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Abstract. For equational specifications validity coincides with deriv-
ability in equational logic, which in turn coincides with convertibility
generated by the rewrite relation. It is shown that this correspondence,
essentially due to Birkhoff, can be generalised in a uniform way to sub-
equational logics such as Meseguer’s rewriting logic.

1 Introduction

In order to motivate and state our generalisation, we illustrate the essential
ingredients of the usual correspondence (see, e.g. Chapter 7 of [1] or Chapter 3
of [2]) between validity, derivability and convertibility by means of the following
equational specification EMul of addition and multiplication:

A(x, 0) ≈ x (1)
A(x, S(y)) ≈ S(A(x, y)) (2)

M(x, 0) ≈ 0 (3)
M(x, S(y)) ≈ A(x, M(x, y)) (4)

and the equation:

M(S(x), S(0)) ≈ S(x) (5)

On the one hand, (5) is valid for the specification EMul in the sense that it
holds in any model. In algebraic semantics, terms are giving meaning by means
of an algebra. The algebra is then called a model of the specification if each
equation in the latter holds in the former. That is, the meanings of the left- and
right-hand side of the equation are identical, for any assignment to the variables.
For instance, the algebra Nat having the set of natural numbers as carrier,
and interpreting 0, S, A and M as zero, successor, addition and multiplication,
respectively, is a model of EMul and one easily verifies that (5) holds in it. For
instance, for the assignment α mapping every variable to the natural number 2,
its left-hand side M(S(x), S(0)) is mapped to (2 + 1)× (0 + 1), and its right-hand
side S(x) to 2 + 1, i.e. both sides are mapped to 3.



On the other hand, (5) being the conclusion of the proof tree:

(4)
M(x, S(y)) ≈ A(x, M(x, y))

(σ)
M(S(x), S(0)) ≈ A(S(x), M(S(x), 0))

(ref)
S(x) ≈ S(x)

(3)
M(x, 0) ≈ 0

(σ)
M(S(x), 0) ≈ 0

(A)
A(S(x), M(S(x), 0)) ≈ A(S(x), 0)

(1)
A(x, 0) ≈ x

(σ)
A(S(x), 0) ≈ S(x)

(trans)
A(S(x), M(S(x), 0)) ≈ S(x)

(trans)
M(S(x), S(0)) ≈ S(x)

with substitution σ such that x 7→ S(x) and y 7→ 0, shows that it is derivable
in equational logic (see Table 1).

On the gripping hand, convertibility of the sides of (5) is witnessed by:

M(S(x), S(0))→ A(S(x), M(S(x), 0))→ A(S(x), 0)→ S(x)

a sequence of forwards (and possibly backwards) rewrite steps.
We will refer to the correspondence between validity and derivability as

Birkhoff’s theorem since it is due to [3], and to the correspondence between
derivability and convertibility as logicality (cf. [4]). Both correspondences are
of fundamental importance in the study of programming language foundations,
see [5], and can be seen as a justification of term rewriting itself. For instance,
they allow for solving uniform word problems by means of complete term rewrit-
ing systems.

As argued by Meseguer, e.g. in [6], some specifications should not be con-
sidered to be equational. For instance an equational specification of a binary
choice function ? (selecting either of its arguments) does not make sense, and
would result in all terms being identified to one another. Instead an ordering
specification is appropriate here:

?(x, y) ' x
?(x, y) ' y

As suggested by the notation, in a model of such an ordering specification each
left-hand side should be greater than or equal to the corresponding right-hand
side. Then, to salvage the correspondence between validity and derivability, the
symmetry rule (sym) should dropped from the proof system of equational logic
in Table 1, resulting in ordering1 logic. In order to regain the correspondence
between derivability and convertibility, backwards steps should be dropped from
the latter. After this is done, both correspondences hold again as shown in [6].

Here we propose to generalise the correspondence as presented above for
equational and ordering logic, to so-called sub-equational logics obtained by drop-
ping a subset of the inference rules of equational logic. In particular, equational
and ordering logic are obtained by dropping nothing (the empty set) and the
1 Beware: in this paper we will use a systematic naming scheme. For instance, our

ordering logic is known in the literature as rewriting logic.



