & R.C. de Vrijer, editors: Processes, Terms and Cycles: Steps on the Road
to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday, Lecture Notes in
Computer Science 3838, Springer, pp. 70–87, doi:10.1007/11601548_7.

[16] S.C.C. Blom (2001): Term Graph Rewriting, syntax and semantics. Ph.D. thesis, Vrije
Universiteit Amsterdam. Available at https://research.vu.nl/en/publications/
term-graph-rewriting-syntax-and-semantics.

[17] M. van den Brand & P. Klint (2007): ATerms for manipulation and exchange of structured data: It’s all about
sharing. Information and Software Technology 49(1), pp. 55–64, doi:10.1016/j.infsof.2006.08.009.

https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.4230/LIPIcs.RTA.2010.17
https://doi.org/10.48550/arXiv.1701.04240
https://doi.org/10.1017/S0960129500000566
https://doi.org/10.1016/0304-3975(95)00062-3
https://doi.org/10.4230/LIPICS.RTA.2010.33
https://doi.org/10.1145/2103656.2103713
https://doi.org/10.1007/3-540-17945-3_8
https://doi.org/10.1007/BFB0033848
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1007/11601548_7
https://research.vu.nl/en/publications/term-graph-rewriting-syntax-and-semantics
https://research.vu.nl/en/publications/term-graph-rewriting-syntax-and-semantics
https://doi.org/10.1016/j.infsof.2006.08.009

V. van Oostrom 7

[18] A. Burroni (1993): Higher-dimensional word problems with applications to equational logic. Theoretical
Computer Science 115(1), pp. 43–62, doi:10.1016/0304-3975(93)90054-W.

[19] N. Çağman & J.R. Hindley (1998): Combinatory Weak Reduction in Lambda Calculus. Theoretical Computer
Science 198(1-2), pp. 239–247, doi:10.1016/S0304-3975(97)00250-8.

[20] J. Endrullis, C. Grabmayer, J.W. Klop & V. van Oostrom (2011): On equal µ-terms. Theoretical Computer
Science 412(28), pp. 3175–3202, doi:10.1016/J.TCS.2011.04.011.

[21] S. Frontull, G. Moser & V. van Oostrom (2023): α-Avoidance. In M. Gaboardi & F. van Raamsdonk, editors:
8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023), Leibniz
International Proceedings in Informatics (LIPIcs) 260, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, pp. 22:1–22:22, doi:10.4230/LIPIcs.FSCD.2023.22.

[22] J.-Y. Girard (1987): Linear logic. Theoretical Computer Science 50(1), pp. 1–101,
doi:https://doi.org/10.1016/0304-3975(87)90045-4.

[23] J.R.W. Glauert & Z. Khasidashvili (1996): Relative Normalization in Deterministic Residual Structures.
In H. Kirchner, editor: Trees in Algebra and Programming - CAAP’96, 21st International Colloquium,
Linköping, Sweden, April, 22-24, 1996, Proceedings, LNCS 1059, Springer, pp. 180–195, doi:10.1007/3-
540-61064-2_37.

[24] C. Grabmayer (2016): Linear Depth Increase of Lambda Terms along Leftmost-Outermost Beta-Reduction.
CoRR abs/1604.07030, doi:10.48550/arXiv.1604.07030.

[25] C. Grabmayer & V. van Oostrom (2016): Nested Term Graphs (Work In Progress). CoRR abs/1405.6380,
doi:10.48550/arXiv.1405.6380.

[26] C. Grabmayer & J. Rochel (2014): Maximal sharing in the Lambda calculus with letrec. In J. Jeur-
ing & M.M.T. Chakravarty, editors: Proceedings of the 19th ACM SIGPLAN international con-
ference on Functional programming, Gothenburg, Sweden, September 1-3, 2014, ACM, pp. 67–80,
doi:10.1145/2628136.2628148.

[27] Makoto Hamana (2022): Complete algebraic semantics for second-order rewriting systems based on ab-
stract syntax with variable binding. Mathematical Structures in Computer Science 32(4), pp. 542–573,
doi:10.1017/S0960129522000287.

[28] D. Hendriks & V. van Oostrom (2003): λ. In F. Baader, editor: Proceedings of CADE 19, Lecture Notes in
Artificial Intelligence 2741, Springer, pp. 136–150, doi:10.1007/978-3-540-45085-6_11.

[29] N. Hirokawa, J. Nagele, V. van Oostrom & M. Oyamaguchi (2019): Confluence by Critical Pair Analysis
Revisited. In: Automated Deduction - CADE 27 - 27th International Conference on Automated Deduction,
Natal, Brazil, August 27–30, 2019, Proceedings, Lecture Notes in Computer Science 11716, Springer, pp.
319–336, doi:10.1007/978-3-030-29436-6_19.

[30] G. Huet (1997): The Zipper. Journal of Functional Programming 7(5), p. 549–554,
doi:10.1017/S0956796897002864.

[31] R. J. M. Hughes (1982): Super-combinators a new implementation method for applicative languages. In:
Proceedings of the 1982 ACM Symposium on LISP and Functional Programming, LFP ’82, Association for
Computing Machinery, New York, NY, USA, p. 1–10, doi:10.1145/800068.802129.

[32] S. Kahrs (1995): Towards a Domain Theory for Termination Proofs. In J. Hsiang, editor: Rewriting Tech-
niques and Applications, 6th International Conference, RTA-95, Kaiserslautern, Germany, April 5–7, 1995,
Proceedings, Lecture Notes in Computer Science 914, Springer, pp. 241–255, doi:10.1007/3-540-59200-8_-
60.

[33] J.W. Klop (1980): Combinatory Reduction Systems. Ph.D. thesis, Rijksuniversiteit Utrecht.

[34] J.-L. Krivine (2007): A call-by-name lambda-calculus machine. Higher-Order and Symbolic Computation
20(3), pp. 199–207, doi:10.1007/s10990-007-9018-9.

[35] Y. Lafont (1990): Interaction Nets. In: 17th POPL, ACM Press, pp. 95–108, doi:10.1145/96709.96718.

https://doi.org/10.1016/0304-3975(93)90054-W
https://doi.org/10.1016/S0304-3975(97)00250-8
https://doi.org/10.1016/J.TCS.2011.04.011
https://doi.org/10.4230/LIPIcs.FSCD.2023.22
https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/3-540-61064-2_37
https://doi.org/10.1007/3-540-61064-2_37
https://doi.org/10.48550/arXiv.1604.07030
https://doi.org/10.48550/arXiv.1405.6380
https://doi.org/10.1145/2628136.2628148
https://doi.org/10.1017/S0960129522000287
https://doi.org/10.1007/978-3-540-45085-6_11
https://doi.org/10.1007/978-3-030-29436-6_19
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1145/800068.802129
https://doi.org/10.1007/3-540-59200-8_60
https://doi.org/10.1007/3-540-59200-8_60
https://doi.org/10.1007/s10990-007-9018-9
https://doi.org/10.1145/96709.96718

8 On naïvely implementing the λβ -calculus

[36] Y. Lafont (1995): From Proof-Nets to Interaction Nets. In J.-Y. Girard, Y. Lafont & L. Regnier, editors:
Advances in Linear Logic, London Mathematical Society Lecture Note Series 222, Cambridge University
Press, pp. 225–248.

