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Abstract. We introduce a method for establishing that a reduction
strategy is normalising and minimal, or dually, that it is perpetual and
maximal, in the setting of abstract rewriting. While being complete, the
method allows to reduce these global properties to the verification of
local diagrams. We show its usefulness both by giving uniform proofs of
some known results and by establishing new ones.

1 Introduction

Consider the following two natural combinations of properties of strategies.

– normalisation (constructs a reduction to normal form from an object if it
exists) and minimality (normal forms are reached in the minimal number of
steps).

– perpetuality (constructs an infinite reduction from an object if it exists) and
maximality (normal forms are reached in the maximal number of steps).

The former combination is of interest when implementing a rewrite system,
whereas the latter is useful for its complexity analysis. Although both have
received attention for various concrete strategies and rewrite systems, to our
knowledge no general proof method for establishing them has been developed.

In this paper we develop methods for comparing strategies . and I in two
ways, the former being more appropriate for rewrite systems having unique nor-
mal forms, the latter for systems where normal forms need not be unique:

(∀∀) For every pair of maximal .- and I-reductions from the same object, the
length of the first does not exceed that of the second.

(∀∃) For every maximal .-reduction from an object, there exists a maximal I-
reduction from that object which is at least as long.

The main contributions of this paper are firstly, the reduction of both combina-
tions of properties of the first paragraph to the (∀∀)-comparison problem, and
secondly the further reduction of both comparison problems which are global
(quantifying over all reductions from an object), to local properties (quanfifying
only over all steps from an object).

To illustrate the power of our methods, we use examples and results from
the literature. Other than that, we assume only basic rewriting knowledge.



2 Abstract rewrite systems and strategies

We recapitulate from [1, Chs. 8 and 9] the main notions from rewriting employed,
introduce some new ones, and fix our notations. For background, motivation,
and further pointers to the literature, we refer the reader to the mentioned
chapters, as both our fundamental notions of ARS and strategy (going back at
least to [2,3]) seem to be missing from other textbooks on rewriting.

Definition 1. An abstract rewrite system (ARS) is a system consisting of a
set of objects, a set of steps, and source and target functions mapping steps to
objects [1, Def. 8.2.2].

We employ arrow-like notations to denote ARSs, e.g. →, ., I, �. That φ is
a step of → from a to b, i.e. having a as source and b as target, is denoted by
φ:a → b or a →φ b. We may omit the step, the source, or the target from this
notation when irrelevant, e.g. a→φ indicates φ is a step from a, and a→ b that
there is a step from a to b. A normal form is an object which is not the source
of a step. An object is deterministic if it is the source of at most one step. An
ARS is deterministic if all objects are. We say I is a sub-ARS of→, denoted by
I ⊆ →, if the set of objects/steps of I is a subset of the set of objects/steps of
→, and the domain/source map of I is the restriction of that of →.

Remark 1. We follow [2] in employing the intensional notion of abstract rewrite
system, instead of the extensional notion of rewrite relation. Whereas the former
allows for distinct steps between the same two objects, the latter does not. For
instance, in the abstract rewrite system generated by the rule I(x)→ x there
are two distinct steps from I(I(a)) to I(a), one corresponding to contracting
the outer redex, the other to contracting the inner redex, whereas in the rewrite
relation these are (necessarily) confounded. As a consequence, strategies such as
the innermost strategy could not be expressed faithfully at the abstract level if
we were to employ rewrite relations.

Using the above we present the main notion of this paper, that of a strategy.

Definition 2. A strategy for an ARS → is a sub-ARS of → having the same
sets of objects and normal forms [1, Def. 9.1.1].

The idea is that a strategy corresponds to making a choice among the steps
possible at each object. The choice may leave all possibilities open (→ is a strat-
egy for itself), but not decline all (as that would create normal forms).

Example 1. There are exactly three strategies for the ARS a � b→ c: the ARS
itself, a → b → c, and a � b c [1, Exc. 9.1.3]. Note that e.g. the sub-ARS
a← b→ c is not a strategy as it turns a into a normal form.

Remark 2. Our notion of strategy is the intensional version of the extensional
notion in [3]. Like there, we do not impose additional conditions such as de-
terminism or computability often found in the literature. Determinism would
preclude expressing the (as opposed to an) innermost strategy. Computability
would preclude e.g. the internal needed strategy below from being a strategy.
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Henceforth . and I are assumed to be strategies for →.