(s ≈ t ∈ E)
s ≈ t

s ≈ t
(σ:X→T (Σ,X))

σ(s) ≈ σ(t)

s1 ≈ t1 . . . sn ≈ tn
(f ∈Σ)

f(s1, . . . , sn) ≈ f(t1, . . . , tn)

(ref)
s ≈ s

s ≈ t
(sym)

t ≈ s

s ≈ t t ≈ u
(trans)

s ≈ u
Table 1. Equational logic

singleton {(sym)}, respectively. We argue that sub-equational logics are interest-
ing for the same reason that ordering logic is interesting [6]: enforcing too many
inference rules would conflate notions which one would like to keep distinct. Just
as confusing the forwards and backwards directions (as enforced by symmetry)
would be a brutal [6] act in case of the (non-confluent) ordering specification for
choice above, to confuse ‘not being able to do anything’ with ‘being able to do a
trivial step’ (as enforced by reflexivity) is a brutal act in case of a (terminating)
specification such as

an+1 > an

Similarly, single-steps should, a priori, not be confused with many-steps (as
would be enforced by transitivity) in case of a step specification (a.k.a. term
rewriting system), since by the choice for that form of specification one implicitly
specifies that one is interested in individual steps (think e.g. of complexity).

Based on the above ideas, we give a parametrised account of both Birkhoff’s
theorem (Section 3) and logicality (Section 4) for sub-equational specifications
(Section 2). The proofs of our results are simple, as they are just variations on the
existing simple proofs for equational logic. The main effort will be in formalising
both the results and their proofs in a way which allows for their parametrisation.
As a side-effect of this parametrisation the proof structure becomes clearer, which
may be of some didactic value. Because of it, we have made an effort to make
the paper self-contained.

2 Sub-equational specifications

A sub-equational specification can be thought of as an equational specification
together with a set of inference modes specifying how its equations are to be
interpreted (e.g. indeed as equations, or alternatively as rewrite rules, or . . . ).

Definition 1. A signature (f, g, h∈ )Σ is a set of symbols, each of which comes
equipped with a natural number arity.

The subset of Σ consisting of all symbols of arity n, is denoted by Σ(n). Elements
ofΣ(0) are called constants. Throughout, we assume (x, y, z∈)X to be a signature
disjoint from Σ, consisting of an infinite number of constants called variables.

Definition 2. The set (s, t, u ∈ )T (Σ) of Σ-terms is inductively defined by:



– fs1 . . . sn is a term, if f is an n-ary symbol and s1,. . . ,sn are terms.

The set T (Σ,X) of Σ-terms over X is defined as T (Σ ∪X).

As is customary, we may write f(s1, . . . , sn) to denote fs1 . . . sn.

Example 1. Consider the signature Σ consisting of the nullary symbol 0, the
unary symbol S and the binary symbols A and M. Some Σ-terms are 0, S0, SS0,
A00 and MA0S00. E.g. the last term is also denoted by M(A(0, S(0)), 0). An example
of a Σ-term over X is A(x, S(y)).

Definition 3. A Σ-statement is a pair of Σ-terms.

Definition 4. A (sub-equational) specification is a quadruple S := 〈Σ,X, S, L〉
with S a set of Σ∪X-statements and L a set of inference modes which is a subset
of {(embedding), (compatibility), (reflexivity), (symmetry), (transitivity)}.

We will abbreviate the respective inference modes to (emb), (comp), (ref), (sym),
and (trans). The idea is that for a sub-equational specification S := 〈Σ,X, S, L〉,
the modes of inference will specify how the pairs in S are to be dealt with, both
at the semantical and the syntactical level (both to be presented below).

Example 2. An equational specification is a sub-equational specification having
EL := {(emb), (comp), (ref), (sym), (trans)} as modes of inferences. A statement
(s, t) of such a specification will be called an equation, and written as s ≈ t.

The equational specification EMul in the introduction consists of four Σ-
equations over X, that is, Σ ∪X-equations, with Σ as in Example 1.

Example 3. In an ordering specification all modes of inference except for (sym)
are present RL := {(emb), (comp), (ref), (trans)}.2 A statement (s, t) of such a
specification will be called an ordering, and written as s ' t.