[37] J. Lamping (1990): An Algorithm for Optimal Lambda Calculus Reduction. In F.E. Allen, editor: Confer-
ence Record of the Seventeenth Annual ACM Symposium on Principles of Programming Languages, San
Francisco, California, USA, January 1990, ACM Press, pp. 16–30, doi:10.1145/96709.96711.

[38] P. J. Landin (1964): The Mechanical Evaluation of Expressions. The Computer Journal 6(4), pp. 308–320,
doi:10.1093/comjnl/6.4.308.

[39] J. Leo (2014): Thinking in a Coordinate-Free Way about Relations. Dialectica 68(2), pp. 263–282. Available
at https://www.jstor.org/stable/42968507.

[40] J.-J. Lévy (1978): Réductions correctes et optimales dans le λ -calcul. Thèse de doctorat d’état, Université
Paris VII. Available at http://pauillac.inria.fr/~levy/pubs/78phd.pdf.

[41] L. Maranget (1991): Optimal derivations in weak lambda-calculi and in orthogonal term rewriting sys-
tems. In: Proceedings of the 18th ACM SIGPLAN–SIGACT Symposium on Principles of Program-
ming Languages, POPL ’91, Association for Computing Machinery, New York, NY, USA, p. 255–269,
doi:10.1145/99583.99618.

[42] C. Marché (1996): Normalized Rewriting: An Alternative to Rewriting Modulo a Set of Equations. Journal
of Symbolic Computation 21(3), pp. 253–288, doi:10.1006/JSCO.1996.0011.

[43] R. Mayr & T. Nipkow (1998): Higher-Order Rewrite Systems and their Confluence. Theoretical Computer
Science 192, pp. 3–29, doi:10.1016/S0304-3975(97)00143-6.

[44] P.-A. Melliès (1996): Description Abstraite des Systèmes de Réécriture. Thèse de doctorat, Université Paris
VII. Available at http://www.irif.fr/~mellies/phd-mellies.pdf.

[45] P.-A. Melliès (1998): A Stability Theorem in Rewriting Theory. In: Thirteenth Annual IEEE Symposium
on Logic in Computer Science, Indianapolis, Indiana, USA, June 21-24, 1998, IEEE Computer Society, pp.
287–298, doi:10.1109/LICS.1998.705665.

[46] J. Meseguer (1992): Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science 96, pp. 73–155, doi:10.1016/0304-3975(92)90182-F.

[47] A. Middeldorp, V. van Oostrom, F. van Raamsdonk & R.C. de Vrijer, editors (2005): Processes, Terms and
Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th
Birthday. Lecture Notes in Computer Science 3838, Springer, doi:10.1007/11601548.

[48] M.H.A. Newman (1942): On theories with a combinatorial definition of “equivalence”. Annals of Mathe-
matics 43, pp. 223–243, doi:10.2307/2269299.

[49] S. Okui (1998): Simultaneous Critical Pairs and Church–Rosser Property. In T. Nipkow, editor: RTA-98,
LNCS 1379, Springer, pp. 2–16, doi:10.1007/BFb0052357.

[50] V. van Oostrom (1994): Confluence for Abstract and Higher-Order Rewriting. Ph.D. the-
sis, Vrije Universiteit, Amsterdam. Available at https://research.vu.nl/en/publications/
confluence-for-abstract-and-higher-order-rewriting.

[51] V. van Oostrom (1997): FD à la Melliès. Available at http://www.javakade.nl/research/ps/
FDalaMellies.ps. Vrije Universiteit Amsterdam.

[52] V. van Oostrom (1997): Finite Family Developments. In H. Comon, editor: Rewriting Techniques and
Applications, 8th International Conference, RTA-97, Sitges, Spain, June 2–5, 1997, Proceedings, Lecture
Notes in Computer Science 1232, Springer, pp. 308–322, doi:10.1007/3-540-62950-5_80.

[53] V. van Oostrom (2007): Random Descent. In: RTA, LNCS 4533, Springer, pp. 314–328, doi:10.1007/978-3-
540-73449-9_24.

[54] V. van Oostrom (2023): On Causal Equivalence by Tracing in String Rewriting. In C. Grabmayer, editor:
Proceedings Twelfth International Workshop on Computing with Terms and Graphs, Technion, Haifa, Israel,

https://doi.org/10.1145/96709.96711
https://doi.org/10.1093/comjnl/6.4.308
https://www.jstor.org/stable/42968507
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
https://doi.org/10.1145/99583.99618
https://doi.org/10.1006/JSCO.1996.0011
https://doi.org/10.1016/S0304-3975(97)00143-6
http://www.irif.fr/~mellies/phd-mellies.pdf
https://doi.org/10.1109/LICS.1998.705665
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1007/11601548
https://doi.org/10.2307/2269299
https://doi.org/10.1007/BFb0052357
https://research.vu.nl/en/publications/confluence-for-abstract-and-higher-order-rewriting
https://research.vu.nl/en/publications/confluence-for-abstract-and-higher-order-rewriting
http://www.javakade.nl/research/ps/FDalaMellies.ps
http://www.javakade.nl/research/ps/FDalaMellies.ps
https://doi.org/10.1007/3-540-62950-5_80
https://doi.org/10.1007/978-3-540-73449-9_24
https://doi.org/10.1007/978-3-540-73449-9_24

V. van Oostrom 9

1st August 2022, Electronic Proceedings in Theoretical Computer Science 377, Open Publishing Association,
pp. 27–43, doi:10.4204/EPTCS.377.2.

[55] V. van Oostrom (2024): A naïve rewrite-based implementation of the λ -calculus. Available at http://www.
javakade.nl/research/haskell/is.hs. Haskell source file.

[56] V. van Oostrom, K.-J. van de Looij & M. Zwitserlood (2004): Lambdascope
Another optimal implementation of the lambda-calculus. Extended Abstract for the Workshop on Algebra and
Logic on Programming Systems (ALPS), Kyoto, April 10th 2004. http://www.javakade.nl/research/
pdf/lambdascope.pdf.

[57] V. van Oostrom & F. van Raamsdonk (1994): Weak Orthogonality Implies Confluence: The Higher Order
Case. In: LFCS’94, LNCS 813, Springer, pp. 379–392, doi:10.1007/3-540-58140-5_35.

[58] V. van Oostrom & Y. Toyama (2016): Normalisation by Random Descent. In: FSCD, LIPIcs 52, pp. 32:1–
32:18, doi:10.4230/LIPIcs.FSCD.2016.32.

[59] Simon L. Peyton Jones (1987): The Implementation of Functional Programming Languages. Prentice Hall.

[60] D. Plump (2002): Essentials of Term Graph Rewriting. Electronic Notes in Theoretical Computer Science
51, pp. 277–289, doi:10.1016/S1571-0661(04)80210-X. GETGRATS Closing Workshop.