As the notions of .-, →-, and I-normal form are all the same, we simply speak
of normal forms. Since strategies are ARSs themselves, all ARS notions and the
ARS constructions below apply to them. The converse of an ARS is obtained
by swapping the source and target of each step, and denoted by the mirror-
image of its notation, e.g.← denotes the converse of→. The union of two ARSs
is obtained by taking unions componentwise, and denoted by the union of the
notations, e.g. ↔ denotes the union of ← and →. A reduction is either finite or
infinite. A finite reduction from a to b is inductively defined as being either the
empty reduction a and then a = b, or a step from a to c followed by a finite
reduction from c to b, for some c. An infinite reduction from a is coinductively
defined as a step from a to b followed by an infinite reduction from b, for some
b. The reduction ARS, generated by taking the finite reductions as steps, is
denoted by the repetition of the notation of the original ARS, e.g. → generates
�. (If the repetition would lead to clutter, we affix a superscripted ∗ instead,
e.g. ↔ generates ↔∗.) Concatenating a finite reduction R and a reduction S is
defined in the usual way by induction on R and denoted by R·S. The length of a
reduction, obtained by counting the steps in it, is either finite (a natural number)
or infinite (ω). A reduction is maximal if it either is a finite reduction to normal
form or infinite. An object is terminating if it only allows finite reductions. An
ARS is terminating, if all objects are. We will indicate (constraints on) the length
of a reduction by superscripting, e.g. R:a→≤5 b indicates that R is a reduction
of length at most 5 from a to b, and S:a →ω that S is an infinite reduction
from a. A conversion is a finite ↔-reduction, and we call the generated ↔∗ the
conversion ARS. The distance d(R) of a conversion R is the number (an integer)
of →-steps minus the number of ←-steps in R. An ARS is said to have unique
normal forms if every object has a conversion to at most one normal form.

Remark 3. It would be interesting to extend our results below to reductions of
transfinite length (applicable to concrete systems as those in [1, Ch. 12]). That
would require developing an intensional version of transfinite ARSs first.

We conclude these preliminaries with formalizing the properties of strategies we
would like to establish, as discussed in the first paragraph of the introduction,
We already use . and I according to the rôle they will play below.

Definition 3. – . is normalising, if every object from which there is an →-
reduction to normal form, only allows finite maximal .-reductions.

– . is minimal, if the length of any .-reduction from an object to normal form,
is minimal among the →-reductions from the former to the latter.

– I is perpetual, if every object from which there is an infinite →-reduction,
only allows infinite maximal I-reductions.

– I is maximal, if the length of any I-reduction from an object to normal
form, is maximal among the →-reductions from the former to the latter.
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3 Comparing strategies universally

We introduce a method to compare strategies . and I for a rewrite system →.

Definition 4. . is universally better than I, if for every object a, and every
pair of maximal .- and I-reductions from a, the length of the first does not
exceed that of the second.

As we use the adverb ‘universally’ only to distinguish the current notion of better
from the one to be introduced in the next section, we will elide it in the rest of
the present section. Being better than is transitive, but not an order.

Example 2. Setting both . and I to the ARS a→ b→ c shows a strategy need
not be self -better, i.e. better than itself. The reason for failure is that there are
reductions of distinct lengths from the object a to its normal form c.

Letting . and I be obtained from the ARS a → bi → c with i ∈ {1, 2}, by
omitting either of the steps a→ bi, shows failure of anti-symmetry: the strategies
are distinct but each is better than the other.

Removing the step from a to b in the first part of the example yields a strategy
which is both better and self-better (cf. Theorem 3). These exist in general:

Proposition 1. Each ARS has a better strategy which is self-better.

Proof. For an ARS→, let WNi be {a|i = µn.a→n ·9}, the set of objects whose
shortest reduction to normal form has length i. The strategy . is obtained from
→ by omitting all steps from WN1+i to the complement of WNi. As by definition
each object in WN1+i has some step to WNi, . is a strategy for →. It is better
than both → and itself since every maximal .-reduction from an object in WNi

has length i, and the other objects only allow infinite maximal reductions. ut
When applied to the ARS in the second part of Example 2 the construction
yields the ARS itself. More generally, it yields the largest better strategy which
is self-better. Note that, dually, a self-better strategy I for→ with→ better than
I , exists, but only for → finitely branching (FB). Leaving to future research a
more thorough study of the better relation, we proceed by linking it to the two
combinations of properties in the first paragraph of the introduction.

Theorem 1. If . is better than I, then:

– . is normalising and minimal, in case I =→.
– I is perpetual and maximal, in case → = ..

The reverse implication holds in case → has unique normal forms.

Proof. Let R and S be maximal .- and I-reductions from a.

– ‘Only if’: Suppose S ends in some normal form b. By the assumption that .
is better than I =→, the length of S is an upper bound on the length of any
.-reduction from a (normalisation), in particular on that of R (minimality).
‘If’: Since otherwise there is nothing to prove, suppose S ends in some normal
form b. By normalisation of ., by I =→, and maximality of R, then R must
also end in some normal form, which by uniqueness of normal forms is equal
to b, from which we conclude by minimality of ..
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– ‘Only if’: By the assumption that → = . is better than I, the length of R
is a lower bound on the length of any I-reduction from a (perpetuality), in
particular on that of S if S ends in some normal form (maximality).
‘If’: Since otherwise there is nothing to prove, suppose S ends in some normal
form b. By perpetuality of I, by → = ., and maximality of R, then R must
also end in some normal form, which by uniqueness of normal forms is equal
to b, from which we conclude by maximality of I.