The specification of ? in the introduction is an ordering specification.

Similarly term rewriting systems3 are rendered as sub-equational specifications
by taking {(emb), (comp)} as modes of inference. Its statements are written using
→, as usual.4 The TRS corresponding to EMul will be denoted by RMul .

We will not list all possible sets of inference modes, but only mention one
more example, which will be used later.

Example 4. Removing {(ref), (sym)} from the modes of inference of EMul yields
what we call a positive ordering specification TMul , having as fourth component
TL := {(emb), (comp), (trans)}. A statement (s, t) of such a specification will be
called a positive ordering, and written as s > t.

2 This corresponds to Meseguer’s rewriting logic.
3 To be precise, our term rewriting systems (TRSs) correspond to the pseudo-TRSs

of [1, page 36] since we do not impose the usual further restrictions on rules.
4 Note that although transition system specifications usually employ the →-notation

as well, the (comp)-inference mode is absent for them.



3 Birkhoff

In this section the correspondence between validity (Subsection 3.1) and deriv-
ability (Subsection 3.2) for sub-equational specifications is presented in two
stages. In Subsection 3.3 we first present a correspondence between relational
validity and derivability, which is then extended in Subsection 3.4 to a corre-
spondence between validity and derivability by a quotient construction.

3.1 Validity

As usual, algebras are used to give meaning to the terms of a sub-equational
specification. However, the notion of validity of a statement (s, t) with respect
to a specification S will now be parametrised over its modes of inference.

Definition 5. A Σ-algebra A consists of a carrier set A, and a mapping that
associates with each symbol f ∈ Σ(n) a function fA:An→A, for every n.

An assignment is an X-algebra. For a Σ-algebra A and an assignment α having
the same carrier, A ∪ α denotes the obvious Σ ∪X-algebra.

Example 5. 1. The algebra Nat of the introduction is a Σ-algebra, for the
signature Σ of Example 1. For the same carrier, α of the introduction is an
example of an assignment.

2. The Σ-term algebra T (Σ) has T (Σ) as carrier, and interpretation defined
by, for all n, all f ∈ Σ(n), and all s1, . . . , sn ∈ T (Σ): fT (Σ)(s1, . . . , sn) :=
f(s1, . . . , sn).

Definition 6. A Σ-homomorphism h from a Σ-algebra A to a Σ-algebra B, is
a map from the carrier A of A to the carrier B of B, such that for all n, all
f ∈Σ(n), and all a1, . . . , an ∈A: h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)).

It is easy to see that T (Σ) is initial among Σ-algebras, i.e. for any Σ-algebra
A, there is a unique homomorphism from T (Σ) to A, which we denote by [[A]].

Example 6. 1. The unique homomorphism [[Nat ∪ α]] which maps T (Σ,X) to
Nat ∪ α, with Nat and α as in Example 5.1, is concretely defined by:
– x 7→ 2, for x ∈X
– f(s1, . . . , sn) 7→ fNat(n1, . . . , nn), for f ∈Σ and si 7→ ni

For instance, M(S(x), S(0)) is mapped to (2 + 1)× (0 + 1), i.e. to 3.
2. A substitution is the unique homomorphism [[T (Σ,X) ∪ σ]] of some assign-

ment σ. For instance, if σ assigns S(S(0)) to x, then applying the substitution
to M(S(x), S(0)) yields M(S(S(S(0))), S(0)). We will often abbreviate the sub-
stitution to just σ.

Definition 7. Let S := 〈Σ,X, S, L〉 be a specification. A relational model of S
is pair (A, R) consisting of a Σ-algebra A and a relation R on the carrier A of
the algebra, satisfying each rule ` in Table 2, for ` ∈ L. Here



(emb, (s, t) ∈ S)
s R t

a1, . . . , an =[R] b1, . . . , bn
(comp, f ∈Σ)

fA(a1, . . . , an) R fA(b1, . . . , bn)

(ref)
a R a

a R b
(sym)

b R a

a R b b R c
(trans)

a R c

Table 2. Relational models

– s R t expresses that for all assignments α, it holds [[A ∪ α]](s) R [[A ∪ α]](t).
– =[R] expresses that corresponding components of a1, . . . , an and b1, . . . , bn

are identical, except for one index, say i, for which ai R bi.