[61] F. van Raamsdonk (1996): Confluence and Normalisation for Higher-Order Rewriting. Ph.D. the-
sis, Vrije Universiteit Amsterdam. Available at https://research.vu.nl/en/publications/
confluence-and-normalisation-of-higher-order-rewriting.

[62] A. Sabry & P. Wadler (1997): A Reflection on Call-by-Value. ACM Transactions on Programming Languages
and Systems 19(6), pp. 916–941, doi:10.1145/267959.269968.

[63] S.D. Swierstra (2013): Informatica: de Kunst van het Abstraheren. Available at https://dspace.
library.uu.nl/bitstream/handle/1874/286829/Swierstra_afscheidsrede.pdf. Afscheidsrede.

[64] Terese (2003): Term rewriting systems. Cambridge Tracts in Theoretical Computer Science 55, Cambridge
University Press.

[65] C.P. Wadsworth (1971): Semantics and Pragmatics of the Lambda-Calculus. Ph.D. thesis, University of
Oxford.

[66] J. Waldmann (2018): When You Should Use Lists in Haskell (Mostly, You Should Not). CoRR abs/1808.08329,
doi:10.48550/arXiv.1808.08329.

A Remarks on Sec. 1
Naïveté I refer to the implementations and techniques as naïve, first of all because they were the first thing that
came to my mind / I tried, but second because several of the insights on which these are based go all the way
back to my scientific birth (cf. the etymology of naïve) in 1994, and almost all of them are prepubescent, from
before 2005. Accordingly, I have included references throughout the text tracing, to the best of my knowledge, my
intellectual history w.r.t. these insights, to the following earlier works.

(*). rewriting modulo a substitution calculus [57, 50, 61] (1994);

(†). review as presented in App. C (2005);

(‡). optimal implementation (with Java implementation) of λ -calculus using a single scope node [56] (2004);

(§). abstract notions of strategy, labelling, rules as symbols [64] (2003);

(¶). generating fresh variables via updating [28, 56] (2002);

Of course, to stay in the metaphor, I grew up in a rich environment where I was exposed early on to many of the
key players and their ideas on the topics pertaining to this note, Lévy, Gonthier, Asperti, Laneve, Danos, Regnier,
Girard, Plump, etc. and interacted with them and many co-authors and other colleagues, as witnessed by the very
incomplete but already quite lengthy list of references.

https://doi.org/10.4204/EPTCS.377.2
http://www.javakade.nl/research/haskell/is.hs
http://www.javakade.nl/research/haskell/is.hs
http://www.javakade.nl/research/pdf/lambdascope.pdf
http://www.javakade.nl/research/pdf/lambdascope.pdf
https://doi.org/10.1007/3-540-58140-5_35
https://doi.org/10.4230/LIPIcs.FSCD.2016.32
https://doi.org/10.1016/S1571-0661(04)80210-X
https://research.vu.nl/en/publications/confluence-and-normalisation-of-higher-order-rewriting
https://research.vu.nl/en/publications/confluence-and-normalisation-of-higher-order-rewriting
https://doi.org/10.1145/267959.269968
https://dspace.library.uu.nl/bitstream/handle/1874/286829/Swierstra_afscheidsrede.pdf
https://dspace.library.uu.nl/bitstream/handle/1874/286829/Swierstra_afscheidsrede.pdf
https://doi.org/10.48550/arXiv.1808.08329

10 On naïvely implementing the λβ -calculus

In these appendices I give some further background information on the ideas in the main text, lest it be forgot-
ten.

On Wadsworth’s characterisation of λ -terms In the implementation in Fig. 1 and [55] a λ -term has shape
h⃗ t comprising a head h, which either is variable x or a λ -abstraction λ .t with body t, applied to a vector t⃗ of λ -
terms, its arguments. This facilitates checking whnf-hood (since we have direct access to the tip of the spine so to
say): a λ -term is not in whnf iff its head is a λ -abstraction and its vector of arguments is non-empty; then the head
and the first argument constitute a weak head redex. The representation is based on Wadsworth’s characterisation
of Church’s classical notion of λ -terms [11]. The three term-formers (variable, application, λ -abstraction) of the
latter can be embedded into the former by a natural skeuomorphism W: the embedding W(M N) is obtained by
appending the single λ -term W(N) to the vector of arguments of W(M), and variables and λ -abstractions are
embedded by supplying them with an empty vector of arguments. Accordingly, we coerce a head h into a λ -term
by supplying it with an empty vector ε of arguments.

Remarks on how α-conversion is (for whnfs) and is not (for nfs) avoided In line with that β -reduction
to whnf of expressions in lazy functional programs, i.e. closed expressions, does not require to α-rename vari-
ables [59], contraction of weak head redexes only employs naïve [21] substitution (subst in Fig. 1).

On the other hand, when trying to compute the normal form of λx.t we can’t directly recurse on t since
weak head reduction cannot reduce under a λ . That couldn’t even work since α-renaming may be essential when
β -reducing to nf as observed by Hindley, e.g. for δ1 as in Ex. 1 [21].

The (standard) solution via freshness we explored initially (‡) in our Java implementation of [56]. It serves
to express that nothing is known about the object denoted by the supplied argument xi (cf. applicative bisimu-
lation [1]); if it were to occur in t already, that could be violated, indicating a dependence. For instance, for
t = λy.x setting xi := y wouldn’t work (as y already occurs in t) but setting xi := z does. Indeed of the resulting nfs
λy.λy.y and λ z.λy.z only the latter is as intended; in the former the supplied argument y was captured yielding a
non-intended function (as can be seen by supplying 1 and 0 to both yielding 0 respectively 1).

It could be considered conceptually wrong that xi is a fresh variable since substituting it then yields an open
term, violating the invariant of operating on closed λ -terms, but we perceive freshness to mean such a variable is a
constant, a variable (implicitly) bound in the context. Thus starting from a closed λ -term (without free variables)
as we assume, only ever closed λ -terms occur during normalisation. (Cf. [20] for an extensive discussion offering
various perspectives, on dealing implicitly and explicitly with contexts, in the setting of µ-terms.)

The same was described in [56] and in our (Java) implementation of it (‡), the idea being that there’s in fact
no need to go full De-Bruijn-indices in implementations.7 In fact, as pioneered and expounded in [28] one can
simply keep variable names around, and supply them with an index updated on demand (¶). (In our code [55] this
is achieved via update functions, the first parameter of rnf / srnf when β / supercombinator reducing to normal
form.) Accordingly, we perceive xi as the name x to which an index i is affixed (subscripted). In this way, we keep
track of the original variable name x facilitating debugging, program slicing etc.; e.g. in the resulting nf in Ex. 1
z occurs twice, but with distinct indices 1 and 2, reflecting that they both originated with z in 1, but also that they
had to be α-renamed apart, to avoid a name clash as discussed above.

Why Haskell? Why not? We have chosen Haskell (and even use lists in spite of [66]) for its descriptive sim-
plicitly. Though Haskell is particularly well-suited to deal with inductive structures like terms, an implementation
in say Java or C should not be much less compact.

B Remarks on Sec. 2
We recall for convenience the main ingredients of the definitions of rewrite system and strategy from [64].