Remark 4. That the reverse implication needs uniqueness of normal forms to
hold, could indicate that our notion of being better is ‘too universal’; even lengths
of reductions to distinct normal forms are compared. It does not seem to make
much sense in general to do so (think of an ARS modelling a non-deterministic
choice between otherwise unrelated computations). We leave it to future research
to investigate relativising comparisons to the result (normal form) computed.

The theorem suggests that for establishing either of the combinations, normal-
isation and minimality or perpetuality and maximality, a single proof method
for establishing that one strategy is better than another might suffice. It does.

Definition 5. If a / ·I b implies either /ω b or a In · /m b for some n ≤ m,
then . ordered locally commutes with I, abbreviated to OLCOM(.,I).

Our reduction of the global property of ‘being better’ to the local property
OLCOM is analogous to the way in which Newman’s Lemma reduces the global
property of confluence to the local property of local confluence [2] (more accu-
rately, to the reduction of confluence to local decreasingness [4], as that method
is complete). Indeed, OLCOM can be viewed as obtained from local confluence
(more precisely, local commutation) by enriching the latter with an ordering con-
straint on the lengths of the reductions: the length of the ‘left-reduction’ does
not exceed the length of the ‘right-reduction’. Note that gluing two such dia-
grams together in the usual way, yields a diagram again satisfying the ordering
constraint. We leave the study of these diagrams to future research. Below we
will treat the left disjunct of OLCOM, i.e. the case /ω b, as a ‘degenerate’ case.

Theorem 2. OLCOM(.,I) only if . is better than I. The reverse holds if . or
I is equal to → and → has unique normal forms.

Proof. ‘Only if’: We successively show the two implications OLCOM(.,I) ⇒
B(.,I), . is bounded by I, and B(.,I) ⇒ . is better than I. In a diagram:

≤−m′+n
≤≤

OLCOM betterstep for
induction

⇒ ⇒

m IH

≤−(1+m)+(1+n)

IH n

n′ ≤ m′
OLCOM m nB

≤−m+n

Here B(.,I) is defined as: for each b /m a In c with c in normal form, b I≤−m+n

c. We show it holds by induction on n, assuming OLCOM(.,I). If m = 0, it is
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trivial. Otherwise, a 6= c as I,.-normal forms coincide, so b /m b′ / a I c′ In c.
By OLCOM(.,I) either /ω c′ or b′ In′ d /m′

c′ for some d and n′ ≤ m′.
The former cannot hold as it would ential d′ /n+1 c′ In c for some d′, so by
the induction hypothesis d′ I−1 c, which cannot be. In case of the latter the
induction hypothesis can be applied to d /m′

c′ In c, yielding a reduction d Ik c
with k ≤ −m′ + n. Since n′ + k ≤ n′ + −m′ + n ≤ n, the induction hypothesis
can be applied to b /m b′ In′ d Ik c, yielding a reduction b II c bounded in
length by −m + n′ + k ≤ −m + n = −(1 + m) + (1 + n).

To show the second implication, let R, S be maximal .-, I-reductions from
a. If S is infinite, there is nothing to prove. Otherwise, it is finite and ends by
maximality in some normal form, say it has length n and ends in c. Then n is
an upper bound on the length of R, since the length of a mediating reduction as
required by B(.,I) can only be non-negative, and by maximality R ends in c.

‘If’: Let b / a I c and split cases depending on whether → = . or I =→.
If → = ., let R and S be obtained by extending a . b and a I c by maximal

I-reductions. If S is infinite, then the left disjunct of OLCOM(.,I) holds by
viewing the I-steps in the extension part of S as .-steps, using that I was
assumed a strategy for → = .. If S is finite, it ends by maximality in some
normal form, say d. Now viewing the I-steps in the extension part of R as .-
steps, and using the assumption that . is better than I, yields that the length of
R does not exceed that of S. By maximality,Rmust end in a normal form, which
must be equal to d by uniqueness of normal forms. Hence the right disjunct of
OLCOM(.,I) holds via R, S.

If → = I, then we proceed dually by extending a . b and a I c by maximal
.-reductions, and subsequently viewing .-steps as I-steps. ut

Combining Theorems 1 and 2 yields that OLCOM may be used to establish
both normalisation and minimality as well as perpetuality and maximality for
given strategies for an ARS →. Apart from being the first method to reduce
these global properties (universally quantifying over all reductions) to a local
property (OLCOM universally quantifies only over pairs of steps), the method
is even complete (it is applicable) in case → has unique normal forms.

We now illustrate the power of the method by giving uniform proofs of re-
sults for concrete rewrite systems from the literature, and by answering an open
problem. The first two examples concern normalisation and minimality, the next
two examples concern perpetuality and maximality, and the final one both.