(s, t) is relationally valid in S, |≡ s S t, if s R t holds in every relational model
(A, R) of S.

Remark 1. Since s R t depends on A as well, formally we should consider it to
be an abbreviation of s RA t. One may think of relational models as models of
a predicate logic with one binary predicate symbol.

The (comp)-rule is a direct generalisation of the usual compatibility rules found
in mathematics and rewriting. In the following examples, the relational models
for equational, ordering, and positive ordering specifications are characterised.
To that end, recall that a relation R is a congruence relation for an algebra A, if
it is an equivalence relation which is preserved by the operations of A, i.e. such
that for every n-ary operation φ, if a1 R b1, . . . , an R bn, then φ(a1, . . . , an) R
φ(b1, . . . , bn).5 In each example, we will assume the relational model to be (A, R).

Example 7. . In case of an equational specification, R is seen to be a congruence
relation as follows. Since {(ref), (sym), (trans)} ⊆ EL, R is an equivalence rela-
tion. To see that it is a congruence relation, suppose φ is an n-ary operation in
A and a1 R b1, . . . an R bn, then we conclude from

φ(a1, . . . , an) R φ(b1, . . . , an)
...

. . .

R φ(b1, . . . , bn)

using {(comp), (trans)} ⊆ EL.
Models of equational specifications in the standard sense of the introduction

give rise to relational models, just by pairing them up with the identity relation
id. For instance, (Nat , id), is a relational model of EMul . id is trivially a con-
gruence relation, and (emb) is forced to hold by the assumption that Nat is a
model, in the standard sense, of EMul .
5 Hence the distinction between compatibility and congruence is that the latter re-

quires all corresponding premisses to be related, whereas the former requires exactly
one pair of corresponding premisses to be related (and the rest to be identical).



However, note that R is in general not forced to be the identity relation. For
instance, an example of a relational model for the equational specification EMul
consists of its term algebra T (Σ,X) and the convertibility relation ↔∗EMul (see
Example 16).

Example 8. In case of an ordering specification, R is seen to be an operation-
preserved quasi-order. That it is a quasi-order, i.e. reflexive and transitive, fol-
lows since {(ref), (trans)} ⊆ EL. That it is operation-preserved follows as in the
previous item.

Example 9. In case of a positive ordering specification, the relation R is an
operation-preserved transitive relation.

Example 10. Any relational model for the equational specification EMul is is
automatically a relational model for its associated TRS RMul . Of course, this
does not hold the other way around. For instance, combining the polynomial
interpretation of [1, Example 6.2.13] with the natural order > on the natural
numbers yields a relational model of RMul , but not of EMul , because > is
not symmetric. Although symmetry is lacking, transitivity is not, hence this
interpretation is a model of the positive ordering specification TMul .

As the first example shows, there is a mismatch between the notion of a model
and that of a relational model. It is analagous to the difference between the
notions of model of predicate logic with and without equality: in the former the
interpretation of the binary equality predicate is fixed to the identity relation,
whereas in the latter its interpretation can in principle be any relation (possibly
satisfying some constraints). That is, there are many more relational models
than there are models. This mismatch will be overcome in Subsection 3.4.

3.2 Derivability

Definition 8. The judgment that a statement (s, t) is derivable by means of sub-
equational logic, for a given sub-equational specification S, is denoted by ` s S t.
The axioms and rules of sub-equational logic are the ones listed in Table 3. The
theory S of S is the relation on terms, consisting of all derivable pairs.

Here derivability of a statement means that it is the conclusion of some proof
tree built from the inference rules, as usual. Note that an inference rule only
applies when it is an allowed mode of inference, according to the specification.
Furthermore, not all modes of inference of standard equational logic as pre-
sented in Table 1 are (directly) at our disposal in sub-equational logic, not even
for an equational sub-equational specification, where all modes of inference are
available. The reason is that the standard inference rules of equational logic
exhibit some dependencies which we have avoided here, in order to make the
connexion between syntax and semantics smoother. In particular, the equation-
and substitution-rule have been merged into the (emb)-rule. Furthermore, the
(comp)-rule allows one to relate only one argument at the time whereas the stan-
dard presentation has a congruence-rule. Nevertheless, the two presentations are
easily seen to be equivalent as illustrated by the following example.