7Everyone will have encountered inscrutable error messages as the result of the implementation using De Bruijn indices;
messages that contain variable names that seemingly have nothing to do with the code one has written.

V. van Oostrom 11

Definition 1. A rewrite system [64, Defs. 8.2.2] comprises sets A of objects a,b,c, . . . and Φ of steps φ ,ψ,χ, . . .,
with each step φ having a source and a target object, src(φ) and tgt(φ). A strategy [64, Def. 9.1.1] is a sub-
rewrite system, i.e. subsets of A and Φ with restrictions of src and tgt, that has the same set of normal forms. A
history-aware strategy [64, Def. 9.1.1] is a strategy for a rewrite8 labelling of it, where a rewrite labelling→′ of
→ combines a labelling of the objects such that given any labelling a′ of an object a and any step φ :a→ b, there’s
a unique labelled step φ ′ : a′→′ b′ for b a labelling of b, with a function mapping each→-object to an→′-objects,
its initial labelling.

The formal definition of rewrite systems as collections of objects and steps equipped with source and target
maps from the latter to the former, is quite abstract. As a consequence, it has been invented many times over
in various fields, hence goes under various names, e.g. programming language theorists might call them abstract
machines, algebraic or categorical mathematicians quivers, and mathematicians in graph theory multidigraphs.

Remark 1. Despite finding many examples of labellings when doing our background research for [64, Sec. 8.4],
at the time we didn’t find a general definition, so we came up with definitions of what constitutes a labelling
ourselves, both for abstract and term rewriting. Coming up with a new definition is a hazardous activity, so we
would be interested in learning of (non-)use cases.

A research question on labellings in structured rewriting systems is: does the maximal labelling as used in
the main text for characterising steps in sharing graphs in terms of parallel steps on terms, always characterise
permutation equivalence? In the case of term rewriting systems and the λ -calculus it does; the maximal labelling
is known there as the Lévy labelling (see the main text [40]), and allows to reconstruct reductions from the Lévy
labelling of their final term, but only up to permutation equivalence. Intuitively, much like in a hologram each
symbol in the final term carries in principle the whole reduction-history as label, but only as far as it could perceive
/ see that, only its own causal history, cf. [54]; since labels / histories of symbols are coherent among each other
(by their nature of belonging to the same term), the global history, the history of the term as a whole, can be
reconstructed from the local histories, the history of its symbols, but only up to causal independence. It should be
interesting to investigate whether these results extend to various graph rewriting formats. E.g. we expect they do
for Lafont’s interaction nets [35, 36] and for string diagrams.

What is presented by a rewrite system? That we are interested in the rewrite system underlying the λ -
calculus system only up to isomorphism, not only enables to speak of their implementation by means of rewrite
systems that have objects other than λ -terms (here: supercombinator terms and term graphs, both maximal sharing
graphs msgs and sharing graphs sgs), it also allows to view them just as means to present that underlying rewrite
system. This allows to rephrase the question (we learned from Klop [11]) whether some graph is the reduction
graph of a λ -term, as a presentation question. For instance, one may ask for each of the 6 systems in Fig. 4 whether

Figure 4: Can a rewrite system be presented as a rewrite system below M, for some λ -term M?

it could be presented as the rewrite system below some λ -term M, where below signifies the restriction of→β to
objects →β -reachable from M; the system bottom–left can be presented by Ω := δ δ := (λx.xx)(λx.xx) since
Ω→β Ω (and there are no other →β -steps) and the one next to it by M := (λy.I)(I I) where I := λx.x. In both
cases, there are many other λ -terms that present these rewrite systems; For others it is less clear whether they can
be so presented, so left as an exercise.

The concept of presenting a system is pervasive in the algebraic literature. To mention a few basic examples
viewed through a rewriting lense:

8The word ‘rewrite’ is inadvertently missing in [64, Def. 9.1.1]; we must have an initial labelling on top of the labelling.

12 On naïvely implementing the λβ -calculus

• a Hasse diagram can be seen as a rewrite relation→ presenting a partial order ↠;

• a rewrite system→ can be seen as a presentation of the category ↠ of its (possibly-empty) reductions; and

• a string rewrite system can be seen as a presentation of the monoid having convertibility-classes of strings
as elements, the class of the empty string as unit, and concatenation modulo as product.

The first two items highlight the divide one finds in the rewriting literature between whether, say, a term rewriting
systems presents a rewrite relation or a rewrite system, with the former arising as the special case of the latter
where there’s at most one step from any object to another (cf. quasi-orders vs. categories). Since in the former
view we don’t have the ability to say that there are distinct steps from one object to another, to express whether
steps are equal or not, to speak about so-called syntactic accidents [40], we adhere to the latter.9

Footnote 3: steps as structures over rule-symbols In view of the above, and adhering to having steps as
first-class citizens immediately raises the question: what are the steps of the λ -calculus or of a supercombinator
/ term rewrite system? This question is not often addressed in the literature, let alone that a generally accepted
answer exists currently. We proposed in [64, Sec. 8.2.2] that steps are terms over the signature extended with rule-
symbols. Those terms we dubbed proof terms10 as they can be viewed as witnessing a proof in rewrite logic [46]
that one can term rewrite from its source to its target. This leaves another choice though, namely how many rule-
symbols may occur in a proof term, how much work can be done in a single step? We construe it as an advantage
that this choice exists at all, as it allows to express the usually disjointed notions of single step→ and parallel step
q−→ as both arising as natural restrictions of the notion of multistep ◦−→ [64, Prop. 8.2.22]. The idea of steps as the

structures at hand to which rules are adjoined as basic constructs, as symbols, extends to other structured rewrite
formats, as elaborated here a bit further for term graph rewriting, as was suggested in [64, Rem. 9.4.30].

Of course, right from the start adjoining symbols (labels, underlining, markings, . . .) to the signature for
marking purposes is pervasive in the rewriting literature. But of the general idea to have steps as structures over
the signature extended with rule-symbols, we found (apart from in our own work) only few instances, mainly in
the categorical literature on (higher-dimensional) string rewriting (where the perspective is the opposite, namely
of non-rule-symbols as representing whiskering). We would be interested in learning of more use-cases.

A related research question on adjoining symbols is why variables are omnipresent in term rewriting but seem
to be largely absent in graph rewriting. They would seem to give a principled approach to graph rewriting; e.g. the
account of term graph rewriting in the main text naturally factors through them, by reifying the boxes (which at
the moment are just visual tools, cf. [25]) into variables that can be substituted for. See Fig. 10 for a picture of the
rules for a mix operation, simultaneously computing the minimum and maximum of two unary natural numbers,11

using ‘open’ rules and Fig. 11 for an idea to ‘close’ such rules by enclosing their lhs and rhs in a box, name its
complement (context / congraph?) and then turn that into a variable node.12 Some such mechanism seems of
interest to interaction nets / string diagrams.