Example 3. The innermost strategy for a TRS allows to contract only those
redexes in a term which are innermost among all redexes. For instance, in the
TRS with rules a→ b and d(x)→ g(x, x), the innermost strategy only allows
to contract the a-redex in the term d(a). Intuitively, the innermost strategy is
efficient since it avoids duplication; the innermost reduction d(a) → d(b) →
g(b, b) is shorter than the non-innermost reduction d(a) → g(a, a) → g(b, a) →
g(b, b), since contracting the d-redex first causes duplication of the a-redex. The
catch is that the innermost strategy also avoids erasure; in the TRS with rules
a → f(a) and f(x) → b, an innermost reduction from f(a) only contracts a-
redexes and never reach the normal form b, whereas the latter could be reached
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efficiently, even in a single f -step, by erasing the a-redex. Combining these two
ideas results in a strategy due to Khasidashvili, here denoted by . and given by:

(internal needed strategy) contract an innermost redex among needed ones.

A redex is needed, in Huet and Lévy’s sense, if it must be reduced in any reduc-
tion to normal form; cf. [1, Sect. 9.4.7]. Note erasable redexes are not needed.

How to show that . is a normalising and minimal strategy for ordinary rewrit-
ing →, in case of an orthogonal TRS? We must first show that . is indeed a
strategy for →. This follows from the fact (due to Huet and Lévy) that in an
orthogonal TRS, any term not in normal form contains a needed redex, hence
also an innermost such (but since neededness is not computable, neither is .).

To show normalisation and minimality of ., it suffices by the theorem to show
OLCOM(.,→). This we show by a critical pair analysis, distinguishing cases on
the relative positions p, q of the redexes contracted in s /p t→q u:

(=) Then the steps are the same by orthogonality, so s = u and we conclude.
(‖) Then s→q v ←p u, for some term v. Since at least one of the residuals of
a needed redex is needed if it is not contracted itself, and by p ‖ q the needed
redex at p in t has a unique residual at p in u, that unique residual must
therefore be needed. Since the latter is also innermost among the needed
redexes in u (being needed or not was not changed for redexes below p), it
holds s→q v /p u, from which we conclude.

(<) Then q is non-needed since p was assumed to be the position of a re-
dex innermost among the needed ones. Consider a maximal .-reduction R
extending t .p s. Consider the projection S of R over the non-needed step
t →q u. Then S is a .-reduction from u of exactly the same length as R.
This follows from the general theory of neededness, in particular from the
fact that contracting a non-needed redex can neither erase, nor duplicate,
nor create needed redexes. If R is infinite, then S is infinite as well so the
left disjunct of OLCOM(.,→) holds. Otherwise, R ends in a normal form
by maximality, hence S being its projection ends in the same normal form,
and the right disjunct of OLCOM(.,→) holds.

(>) Then s→q v � u for some v, obtained by projecting the steps over one
another. Per construction of the projection for orthogonal rewrite systems
(essentially going back to Church and Rosser), v � u is in fact a reduction
contracting the set of residuals of the redex at position p, which is a set
of disjoint positions in the case of TRSs, that is v q←−P u. Partitioning
P into sets of non-needed and needed residuals yields a decomposition of
v q←−P u as v q←− v′ // u, with the .-reduction being non-empty since p has
at least one needed residual in u as it was not contracted in t→q u. Finally,
consider a maximal .-reduction R from v′. If R is infinite, the left disjunct
of OLCOM(.,→) holds. Otherwise R ends in a normal form, and, as before,
projecting R over v q←− v′ yields a reduction from v of exactly the same
length and ending in the same normal form, from which we conclude. ut

Since an orthogonal TRS is confluent, it has unique normal forms. Hence that
normalisation and minimality of the internal needed strategy are reducible to
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OLCOM(.,→) is clear by completeness of our method. The point of the examples
is rather to show that a clear methodology for proving OLCOM suggests itself:
the case-analysis required for OLCOM often resembles a critical pair analysis.

Remark 5. It would be interesting to have a critical pair lemma for strategies
corresponding to OLCOM in the same way Huet’s Critical Pair Lemma for TRSs
corresponds to local confluence. That requires a suitable strategy formalism.

Example 4. In multi-step rewriting, denoted by ◦−→, an arbitrary (non-zero)
number of redexes in a term may be contracted at the same time. For instance,
in the TRS with rules a→ b and d(x)→ g(x, x) as above, we have d(d(a)) ◦−→
d(g(b, b)) by contracting the inner d-redex and the a-redex at the same time. For
the notion of ‘contracted at the same time’ to make sense, the redexes need to
be consistent to each other. (E.g. what would it mean to contract both redexes
at the same time in the term f(g(a)) in the TRS with rules f(g(x))→ b and
g(a)→ c?) For orthogonal TRSs this is guaranteed giving a greedy strategy .:

(full-substitution strategy) contract all redexes in the term simultaneously.

How to show that being greedy is best, i.e. that . is a normalising and minimal
strategy for multi-step rewriting ◦−→ in case of an orthogonal TRS? That . is a
strategy follows from orthogonality, since it guarantees that if some multi-step
exists, contracting all redexes makes sense/is possible, cf. [1, Def. 4.9.5(v)].