(emb, (s, t) ∈ S, σ:X→T (Σ,X))
σ(s) S σ(t)

s1, . . . , sn =[S] t1, . . . , tn
(comp, f ∈Σ)

f(s1, . . . , sn) S f(t1, . . . , tn)

(ref)
s S s

s S t
(sym)

t S s

s S t t S u
(trans)

s S u
Table 3. Sub-equational logic for sub-equational specification S := 〈Σ,X, S, L〉

Example 11. Redrawing the proof tree of the introduction for the sub-equational
specification corresponding to EMul , omitting parentheses and EMul to save
space, yields

(σ)
(M(Sx, S0), A(Sx, M(Sx, 0)))

(σ)
(M(Sx, 0), 0)

(comp, A)
(A(Sx, M(Sx, 0)), A(Sx, 0))

(σ)
(A(Sx, 0), Sx)

(trans)
(A(Sx, M(Sx, 0)), Sx)

(trans)
(M(Sx, S0), Sx)

More precisely, for a given equational specification E , its derivability in equa-
tional logic E ` s ≈ t coincides with its derivability ` s E t in equational sub-
equational logic.

3.3 Relational term model

Derivability can be related to relational validity, by constructing a so-called
relational term model for a specification.

Lemma 1 (Term Model). ` s S t iff |≡ s S t, for any specification S.

Proof. Define the relational term modelM(S) of a sub-equational specification
S := 〈Σ,X, S, L〉 as the pair (T (Σ,X),S), where T (Σ,X) is the term algebra
and S the theory of S.

To prove the if-direction (completeness), it suffices to prove that M(S) is a
relational model for S, by the choice of the theory of S as the relation ofM(S).
Since T (Σ,X) is a Σ ∪ X-algebra by Example 5, it certainly is a Σ-algebra.
Hence to verify thatM(S) is indeed a relational model for S, it remains to show
that rule ` holds in theory S, for each ` ∈ L. Intuitively, this will hold by the
1–1 correspondence between the rules of relational models in Table 2 and the
inference rules of sub-equational logics in Table 3. For a proof, we distinguish
cases for the rules.

(emb) Suppose (s, t) ∈ S. By the (emb)-rule of Table 2, we must verify that
for any assignment α, it holds that [[T (Σ,X) ∪ α]](s) is related by S to
[[T (Σ,X) ∪ α]](t). By the definition of substitution, this is just the same as
saying that σ(s) is related by S to σ(t) for any substitution σ. Which holds
by the (emb)-inference rule of the logic.



(comp), (ref), (sym), (trans) Each rule in Table 2 directly follows from the
corresponding rule of Table 3, where (comp) also uses that symbols are
interpreted as themselves in relational term models.

To prove the only-if-direction (soundness), it suffices to prove by induction on
derivations (proof trees) that pairs in the theory S, are related in any relational
model (A, R) of S. The proof is by cases on the modes of inference in L, showing
that the statement holds for a proof whose conclusion uses inference rule `, by
using rule ` of Table 2.

(emb) Suppose (s, t) ∈ S and let σ be some subtitution. We have to show
[[A ∪ α]](σ(s)) R [[A ∪ α]](σ(t)), for any assignment α. Suppose we can show
the so-called semantic substitution lemma:

[[A ∪ α]](σ(u)) = [[A ∪ ασ]](u) (6)

where the assignment ασ maps a variable x ∈ X to the value of σ(x) in the
algebra A under the assignment α, i.e. to [[A ∪ α]](σ(x)).
Then we are done, since

[[A ∪ α]](σ(s)) = [[A ∪ ασ]](s) R [[A ∪ ασ]](t) = [[A ∪ α]](σ(t))

by (emb) of Table 2, and the semantic substitution lemma (twice).
It remains to show (6), which is proven by induction on u ∈ T (Σ,X).
(variable)