Why PRSs? We employ Nipkow’s PRSs (higher-order pattern rewrite systems) as our term rewriting format
because we prefer them, but any term rewriting format that is at least second-order and encompasses fully-extended
(no-occur-checks need not be expressible) left-normal orthogonal systems where left-hand sides comprise exactly
two symbols (an application symbol combined with an abstraction symbol for the β -rule and with a supercombi-
nator for the γ-rules), will do, e.g. Klop’s CRSs (combinatory reduction systems [33]) as were used by Balabonski

9Though Newman expounded the rewrite–system-view in [48] (using terminology from his research on homotopy), explic-
itly stating that he was moving away from relations / orders, the rewrite–relation-view had become dominant in the 80s and 90s
during the heydays of term rewriting research. Nowadays we see things changing back again, due to tool, formalisation, and
certification efforts and the advent of higher category theory [18], with notions such as critical peaks instead of critical pairs.

10Proof terms as presented there also have operations corresponding to the inference rule for transitivity (composition) and
if one would wish so also for symmetry and reflexivity; they do not feature here.

11Note this is neither an interaction net nor a term graph rewrite system.
12Taken from an unpublished note from 2003, presented in Leicester a few years later, on generalising Okui’s theorem [49]

from TRSs to PRSs and to graph rewrite systems via a 2-categorical approach.

V. van Oostrom 13

in [10], or more narrowly Asperti and Laneve’s ISs (interaction systems [6, 7]), or also Hamana’s second-order
CSs (computations systems [27]).

Among the formats mentioned we prefer PRSs since they have good abstraction properties and there is a clear
interest in computer science in abstraction, as it avoids duplication, which is a cause of code bloat and software
engineering problems [63]. For example, in a 1st order term rewrite system (TRS) it is clearly of interest to be
able to abstract from a pattern encompassed by a term, to replace such a pattern by a variable, cf. [29, Def. 3].
However, this then needs a 2nd order term, so we end up outside the class of 1st-order TRSs, i.e. having to redo
things. Similarly for 2nd order systems like CRSs, ISs and CSs.

Of course, the abstraction monster is never satisfied; e.g. PRSs are based on simple types (they have simply
typed λ -calculus as substitution calculus, as we would say), but it’s clearly of interest to be able to abstract from the
same function but for different types, so polymorphism is desirable etc.. Moreover, I share some of the misgivings
people may have about l’abstraction pour l’abstraction; cf. also the discussion in [4] on when the sharing graph
techniques developed for higher-order optimality, could come into play.

Still, to us PRSs seem to be in a sweet spot: they have a simple definition, as term rewriting modulo the well-
understood simply typed λ -calculus λ→, and are closed under abstraction in the sense discussed above, which is
useful in our experience, as for developing syntactic meta-theory for nth order systems it is convenient to work in
(n + 1)st order systems.

14 On naïvely implementing the λβ -calculus

3 stages of implementation: the ordered, positional and anti-positional views on objects? In [39],
Leo discusses three views on relations (for the moment, one may think of relations as used in the semantics of
predicates in first-order logic as usual) due to Kit Fine, the ordered (standard) view where the things related come
in order, the positional view where the things related have positions, and the anti-positional view where the con-
stituents come in complexes where there is neither order nor position, but which form a network interrelated by
substitutions, as he puts it. I think that irrespective of the philosophical debate one can have about whether this
is appropriate, it is technically interesting whether one can implement something the same for objects instead of
relations, the relevance to the subject of this submission being that terms can be construed as objects in the ordered
view and that (port) graphs can be seen as objects in the positional view (highlighting that it’s not a mere techni-
cality mediating between the ordered and positional views; it is conceptually interesting). Given the superiority of
the antipositional view, as shown by Leo for relations, it should be interesting to develop a substitutional view on
objects (and e.g. see if / how it relates to single / double pushout approaches to rewriting).

Why supercombinator systems? We agree with the contemplations in [41] that there’s quite some freedom
in choosing which term rewrite systems to target. There is no real reason why we have taken supercombinator
systems other than that they are well-behaved (orthogonal, left-normal, even constructor–destructor) TRSs, and it
is profitable to reduce theory for a language with binders like the (weak) λ -calculus to one without binders, even
more so if all the problems one is interested in for the language with binders, can be reduced to problems that have
been solved already for the language without binders, as it turns out to be the case here (†). That being said, and as
expounded in [10], there are many variations that could be and have been explored in the literature.

From the λ -calculus to supercombinators We give another example of that lifting commutes with reduc-
tion to normal form (w.r.t. the lefmost–outermost strategy for β - and supercombinator-steps, respectively).

Example 9. The lifting L (δ (δ 2)) where 2 := λyz.y(yz) is the Church-numeral 2, results in a pair comprising the
term κ0[] (κ0[] (κ2[]))) and a supercombinator systems comprising the three supercombinators κ0,κ2 both nullary
and binary κ1, with corresponding term rewrite rules

γ0[x] :κ0[]x → xx γ1[y,z,x] :κ1[y,z]x → y(zx) γ2[x] :κ2[]x → κ1[x,x]

Since self-application as enacted by δ represents exponentation on Church-numerals, the original λ -term δ (δ 2)
should β -evaluate to the Church numberal 256, and its supercombinator translation κ0[] (κ0[] (κ2[]))) should super-
combinator-evaluate to the same. Indeed they do in our code, as can be checked by evaluating last (nf n256)
(yielding the last term of the β -reduction to nf) respectively first evaluating lift n256 (to yield the supercomina-
tor system and term) and then last (snf (fst it) (snd it)) (yielding the last term of the supercombinator
reduction to nf) in GHCi. A coarser way to do the same, to test Lem. 1, is to check the lengths of the reductions are
the same: let l256 = lift n256 in length (nf n256) == length (snf (fst l256) (snd l256))
evaluates to True.

Example 10. Lifting the Church numeral 2 := λyzy(yz) yields supercombinators with rules (after renaming into
more standard TRS notation and making application into an explicit binary operation @):

@[i(y,z),x] → @[y,@[z,x]]

@[o,x] → i(x,x)

for i binary and o supercombinators liftings of the inner and outer λ -abstraction respectively. This TRS is clearly
terminating (e.g. shown using RPO). On the other hand the single rule TRS @[d,x]→@[x,x] obtained from lifting
Ω is just as clearly non-terminating.

Thus the question arises whether, given a λ -term M, the TRS TM obtained via the lifting L (M) is terminating,
and if so in an easy way. More concretely given M is a simply typable (hence terminating) λ -term does termination
of L (M) follow, and (if it does) automatically so, by methods implemented in termination tools?

V. van Oostrom 15

On commutation of lifting with weak β -steps To see that lifting commutes with wβ -steps in the way
described in the main text, consider a λ -term that contains such a redex (λx.M(x))N that is then contracted to
M(N), and consider a λ -abstraction λy.L′ occurring in M(N). We distinguish cases as to whether or not that
occurrence is in a substituted copy of N.

Suppose it is, say at position q within the occurrence of N (itself occurring at some position p in M(N)). Then
the supercombinator generated by it in the recursion of L on the contractum, is a renaming of the supercombinator
generated by it when arriving at position q in the recursion on the argument N of the redex (note that by the redex
being a weak β -redex, it is not inside a λ -abstraction, so indeed the lifting recursion when arriving at the redex
acts homomorpically on it, yielding separate computations L ((λx.M(x))) and L (N)).

