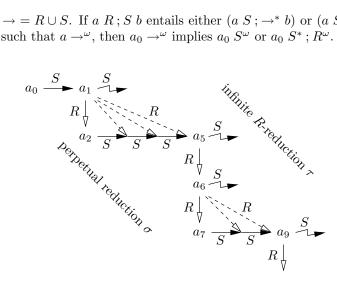
Theorem 1. Let $\rightarrow = R \cup S$. If a R; S b entails either $(a S; \rightarrow^* b)$ or $(a S; \rightarrow^{\omega})$ or (a R b andnot $b S^{\omega}$), for a, b such that $a \to^{\omega}$, then $a_0 \to^{\omega}$ implies $a_0 S^{\omega}$ or $a_0 S^*$; R^{ω} .

Proof.



Assume $a_0 \to^{\omega}$ but not $a_0 S^{\omega}$. We first construct an \to -reduction σ from a_0 by giving preference to S-steps. That is, a given prefix of σ ending in a_i such that $a_i \to \infty$, is extended with any step $a_i \to a_{i+1}$ which is perpetual, i.e. such that $a_{i+1} \to {}^{\omega}$, under the condition that it be an S-step if such exists. Per construction and by $a_0 \rightarrow^{\omega}, \sigma$ is an infinite reduction and by not $a_0 S^{\omega}$ there exists an n such that $a_n R a_{n+1}$ is the first step in σ which is not an S-step (in the figure n = 1). Next, we construct an infinite R-reduction τ from a_n by skipping the S-steps in σ . That is, a given prefix of τ ending in an object a_i such that $a_i R a_{i+1}$ is a step of σ , is extended with a step $a_i R a_i$ as follows. If $a_{i+1} R a_{i+2}$ is a step of σ then we set j = i + 1. Otherwise $a_{i+1} S a_{i+2}$ is a step of σ , hence by assumption either $a_i S ; \to^* a_{i+2}$ or $a_i S ; \to^{\omega}$ or $(a_i R a_{i+2} \text{ and not } a_{i+2} S^{\omega})$. Since the first two would conflict with the construction of σ giving preference to perpetual S-steps for a_i , the third must be the case. Since not $a_{i+2} S^{\omega}$ and σ is infinite, the maximal sequence of S-steps from a_{i+1} in σ ends in some object which we call a_j . An easy induction shows, using this assumption, that in fact $a_i R a_k$ for all $i < k \le j$ from which we conclude.

Corollary 2 ([1]). If $R; S \subseteq (S; \to^*) \cup R$, then \to is terminating if R and S are.

Proof. As S is terminating, the assumption entails the assumption of the theorem. By termination of S, R neither disjunct in the conclusion of the theorem can hold, so \rightarrow is terminating.

Corollary 3 (Geser, [3] Exc. 1.3.20). If \rightarrow is transitive, then \rightarrow is terminating iff R and S are.

Proof. By the previous corollary using that transitivity, i.e. \rightarrow ; $\rightarrow \subset \rightarrow$, entails $R; S \subset S \cup R$.

Corollary 4 ([2] Lemma 8). If $R; S \subseteq S; R$, then $a_0 \to^{\omega}$ implies $a_0 S^*; R^{\omega}$ if not $a_0 S^{\omega}$.

Proof. By $R \subseteq \rightarrow$ the assumption of the theorem and hence its second disjunct hold.

The result: if $R; S \subseteq S; \rightarrow^*$, then $R^*; S; R^*$ is terminating iff S is (Bachmair and Dershowitz, [3] Exc. 1.3.19) is not a corollary. The third disjunct (a R b and not $b S^{\omega}$) in the premiss of the theorem is satisfied for a R a R b S a, but although $R^*; S; R^*$ is not terminating, S is. Removing that disjunct and $a_0 S^*$; R^{ω} in the conclusion allows to adapt the method to that result as well.

References

- [1] H. Doornbos and B. von Karger. On the union of well-founded relations. Logic Journal of the IGPL, 6(2):195-201, 1998.
- [2] A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that certify termination of left-linear term rewriting systems, 2005.

http://ginevras.pil.fbeit.htwk-leipzig.de/pil-website/public_html/geser/trs.pdf.

[3] Terese. Term Rewriting Systems. Cambridge University Press, 2003.