[[A ∪ α]](σ(x)) = ασ(x)
= [[ασ]](x)
= [[A ∪ ασ]](x)

(symbol) For all n, all f ∈ Σ(n), and all s1,. . . ,sn ∈ T (Σ,X):

[[A ∪ α]](σ(f(s1, . . . , sn))) = [[A ∪ α]](f(σ(s1), . . . , σ(sn)))
= fA∪α([[A ∪ α]](σ(s1)), . . . , [[A ∪ α]](σ(sn)))

=IH fA∪α([[A ∪ ασ]](s1), . . . , [[A ∪ ασ]](sn))
= fA([[A ∪ ασ]](s1), . . . , [[A ∪ ασ]](sn))
= fA∪ασ ([[A ∪ ασ]](s1), . . . , [[A ∪ ασ]](sn))
= [[A ∪ ασ]](f(s1, . . . , sn)).

Which concludes the proof of the semantic substitution lemma.
(comp), (ref), (sym), (trans) As for the other direction, these are trivial. ut

Note that what we have really is a term model, i.e. terms are interpreted as terms
(even stronger: as themselves), unlike the standard term models where terms are
interpreted as equivalence classes of terms. The latter will be constructed in the
following subsection.



3.4 Quotienting out a maximal congruence

To overcome the mismatch between relational models and models observed
above, we show that any relational model can be turned into a model, by quoti-
enting out a maximal congruence relation. Quotienting out a congruence relation
∼= consists in taking ∼=-equivalence classes of elements as new elements.

Definition 9. Let M := (A, R) be a relational model of S := 〈Σ,X, S, L〉 and
let ∼= be a congruence relation on the carrier A of A. The quotient M/∼= of M
by ∼= is the pair (A/∼=, R/∼=) defined by:

– The quotient algebra A/∼= of A by ∼= is defined by:
• The carrier A/' of A/' consists of the ∼=-equivalence classes [a]∼= for
a ∈A.
• The interpretation of symbols is given by: for all n, for all f ∈ Σ(n), and

all a1,. . . ,an ∈ A

fA/∼=([a1]∼=, . . . [an]∼=) := [fA(a1, . . . , an)]∼=

– The relation R/∼= on the carrier A/∼= of A/∼=, is defined by:

[a]∼= R/∼= [b]∼= := a ∼= ;R ;∼= b, where ; denotes relation composition

Neither the definition of the quotient algebra nor of the quotient relation depends
on the choice of the representatives, because ∼= is a congruence relation. Under
some constraints, taking quotients preserves and ‘reflects’ modelhood.

Lemma 2 (Quotient). Let S := 〈Σ,X, S, L〉 be a specification, M := (A, R)
be a relational model of S, and ∼= a congruence relation on the carrier A of A.

– If ∼= ⊆ R∗, then M/∼= is a relational model of S again.
– If moreover (trans) ∈ L, then [a]∼= R/∼= [b]∼= implies a R b.

Proof. We first show the first item. Let S := 〈Σ,X, S, L〉. We must verify for
each ` ∈ L, that if R satisfies the inference rule ` for M, then R/∼= does so for
M/∼=. Except for the (emb) rule all cases are easy:

(comp) We have to show that [a1]∼=, . . . [an]∼= =[R/∼=] [b1]∼=, . . . [bn]∼= implies
fA/∼=([a1]∼=, . . . [an]∼=) R/∼= fA/∼=([b1]∼=, . . . [bn]∼=). By the assumption it holds
ai ∼= bi, except say for j, for which aj ∼= ;R ;∼= bj . By (comp) for R and
congruence of ∼=, we obtain fA(a1, . . . , an) ∼= ;R ;∼= fA(b1, . . . , bn), from
which the claim follows by definition of fA/∼= .

(ref) If R is reflexive, then ∼= ; R ;∼= is reflexive by the assumption that ∼= is
a congruence relation hence reflexive, so R/∼= is reflexive as well.

(sym) If R is symmetric, then ∼= ;R ;∼= is symmetric by the assumption that
∼= is a congruence relation hence symmetric, so R/∼= is symmetric as well.