To show normalisation and minimality of ., it suffices by the theorem to
show OLCOM(., ◦−→). If s / t ◦−→ u, then the set of redexes contracted in the
multi-step t ◦−→ u is contained in the set of all redexes in t, by orthogonality.
If the sets are the same, then s = u and we are done. Otherwise, by standard
residual theory, s ◦←−P u where P is the set of residuals after t ◦−→ u of the set
of all redexes in t. If P is the set of all redexes in u, then in fact s / u and we are
done again. Otherwise, we conclude from s ◦−→ v / u, where s ◦−→ v contracts
the set of residuals after s ◦←−P u of the set of all redexes in u. ut

The proof in Example 4 goes through for the λ-calculus (the full-substitution
strategy is known there as Gross–Knuth reduction) and more generally to or-
thogonal higher-order pattern rewrite systems, as it only depends on a modicum
of residual theory (e.g. [1, Thm. 11.6.29] in the case of higher-order rewriting).

Example 5. The outermost strategy for a rewrite system allows to contract only
those redexes in a term which are outermost among all redexes. Intuitively, the
outermost strategy is inefficient since it promotes duplication; the outermost-
reduction d(a) → g(a, a) → g(b, a) → g(b, b) is longer than the non-outermost
reduction d(a)→ d(b)→ g(b, b) in the TRS with rules a→ b and d(x)→ g(x, x).
One catch is that the outermost strategy also promotes erasure; in the TRS
with rules a→ f(a) and f(x)→ b, an outermost reduction from f(a) immedi-
ately reaches the normal form b, whereas it would be infinitely more inefficient
to repeat contracting a-redexes. Another catch is that outermost redexes may
turn into non-outermost redexes; although the rightmost a-redex in f(a, a) is
outermost for the TRS with rules a→ b, f(b, x)→ g(x, x), its contraction should
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be delayed if one strives for inefficiency, contracting instead the leftmost a-redex
(turning the rightmost a-redex into an innermost one) first and next the f -redex.
Combining these three ideas results in a strategy I due to Khasidashvili:

(limit strategy) contract an external redex which does not erase a reducible
argument, otherwise recur on such an argument; cf. [1, Sect. 9.5.1].

Externality is Huet and Lévy’s notion of a redex which remains outermost until
contracted. In the term f(a) above, the f -redex is external, but since contracting
it would erase its, reducible, argument a, the limit strategy recurs on it.

That I is a perpetual and maximal strategy for → was originally proven by
Khasidashvili for → being (generated by) an orthogonal Expression Reduction
System. Here, we give a proof via OLCOM(→,I) for the closely related formal-
ism of orthogonal fully-extended second-order pattern rewrite systems, i.e. the
restriction of Nipkow’s higher-order rewrite systems to rules with free variables
of second-order. That I is indeed a strategy for → holds since a term not in
normal form contains an outermost redex, and (generalising Huet and Lévy’s
result for TRSs) at least one among the outermost redexes is external.

To show OLCOM(→,I), we perform a critical pair analysis, distinguishing
cases on the relative positions p, q of the redexes contracted in s←p t Iq u.

(=) Then s = u since at most one left-hand side matches a term. We conclude.
(‖) Then s →q v ←p u, for some term v. The step s →q v could only fail to
be a I-step, if contraction of q in t was due to a recursive call for some o
above it, which is blocked in s. This cannot be, as the residual of o in s still
erases the argument q is in. Hence s Iq v ←p u.

(<) Then by definition of I, p is a redex erasing q and s←p u.
(>) Then by the diamond property for orthogonal multi-steps in PRSs [1,
Thm. 11.6.29], s →q v ◦←−P u for some v, where P is the set of residuals
of p after t Iq u, which is non-empty since q is non-erasing. If s →q v is
non-erasing, then in fact s Iq v ◦←−P u and we conclude since the non-
empty multi-step v ◦←−P u develops into a non-empty reduction v � u by
the Finite Developments Theorem [1, Thm. 11.5.11]. Otherwise,1 consider
a maximal I-reduction R from s obtained by first reducing each argument
erased by q in turn to its normal form. If this is finite, the redex at position
q has become a I-redex and we adjoin it to R, and let v be the resulting
term. Now consider performing for each descendant along t Iq u of each
such an erased argument, the same steps as in R, and do this according to
the inside-order of these descendants in u. This guarantees that the resulting
reduction has at least the same length as R. (In the 3rd order case that may
fail, see the following remark.) Thus if R is infinite this yields an infinite
reduction from u as well, and we are done. Otherwise, this yields a reduction
ending in v by [1, Thm. 11.6.29] and we conclude again. ut

The limit strategy need not be maximal nor perpetual for third-order systems:
1 An example of this in λ-calculus is (λx.y)N ← (λx.(λz.y)x)N I (λz.y)N ; we first

should I-reduce N to normal form, say N ′, before to proceed with (λx, y)N ′ I y.
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Remark 6. Consider t = f(G.g(x.G(x))) in the orthogonal fully-extended third-
order rewrite system:

a→ b g(x.G(x))→G(a) f(G.H(G))→H(y.c)

Starting with contracting the head-redex-pattern yields t I g(x.c) I c. Observe
how contracting the head-redex makes the inside g-redex erasing (something
impossible in second-order systems) and that contracting the latter first yields
a longer reduction: t→ f(G.G(a))→ f(G.G(b))→ c.