If it is not, then let λy.L be the subterm at the same position in M(x). Now note that neither the substituted
copies of x in M(x) nor the substituted copies of N in M(N) can contain any occurrences of y, per construction
respectively per the definition of (higher-order) substitution. That is, in both cases they do not belong to the
skeleton, always to the maximal free subexpression of some (the same) subterm of M containing them. Hence,
λy.L′ and λy.L give rise to the same supercombinator.

Interestingly, this observation as to why commutation of lifting holds13 yields a good property of left–outer
reduction in the λ -calculus as was observed in [24]. There it entails that the height of a λ -term M with respect to
the left–outer strategy, grows only linearly along the steps of a reduction R : M = M0 →loβ M1 →loβ That is,
the height of Mn is bounded by n times the maximal height of the minimal bound contexts in M (plus the height of
M). This translates into the maximum of the heights of the λ -abstractions in M, with the height of λx.N being the
maximal depth at which there is an occurrence of x in N bound by the λx-abstraction (so the maximal depth of its
skeleton, where the skeleton comprises all the paths from the λx-abstraction to the occurrences of x bound by it, as
expected).

To see this let ℓ / r be the lhs / rhs of the β -rule (as a PRS rule), i.e. ℓ is its redex-pattern, consider a substitution-
instance ℓσ for substitution σ occurring as the left–outer redex in M at position p, and let N arise from replacing it
by its contractum rσ . We distinguish cases on the position q of a λ -abstraction λy.L′ occurring in N, relative to p.

• By the β -rule being left-normal, any λ -abstraction occurring to the left or outside p can never descend to
one forming a redex, so such q can be ignored;

• Otherwise q descends from the position o of a λ -abstraction that is either to the right of the redex p or in a
term substituted by σ for either the body- or the argument-metavariable in ℓ. But then the whole skeleton
of q descends unchanged from the skeleton of o in M (it must by the properties of 2nd-order substitution).

We have set-up this reasoning in a generic way so as to show the crucial rôle of left-normality (in the 1st item; and
the β -rule is a prime left-normal example [33]). Our approach here can be seen to exploit it, by supplying a fresh
variable to a λ -abstraction or a stuck supercombinator, i.e. if we know these can never descend to one forming a
redex, in the given term.

The property, and thereby linear growth of the left–outer strategy, holds for left-normal PRSs that are both (at
most) 2nd order and such that any (non-vacuous) abstraction-subterms occurring in the right-hand side r of a rule
already occur in its lhs ℓ.

Remark 2. The analysis of such dynamics of binding goes (for me) back to Melliès’ notion of gripping [44]. It
is a special case of paths in the λ -calculus, which can be seen as allowing to statically describe the dynamics of
a λ -term (with Girard’s execution formula an extreme case for the λ -calculus). It is versatile tool though, useful
beyond the λ -calculus, cf. [64, Ch. 12] for an application in infinitary term rewriting, or [51] for an application to
developments, and [20] for an application to the µ-calculus.

The second restriction is necessary (I seem to recall knowing it from the work of Bloo and Rose). E.g. though
the property holds for the rule µx.Z[x]→ Z[µx.Z[x]] and also for µx.Z[x]→ µx.Z[Z[a]] for a a constant, it obviously
fails for µx.Z[x]→ µx.Z[Z[x]], as that can double the height in every step. We leave it to the reader to check whether
the first restriction, to 2nd order PRSs is.

13In (†) phrased as (Minimal) bound contexts only descend to themselves along a reduction, in particular they are not
enlarged.

16 On naïvely implementing the λβ -calculus

A lifting view on lazy functional programming, the λ -calculus and orthogonal term rewriting
Viewing functional programming as the combination of parameter passing (the λ -calculus) with definition by
pattern matching / cases (TRSs), the lifting result of [10] shows that if one does not evaluate under a λ , functions
can be faithfully modelled as data, that is, represented by means of constructor terms and passed around as such,
doing away with the complexities of passing higher-order functions. Only when a supercombinator is activated,
cf. [33, p. 278][3, p. 18], i.e. when it becomes applied to some argument, do we turn it from data into a function by
replacing it with its rhs. Thus L allows to reduce the study of lazy functional programming to that of first-order
term rewriting, which in a way is a satisfactory state of affairs since there is a lot of term rewriting theory, founded
on universal algebra. (Cf. [1] for a semantic take on why the theories of the λ -calculus (head-normal forms) and
the lazy λ -calculus (weak-head normal forms) are not to be confounded.)

On the other hand, by compiling them away into data one loses all the higher-order aspects, turns everything
into a first-order game. In particular all the higher-order sharing possibilities [40, 37, 5], and to me that’s where the
interesting challenges are [4], with the first step into the right direction being the study of cyclic sharing as can be
expressed by letrec [26]. Still, that type of twisted sharing [16], is far removed from the complex form of sharing
that occurs when using Lamping’s technique. I hope and expect that the recent development of the appropriate
languages (deep inference, string diagrams) will enable a canonical syntactic and semantic account of higher-order
implementation techniques (e.g. with some notion of bisimulation collapse for Lamping’s graphs) in the not too
far future.

(Hyper-)(weak head) normalisation of the left–outer strategy Note that in the statement of Lem. 1 that
L (M) lo-reduces to M′ in TM , we have M′ is a λ -term despite that L (M) is a supercombinator term and TM
a supercombinator system, so in particular neither contains λ -abstractions; this only seems absurd since lo-steps
introduce λ -abstractions upon releasing a stuck term but only a posteriori: the combinator term is applied to a
fresh variable, then supercombinator reduction recursively continues with the result term (still a supercombinator
term), and only afterward puts the resulting reduction (that, by recursion, now may already have λ -abstractions)
inside the λ -abstraction, resolving the conundrum.

For further normalisation lemmata for notions of result other the set of normal forms, e.g. for head or weak-
head normal forms, see [23, 45].

Lemma 2. If M is→wβ -convertible to a whnf, then loβ (hyper-)weak-head normalises M.

Proof. We first recall that →wβ is not confluent [19]. For M := (λyz.y)(I I) the reductions M →wβ λ z.I I and
M→wβ (λyz.y) I→wβ λ z.I I end in distinct whnfs.

To overcome the problem note that in the first reduction the whnf is reached by contracting the weak-head
redex, and after the first step in the second reduction, a whnf can be reached by contracting the residual of the
weak-head-redex contracted in the first. This holds in general: if M is β -convertible to a whnf, then by confluence
of β and whnfs being preserved under β , M β -reduces to a whnf. This reduction may be assumed to be standard,
hence by left-normality, as being composed of a weak-head reduction followed by a non-weak-head reduction.
Since non-weak-head steps cannot create whnfs, the former must end in a whnf. From that we conclude by weak-
head reduction being deterministic and noting that on non-whnfs, loβ coincides with weak-head reduction.

Hyper weak-head normalisation follows since weak-head steps can be preponed before non-weak-head steps.