(trans) If R is transitive, then ∼= ;R ;∼= is transitive by the assumption that
∼= is contained in the reflexive–transitive closure of R, so R/∼= is transitive
as well.



It remains to verify the (emb) rule holds for R/∼= under the assumption that it
holds for R. So suppose (s, t) ∈ S. We have to show

[[A/∼= ∪ β]](s) R/∼= [[A/∼= ∪ β]](t)

for any assignment β of ∼=-equivalence classes of A, to variables. We will show
the so-called syntactic substitution lemma:

[[A/∼= ∪ β]](u) = [[[A ∪ α]](u)]∼= (7)

for any assignment α ‘picking’ elements from those classes, i.e. such that α maps
each variable x to an element of xβ . Then we conclude, by definition of R/∼=:

[[A/∼= ∪ β]](s) = [[[A ∪ α]](s)]∼= R/∼= [[[A ∪ α]](t)]∼= = [[A/∼= ∪ β]](t)

using the assumption that [[A ∪ α]](s) R [[A ∪ α]](t) for any α. It remains to
show (7) for all u ∈ T (Σ,X), which we prove by induction on u.

(variable) Since α was assumed to pick elements from β:

[[A/∼= ∪ β]](x) = xβ = [xα]∼= = [[[A ∪ α]](x)]∼=.

(symbol) For all n, all f ∈ Σ(n), and all u1,. . . ,un ∈ T (Σ,X):

[[A/∼= ∪ β]](f(u1, . . . , un)) = fA/∼=∪β([[A/∼= ∪ β]](u1), . . . , [[A/∼= ∪ β]](un))
=IH fA/∼=∪β([[[A ∪ α]](u1)]∼=, . . . , [[[A ∪ α]](un)]∼=)
= fA/∼=([[[A ∪ α]](u1)]∼=, . . . , [[[A ∪ α]](un)]∼=)
= [fA([[A ∪ α]](u1), . . . , [[A ∪ α]](un))]∼=
= [fA∪α([[A ∪ α]](u1), . . . , [[A ∪ α]](un))]∼=
= [[[A ∪ α]](f(u1, . . . , un))]∼=.

Showing the second item is easy: by definition [a]∼= R/∼= [b]∼= iff a ∼= ;R ;∼= b.
By the assumption ∼= ⊆ R∗, this implies a R∗ ;R ;R∗ b, from which a R b follows
by the assumption (trans) ∈ L. ut

Example 12. Consider the relational model (T (Σ,X),↔∗EMul) of EMul of Ex-
ample 7. Taking for ∼= the convertibility relation ↔∗EMul , we see that it satisfies
the first condition of Lemma 2, hence that the convertibility relation itself can
be quotiented out. As one easily checks this yields a relational model having
the classes of convertible terms as elements, and having the identity relation id
as relation. Note that the first component of the resulting model, is a model in
the sense of the previous section. That is, we have constructed a model from a
relational model.

The construction in the example can be generalised in the sense that if the rela-
tion of a relational model contains a non-trivial congruence it can be quotiented
out. In fact, we take this as the defining property of a model.



Definition 10. A model of S is a congruence-free relational model. Here, a
relational model (A, R) of a specification S is congruence-free if the reflexive–
transitive closure R∗ of R contains no congruence relations other than the iden-
tity relation id. We say (s, t) is valid, written |= s S t, in case s R t in all models
(A, R) of S.

Hence, validity is obtained from relational validity by restricting the relational
models to models.

Proposition 1. For any relational model M := (A, R), M/∼= is a model where
∼= is a maximal congruence relation ∼=, such that ∼= ⊆ R∗.

Proof. That a maximal congruence relation exists follows from Kuratowski’s
Lemma, since the union of the congruence relations in a chain is easily seen to
be a congruence relation again. That the quotient M/∼= is a relational model
follows from Lemma 2, and that it is congruence-free holds, since otherwise the
‘offending’ congruence ∼=′ could have been composed with ∼= right away. More
precisely, in such a case, defining a to be related to b iff [a]∼= ∼=′ [b]∼=, would
have given a congruence relation on A still contained in R∗, but larger than ∼=
contradicting the latter’s maximality. ut

Let R be the relation of a relational model for S.