Example 6. Leftmost-outermost redexes are external in λβ-calculus. Therefore

(F∞ ) contract a leftmost-outermost redex which does not erase a reducible
argument, otherwise recur on such an argument.

is a limit strategy, hence maximal and perpetual by the above; cf. [5, Thm. 11]. As
on λI-terms the leftmost-outermost strategy is F∞, it is maximal and perpetual;
cf. [6, Proposition 3.17]. What about F∞ for λ-calculi with explicit substitutions?

The λx−-calculus of [7] is a λβ-calculus with explicit substitution operator
〈 := 〉, and rules (of which only the third, not the first, is erasing (N)!):

(λx.M)N →M〈x:=N〉
x〈x:=N〉 → N (λy.M)〈x:=N〉 → λy.M〈x:=N〉
y〈x:=N〉 → y (M1M2)〈x:=N〉 →M1〈x:=N〉M2〈x:=N〉

As any reducible term has a leftmost-outermost redex, the ARS I induced by F∞
is a strategy for the ARS→ induced by λx−. Since λx− is a second-order rewrit-
ing system [8, Def. 13], to show OLCOM(→,I) it suffices to adapt the analysis
of Example 5. The only property of externality we employed there was that it is
preserved for residuals (if any). As that also holds for leftmost-outermostness in
λx−, it suffices to supplement the case-analysis with the (unique) critical pair:

C[M〈x:=N〉〈y:=P 〉]←p C[((λx.M)N)〈y:=P 〉] Iq C[(λx.M)〈y:=P 〉N〈y:=P 〉]

We reason as for (>) in Example 5. In particular, we simulate any I-reduction
R from the term s on the left by a reduction S from the term u on the right,
which is at least as long. To that end, we first reduce u one step further to
u′ = C[M〈y:=P 〉〈x:=N〈y:=P 〉〉]. After that, simulation of R by S is redex-
wise: By definition of F∞, a 〈x:=N〉〈y:=P 〉-closure is only ever distributed (over
λ or @) in its entirety in R, which can be simulated in S by distributing the
〈y:=P 〉〈x:=N〈y:=P 〉〉-closure. In case a 〈x:=N〉〈y:=P 〉-closure is being applied
to a variable in R, its simulation in S is defined by cases on the variable:

(x) Then x〈x:=N〉〈y:=P 〉 I N〈y:=P 〉 ←2 x〈y:=P 〉〈x:=N〈y:=P 〉〉.
(y) Then y〈x:=N〉〈y:=P 〉 Ii y〈x:=N ′〉〈y:=P 〉 I y〈y:=P 〉 I P Ij P ′ where
N ′,P ′ are the normal forms of N ,P (if any). This can be simulated by
y〈y:=P 〉〈x:=N〈y:=P 〉〉 →i y〈y:=P 〉〈x:=N ′〈y:=P 〉〉 → P 〈x:=N ′〈y:=P 〉〉 →j

P ′〈x:=N ′〈y:=P 〉〉 →+ P ′, using for the final reduction that neither the vari-
able x nor any closures occur in the normal form P ′.

(z) Analogous to the previous case ending in z (if at all) instead of P ′. ut
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This solves the open problem [9, Rem. 3.18]. The method can easily be adapted
to show maximality and perpetuality of F∞ for the λβη-calculus [5, Thm. 19].2

Remark 7. Termination proofs for typed λ-calculi (with explicit substitutions)
usually involve a ‘syntactic’ commutation property. The strategy F∞ allows to
factor this property out, giving rise to fully ‘semantic’ termination proofs.

We say → is ordered weak Church–Rosser (OWCR) if OLCOM(→,→). OWCR
entails → is self-better (Theorem 2) and if an object can be reduced to normal
form in n steps, then any strategy will do so (Theorem 1); in Newman’s ter-
minology [2, p. 226]: the end-form is reached by random descent. Inspired by
this, we say → has random descent (RD), if for each R:a↔∗ b with b in normal
form, all maximal reductions from a have length d(R) and end in b. Note that
for an ARS satisfying OWCR it suffices to prove normalisation to establish both
termination and (random descent) confluence; see [10] for an example of this.

Theorem 3 (Random Descent). OWCR ⇔ RD.

Proof. ‘Only if’: Setting . = → = I, we obtain OWCR ⇒ B(→,→) by using
the implication OLCOM(.,I) ⇒ B(.,I) in the proof of Theorem 2. Next,
we claim B(→,→) implies self-boundedness (SB), where SB states that for any
conversion R:a↔∗ b with b in normal form, there exists a→≤d(R) b. The claim
follows by an easy induction on the number of peaks in the conversion (analogous
to the way the Church–Rosser property is proven from confluence).