From supercombinators to maximal sharing graphs Although term graphs can be represented in many
ways, we are interested here in term graph rewriting (the objects of interest are terms, the λ -terms, and graphs are
used to implement them), not in graph term rewriting (where the objects of interest are graphs, and terms are used
to represent them); cf. [64, (footnote 4 below) Rem. 9.4.30]. Accordingly, we work here with graphs, neither with
let-expressions nor with equational term graphs, striving to avoid bureaucracy in the same way that proof nets do.

V. van Oostrom 17

Rewriting modulo a substitution calculus In what we call structured rewrite systems,14, steps are enacted
in three stages, decomposing a structure into a context and a lhs, replacing the lhs by the rhs, and composing the
context with the rhs again. As soon as (de)composition becomes a complex process itself it may be worthwhile to
model it itself by a (simpler) rewrite system, that’s what we dubbed a substitution calculus.

This was certainly the case in higher-order term rewriting [57, 50, 61], where higher-order substitution is a
highly complex operation. We suggest that, given the continual stream of papers developing highly sophisticated
categorical ways of expressing (de)composition, also in graph rewriting (de)composition is amply subtle and com-
plex enough to warrant analysing it by means of a substitution calculus. A substitution calculus should be chosen
wisely, so that it allows a ‘good’ division of labour between rewrite steps and substitution calculus steps15 We put
forward a simple such substitution calculus, the�-calculus for term graph rewriting as considered here.

Remark 3. One might think that working modulo a substitution calculus would commit one, when proving termi-
nation of the rewrite system, to models where the lhs and rhs of all steps of the substitution calculus are interpreted
as the same element of a termination model, after all we are working modulo the substitution calculus.

This is not the case, as was expl(ain/oit)ed in the case of higher-order term rewriting in [32]. The idea is that
when performing rewrite steps, during the matching phase typically only highly constrained expansion steps of the
substitution calculus are allowed, and only those may need to be interpreted as equalities, as they will typically
be undone during the substitution phase. For example, for the case of the �-calculus though it is not unsound to
introduce arbitrarily many indirection nodes by→-expansion steps or arbitrary garbage nodes (not reachable from
the root of the term graph), for generating a rewrite step that is not allowed (though it would not be unsound as
they would be removed again during �-normalisation in the substitution phase; it would not be very conducive to
efficiency; this is analogous to how β -expansion could be so ‘abused’ in higher-order term rewriting modulo λ→).
Accordingly, one may interpret the garbage collection-rule of the�-calculus as being oriented from left to right in
termination proof, and similarly for steps introducing multiple consecutive indirection nodes. Fnally, also that we
limited copying of nodes to ones on a path to the root, and then only once, could be exploited.

For another take on the same: normalised rewriting as proposed in [42] can be viewed as an instance of the
above as it essentially restricts one to rewriting only representatives (normal forms) of the equivalence classes of
the substitution calculus, and the point of that work was to get better (termination) properties, not worse.

It may seem from Ex. 6 that of the three stages (matching, replacement, substitution) in term rewriting, only
substitution may exhibit behaviour linear in the size of its arguments, due to replicating (erasing, duplicating,
triplicating,. . .) the arguments. But also matching might. For instance, to see whether or not the lhs of the rule
ϖ : eq[x,x]→ True matches with the term eq[t,s] amounts to checking whether or not t and s are equal; only if
t = s can eq[t,s] be β -expanded into (x.eq[x,x]) t.

A multistep t ◦−→T s of a TRS T may be used to contract an arbitrary number of redex-pattern occurrences in
t, but only if these are pairwise non-overlapping and respect the non-linearity constraints. Explained by example:
the root f -redex-pattern and the left–inner a in the term f [a,a] cannot be contracted in the single multistep for a
TRS having rules ρ : f [x,x]→ . . . and ϖ : a→ . . .; we can only contract neither of the as by the (single) step ρ[a]
or both by the multistep ρ[ϖ].

Since this is the same in translation to the TGRS G , the implementation result is not affected by it. Anyway,
since supercombinator systems are orthogonal this issue will not surface in our application of implementing the
λ -calculus: multisteps can contract arbitrary collections of redex-pattern-occurrences in a term.

The �-calculus The three rule schemes of the �-calculus (� is the letter zh of the cyrillic script) in Fig. 2 are
to be interpreted as that each edge to the boundary must be connected to the port of some node (to an output port of
a node for edges to the upper boundary and the input port of a node for edges to the lower boundary). Replacement
of a rule-symbol by its lhs (rhs) detaches the rule-symbol from its indirection nodes reattaching its lhs (rhs).

14We have not axiomatised this notion, but the reader may substitute their favourite structure, like string, term or graph, for
it, continue reading, and see whether that makes sense.

15As a rule of thumb, if one finds oneself proving results about substitutions when dealing with rewrite steps something is
off. The insistence on working with closed expressions for lhss / rhss of rules, is derived from that: it tries to minimise the
interaction. Similarly for the proposal to work with boxes / variables in graph rewriting; that aims at separating steps from the
substitutions as modularly as possible,

18 On naïvely implementing the λβ -calculus

Msgs being maximally shared, an msg rewrite step G→ H never causes wholesale replication of the context
of the step (of the lhs and rhs of the rule), neither in the matching nor in the substitution phase (that’s their point),
as implemented in tools [17] and described in the literature.

The matching-phase of an msg rewrite step may proceed as described in [8, 24] by using ←-steps (inverse
→-steps): first the symbols of the redex-pattern and the path from the root to it in G are unshared in such a way
that there’s exactly one path from the root of the msg to the root of the lhs. (An analogon for dags of Huet’s zipper
for trees [30] suggests itself; we expect it exists, but if not it maybe should.) After that, its indirection nodes are
inserted on the edges along the boundary of the lhs (towards its root, and from its non-nullary leaves), upon which
it is ready for replacement. The matching phase only requires unsharing (unzipping) of the nodes in the lhs, the
redex-pattern, and nodes along its path to the root. Not of its arguments though, not even for non-left-linear rules
since subterm equality coincides with pointer equality in msgs, cf. the discussion and results on collapsing in [60];
if the same (sub)term were represented by distinct nodes, then sharing would not be maximal and the nodes could
be collapsed (possibly after collapsing nodes closer to the leaves first) so should have been.

In general, to go from a term graph not in �-normal form to one that is, an msg, one can proceed by garbage-
collecting nodes not reachable from the root, remove indirection nodes, and bottom-up share nodes maximally (say
via some bisimulation collapse algorithm [26]). But the substitution-phase of a rewrite step requires to check this
only for the symbols introduced in its rhs and on the path to the root (zipping up again).

From supercombinators to sharing graphs

Additional explanations for Ex. 7 Coming back to the question what q−→T -steps on terms are exactly
implemented by →G -steps on sgs? The answer, due to Maranget [41] in a bit more detail is: the applicator–
constructor pairs whose edge have the same label, where labels ς ,ζ ,ξ , . . . are defined by the BNF ς := α | (ς , p) |
ςς for atomic labels in α ∈ A and positions p.16 Labelling the subterms of a term t / the edges of the corresponding
sg G, and labelling their steps per Fig. 3, for label ς , an ς -family step is a parallel step contracting all redex-patterns
whose supercombinator / edge have label ς .