Having established SB, we prove RD. Let R:a ↔∗ b with b in normal form,
n = d(R) and consider a maximal reduction S from a. On the one hand, n is
an upper bound on the length of S, since otherwise there would be a reduction
S ′:a→n+1 a′ hence a conversion to normal form S ′−1 · R:a′ ↔∗ b with negative
distance −1, contradicting SB. Thus by maximality S ends in a normal form b′

which by SB for S−1 · R:b′ ↔∗ b reduces to b, so b′ = b. On the other hand, n is
a lower bound on the length of S, as else R−1 · S:b↔∗ b would be a conversion
to normal form having negative distance, contradicting SB.

‘If’: Let R:b ← a → c, and let S be a maximal reduction from c. If S is
infinite, we are done. Otherwise, it is finite and ends in a normal form, and we
conclude from RD using d(S) = d(R · S). ut

Instances of calculi for which random descent has been established and its con-
sequences used, abound in the literature, almost invariably proven in ad hoc
fashion. Some examples are linear λ-calculi [11, Cor. 3.4], [5, Prop. 33], spine
strategies for λ-calculus [6, Prop. 4.21], in/external strategies for orthogonal
TRSs [1], orthogonal string rewrite systems [12], orthogonal graph rewrite sys-
tems in particular Lafont’s interaction nets [13], and orthogonal process calculi
in particular those modelled by Stark’s concurrent transition systems [14].

Several local conditions sufficient for RD, generalizing [2, Thm. 2], have been
proposed in the literature, e.g. balanced weak Church–Rosser (BWCR [3,15])
balanced SCR [16], linear biclosed [8], and SCR≥1 [16]. However, none is complete

2 Only failure of preservation of leftmost-outermostness (λx.(λy.Kyx)x) requires care.
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as they all fail to cover the ARS a → b → c → d → c ← a, which does satisfy
OWCR. In fact, no global property had been explicitly identified before, but it
is the global property upon which all applications are seen to rely. For instance,
all results in [3,15] trivially generalise by replacing everywhere BWCR by RD.

Example 7. Let the ARS→ have finite lists as objects and swapping of adjacent
elements in lists-which-are-not-sorted as steps. The strategy ., which only swaps
elements which are out-of-order, so-called inversions, has random descent as fol-
lows from OWCR(.), the only interesting case being the critical pair schemati-
cally given by bca / cba . cab, which is completed as bca . bac . abc / acb / cab.
Since insertion sort is an instance of . which is Θ(n2), and OLCOM(.,→) follows
by an easy critical pair analysis, we conclude sorting-by-swapping is Ω(n2).

4 Comparing strategies existentially

We introduce our second (and third) way to compare strategies.

Henceforth it is assumed that → = I ∪ ..

Definition 6. An ordered pair is a pair of maximal reductions from an object,
such that if the second ends, the first ends in the same object and is not longer.
R can be completed on the left (right) by S if S,R (R,S) is an ordered pair.

– . is existentially better than I, if every maximal I-reduction can be com-
pleted on the left by a .-reduction.

– I is existentially worse than ., if every maximal .-reduction can be com-
pleted on the right by a I-reduction.

We drop de adverb ‘existentially’ if no confusion with the notion of better from
the previous section can arise. Clearly, both better and worse are quasi-orders,
but neither needs to be anti-symmetric (for the same reason as before).

Remark 8. For ARSs having unique normal forms, . being universally better
than I implies both . being existentially better than I and I being existentially
worse than . but not vice versa. Since our existential ways to compare strategies
are relativised with respect to the normal forms, whereas the universal way was
not, they are in general incomparable for ARSs not having unique normal forms.

The next goal is to reduce the global properties better and worse to local ones.

Definition 7. – → has left extraction (LE) if every finite maximal reduction
of shape I · .. can be completed on the left by a reduction of shape . ·�.

– → has right extraction (RE) if every finite maximal reduction of shape . ·II
can be completed on the right by a reduction of shape I ·�.

The idea for LE is that to show . is better than →, it suffices that any initial
I-step can be ‘improved’ into a .-step. The dual idea for RE will need extra
assumptions to work, i.e. to imply that I is worse than →, as shown by:

12



a

RE holds but a .ω cannot be completed on the right by I (� = . ∩I)

Remark 9. LE, OLCOM, RE are essentially the same diagram, the main differ-
ence residing in which sides are existentially quantified (left, bottom, right).

Lemma 1. →-non-termination implies I-non-termination, under the assump-
tions that a . ·In implies a I · →n and that I is finitely branching (FB)

Proof. By FB and König’s Lemma, it suffices to show that for any →-reduction
there exists a I-reduction from the same object and of the same length. The
proof is by induction on the length of the →-reduction. The base case being
trivial, suppose it is of shape a→ a′ →n. By the induction hypothesis for a′ →n,
there exists a reduction a′ In. If in fact a I a′, we are done. Otherwise, a . a′

and the assumption for a . a′ In yields a I a′′ →n from which we conclude by
the induction hypothesis applied to a′′ →n. ut

Two sufficient conditions for the lemma are obtained by requiring on top of FB,
either RE with ‘finite’ removed from its definition, or [17, Lemma 7].