The crucial property as established by Maranget is that labels of families occur uniquely along reductions. In
particular, two occurrences of labels in the same term can not be sublabels of each other since that would entail
one to be causally dependent on the other.

Since Maranget showed this on terms, and it might be instructive and a bit simpler [6, 7] to show it for sgs
(since in the sgs the edges are unique too), we present the crucial ingredients adapted from [41] from terms to sgs.

Say an sg G is consistent G↑ if its multiset of label is, i.e. if no element is a sublabel ≤ of another, where ≤
is the reflexive–transitive closure of <1 relating ς to ζ (ς , p)ξ [41, Def. 4.8]. We adapt preservation of consistency
under family steps in TRSs [41, Lem. 4.10] to sgs.

Lemma 3. if G ◦−→ς H and G is consistent, then so is H.

Proof. Note ≤ is a partial order, for labels are <1-related only to bigger ones. Let us denote consistency of G by
↑. By consistency of G, in fact G→ς H say by rule ℓ→ r. Let ζ ,ξ be labels of distinct edges in H. To show
consistency of the multiset µ := [ζ ,ξ] distinguish cases for ζ ,ξ on whether it is in the context C, or not. Note that
labels in C are in G, and that labels not in C have shape ζ ′(ς , p)ξ ′, with non-empty ζ ′,ξ ′ in G.

If both ζ ,ξ are in C then µ is consistent by ↑.
If both are in not in C, then w.l.o.g. ζ = ζ ′(ς , p)ξ ′ ≤ ζ ′′(ς , p′)ξ ′′ = ξ . If they are equal, then since labels

uniquely read as sequences of non-composite labels p = p′ (impossible per construction) or (ς , p) is a label ζ ′′ or
ξ ′′ is composed of, but then ς ≤ ζ ′′ or ς ≤ ξ ′′ contradicting ↑. Otherwise ζ = ζ ′(ς , p)ξ ′ ≤ ς ′ <1 ζ ′′(ς , p′)ξ ′′ = ξ

for some ς ′. by unique reading again ς ′ must then be <1-related to (ς , p′) (impossible by size) or to either of
ζ ′′,ξ ′′, which is inconsistent with ↑.

If one, say ζ , is not in C and the other, ξ , is, then ζ has shape ζ ′(ς , p)ξ ′ and ζ ′(ς , p)ξ ′ ≤ ξ is impossible as
it would yield ς ≤ ξ contradicting ↑. But also ξ ≤ ς ′ <1 ζ ′(ς , p)ξ ′ for some ς ′, is impossible, since by unique
reading ς ′ must then be <1-related to (ς , p) or ζ ′ or ξ ′ each of which (e.g. via ξ ≤ ς ′ = ς) contradicts ↑.

16Used to uniquely address the subterms of rhss of rules, though in Ex. 7 we just enumerated the subterms for brevity.

V. van Oostrom 19

Families In fact, not just lo but any strategy contracting a family containing a needed redex is normalising
and minimal for sgs, as follows from ordered local commutation of such needed family-steps w.r.t. other steps.
Of course, this is well-known but seeing it as an instance of the general abstract theory of normalisation and
minimality of strategies of [53], should make clear that optimal reduction really is, in the formal sense optimal, but
w.r.t. a rewrite system not many people are familiar with, family reduction.

By adhering to the lo strategy one automatically avoids reducing inside garbage, so one may postpone the
garbage-collection steps of the explicit substitution calculus�, of so desired.

Classifying sharing Sharing graphs as employed in implementing reduction for the history aware multistep
strategy contracting family multisteps of the λβ -calculus [40, 5] escape Blom’s classification [16], into horizontal
(think of acyclic term graphs), vertical (think of µ), and twisted sharing (think of letrec). This is due to the fact
they allow higher-order sharing; this causes that though such a sharing graph may be cyclic it still represents a
finite λ -term. Syntactically this is embodied by representing a box, a replicable resource in the sense of Girard’s
linear logic [22, 36], via their ports only, we dubbed scope nodes in [56] unifying the brackets and croissants in
earlier approaches [5]. To keep control of such a distributed representation of a box, keeping its ports only (think
of a park where we remove the fence around it but do keep the gates on its access paths, or a room with no walls
only doors) is highly non-trivial; the dynamic local interaction between scope nodes breaks two tenets on boxes:

• two boxes are either disjoint or one is nested in the other, they can’t partially overlap;

• a box separates its inside from its outside.

Partially sharing boxes, necessarily breaking the first, was the revolutionary idea [37] allowing for the first imple-
mentation of the λ -calculus that was optimal in the sense of [40]. Due to the cyclic nature of sharing graphs, such
partial sharing may be cyclic as well, yielding that boxes may partially overlap themselves, breaking the second
tenet too; a box may be wrapped up inside itself like a Möbius strip or a Klein bottle. Formally, given a box in the
λ -term tree t readback from a sharing graph G, nodes both from inside and outside the box in the λ -term t may
have been readback from the same node in the graph G; thus one can’t sensibly speak of the latter being on the
inside or the outside of the box.

Stated differently, whilst reading back a λ -term tree t from a sharing graph G one may come across the same
node in G several times, with each inducing a node in t but belonging to a different / disjoint box [7, 7, 5].

C Review at the basis of this submission

Below I reproduce my review from 2005 of a submission by Blanc, Lévy and Maranget for [47]. I only reproduce
the conceptual part of that review here, since the concrete remarks (typos and the like) have been incorporated
by the authors in the accepted and published version [15], so would not be intelligible at all without the original
submission, and it is not for me to decide to publish that or not.17 I reproduce that part here since this submission
is largely based on it, but it was ignored in the final published version [15] of the paper.18

At the time that left my reviewing efforts a bit stranded. But in the meantime ideas in the review have found
their way, in particular to Jan Rochel and Clemens Grabmayer as investigators on the NWO project Realising
Optimal Sharing19 and to Thibaut Balabonski, at the time a PhD student of Delia Kesner who visited us at Utrecht
University in 2010 (if memory serves me right) as he was working on the same theme. Our fruitful discussions
were reflected in [10, 24]. Still, I thought this was a nice occasion to revisit this old material.

17Also the citations in the part included here, are not really intelligible as they refer to the submitted version, but I think the
gist of this part is clear nonetheless. In fact, reading it back after all these years, I found it surprisingly readable.

18It is the prerogative of authors to decide what and what not to include in their paper; the paper [15] is i.m.o. very interesting
and can very well stand on its own.

19https://www.nwo.nl/en/projects/612000935 at Utrecht University, 2009–2015 (joint with Doaitse Swierstra).

https://www.nwo.nl/en/projects/612000935

20 On naïvely implementing the λβ -calculus

V. van Oostrom 21

22 On naïvely implementing the λβ -calculus

	A naïve implementation of -reduction to nf via whnf
	Implementations
	Some naïve conclusions on complexity
	Remarks on Sec. 1
	Remarks on Sec. 2
	Review at the basis of this submission