Theorem 4. If LE, then . is better than →. If RE, then I is worse than →,
under the assumptions of Lemma 1.

Proof. To prove the first item, let R be a maximal reduction from a. If R is
infinite, then we are done. Otherwise R is finite and we proceed by induction on
its length. The base case being trivial, suppose R is of shape a → a′ � b. By
the induction hypothesis for a′ � b, we get a′ .. b which is no longer, so we are
done if in fact a . a′. Otherwise LE for a I a′ .. b yields a . a′′ � b which is no
longer, so by the induction hypothesis for a′′ � b, a′′ .. b which is no longer.

To prove the second item, note that if → is non-terminating for a, then
Lemma 1 yields an infinite I-reduction from a and we are done. Otherwise, we
proceed as in the first item, but by well-founded induction ordered by → on the
source a of R, exchanging longer with shorter, LE with RE, and . with I. ut

As a typical application of the above, we present a λ-calculus λ+ with non-
deterministic choice embodied by the rule M1 + M2→Mi (cf. [18]).

Lemma 2. RE without ‘finite’ in its condition hold for I the F∞-strategy and .
the reduction relation of λ+, with F∞ as for λ-calculus (Example 6) additionally
choosing for M1 + M2 either to recur on Mi if it is reducible, or to select Mi in
case the other argument is in normal form.

Proof. Let t .p s Iα be a maximal reduction and distinguish cases on whether
s is a normal form or not. If s is a normal form, we show t Iq u � s, for some
u. If in fact t Ip s this is trivial. Otherwise, the step t .p s must be outermost
and all other redex-patterns in t must be below p and erased by the step. Then
for any t I t′ it holds t′ .p s. If s is not a normal form, the reduction is of shape
t .p s Iq u Iα .−1 for some u. It suffices to show that this entails t I · →+ u. Let
t = C[P ]p and distinguish cases on the relative positions of p,q.
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(≤) If P = (λx.M)N then either P is in fact a I-redex, or x does not occur
in M and N is not normal, thus N is erased and we proceed as above. If
P = M1 + M2 and, say, M1 is selected and then I-rewritten to M ′

1, then
t I C[M ′

1 + M2]p → u.
(�) If t Iq then t Iq ·� u by [1, Thm. 11.6.22], where in fact the →-
reduction cannot be empty since I-steps cannot erase .-steps. Otherwise,
contracting P turns the ‘q-branch’ of the greatest common predecessor o of
p, q in the term-tree, into an ‘F∞-branch’. This can only happen if either
the step was in fact a step to normal form of the ‘p-branch’, or if it created
the body of a β-redex at position o. In either case it is a I-step unless it
erases a non-normal argument N , but then we may proceed as before. ut

As any term contains only finitely many occurrences of +, . is finitely branching,
and by I ⊆ ., I is so too. Thus by Theorem 4 I is worse than .. This can be
useful to prove termination of typed subcalculi of λ+ via termination of F∞;
cf. Remark 7. We conclude with a case-study of abstract copying.

Definition 8. If I =
⋃

p Ip, then I copies . if for b / a Ip, either b // ·Jp a

or q exists with (a Ip a′ implies b Iq · /+ a′, and b Iq b′ implies a Ip · .+ b′).

E.g. the outermost strategy copies →T for T = {f(x)→ g(x), f(x)→ h(x, x)}.
Theorem 5. If I copies ., then I is worse than ..

Proof. Let a0 Ip and let a0 . a1 .α be maximal. It suffices to find a0 I b .β

which is no shorter and ends in the same normal form if at all, as repeating this
on b leads to an ever growing I-reduction from a0, while preserving the property.

Setting p0 = p, construct a maximal sequence of indices pi such that (ai Ipi

a′ implies ai+1 Ipi+1 · /+ a′, and ai+1 Ipi+1 b′ implies ai Ipi · .+ b′). Look for
the first i for which pi+1 is not defined.

If it exists, then ai cannot be in normal form since ai Ipi
holds by induction

on i with base case a0 Ip0 . Hence by maximality ai . ai+1 implying ai Ipi

bi .. ai+1 for some bi. Per construction, there exists bi .−1 such that ai .−1 Ipi .−1

bi .−1 .+ bi. Continuing in this fashion by induction on i, yields a0 Ip0 b0 (.+)i

bi .. ai+1 .α .−i which is as desired.
If it doesn’t exist, then select an arbitrary step a0 Ip0 b0. Per construction,

there exists b1 such that a1 Ip1 b1 /+ b0. Continuing in this fashion by induction,
yields a0 Ip0 b0 .+ b1 .+ b2 .ω which has the desired property. ut
It is easy to see that for TRSs the innermost strategy not only copies itself, but
also copies, hence by Theorem 5 is worse than, non-dup-generalized innermost
rewriting→ndg [17], generalizing all results on →ndg in [17] to the non-finitely
branching case. For another application of Theorem 5: any positional [1, p. 512]
innermost strategy copies the innermost strategy, hence termination of the for-
mer implies termination of the latter, simplifying [19, Thm. 6] and [20, Thm. 2].
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