Example 13. As seen above, R itself is the maximal congruence in the case of
an equational specification, and models, i.e. congruence-free relational models,
are in 1–1 correspondence with the models of the introduction. That is, for an
equational specification E , the standard and sub-equational notions of validity
coincide.

Generalising the example, one notes that if R is both transitive and operation-
preserved, such as is the case for (positive) ordering logic, then the reflexive
closure of R ∩ (R−1) is the largest congruence relation contained in R∗. This
maximal congruence just identifies all objects in strongly connected components
of R. (Note that if R is terminating, then quotienting does nothing.) Hence
models of ordering and positive ordering specifications have partial orders (re-
flexive, transitive and anti-symmetric relations) and positive orders (transitive
and anti-symmetric relations) respectively, as relations.

Example 14. The models of ordering specifications are better known as quasi-
models [1, Definition 6.5.30].

By the quotient construction, checking validity on relational models can be re-
stricted to checking validity on models in case of transitive specifications, that
is, which have (trans) as mode of inference.

Lemma 3. |≡ s S t iff |= s S t, for transitive specifications S.

Proof. The only-if-direction holds since models are a special case of relational
models. The if-direction follows, since by Proposition 1, any relational model of
S gives rise to a model, in which s and t are related by the assumption |= s S t,
but then s and t were related in the relational model as well, by the second item
of the Quotient Lemma 2 using the assumption that S is transitive. ut



Theorem 1 (Birkhoff). ` s S t iff |= s S t, for transitive S.

Proof. By Lemmas 3 and 1. ut

Example 15. For equational specifications this is just Birkhoff’s theorem [3].

For ordering specifications, the theorem states the correspondence between valid-
ity w.r.t. Zantema’s quasi-models and derivability in Meseguer’s rewriting logic
(using their own terminology), a result originally due to [6].

4 Logicality

We present a uniform method to define convertibility relations for sub-equational
logics (Subsection 4.1) and show their logicality [4] (Subsection 4.2), i.e. show that
convertibility coincides with derivability for sub-equational specifications.

4.1 Convertibility

Definition 11. Let S be a sub-equational specification with modes of inference
L. Its sub-convertibility relation S(→) is obtained by starting with the empty
relation and closing under the inference rule ` of sub-equational logic if ` ∈ L,
in the order: (emb), (comp), (ref), (sym), (trans).

Let S be a sub-equational specification. Of course, in case of a rewriting specifi-
cation, having {(emb), (comp)} as modes of inference, S(→) is just the rewrite
(step) relation generated by the rules. Other examples are:

Example 16. 1. For an equational specification S(→) is convertibility ↔∗S .
2. For an ordering specification S(→) is rewritability/reachability →∗S .
3. For a positive ordering specification S(→) is positive reachability →+

S .

Further examples one could think of are e.g. head steps ({(emb)}) for modelling
process calculi, Identity ({(ref)}) then S(→) is just syntactic identity, or Empty
(∅) for which S(→) is the empty relation.

4.2 Closure

We prove that derivability coincides with convertibility for a given sub-equational
specification. As convertibility is defined as a special case of derivability, i.e. by
applying the inference rules in the order as given in Definition 11, it is clearly
contained in it. To show the other inclusion it suffices to prove that closing under
an inference mode preserves closure under inference modes earlier in the order,
since then the generated relation must coincide with derivability as the latter is
the least relation closed under each inference mode. We illustrate this by means
of an example.



Example 17. Suppose the relation R is compatible and we take its symmetric
closure yielding R∪R−1. We must show that compatibility is preserved. That is,
we must prove that f(s1, . . . , sn) R ∪R−1 f(t1, . . . , tn) holds, under the assump-
tion s1, . . . , sn =[R ∪R−1] t1, . . . , tn. We distinguish cases according to whether
compatibility is due to R or R−1 holding between two premisses.

– If compatibility is due to R, then the result follows by (comp) for R.
– If the assumption is due to R−1, then t1, . . . , tn =[R] s1, . . . , sn, hence by

(comp) f(t1, . . . , tn) R f(s1, . . . , sn), hence by (sym) f(s1, . . . , sn) R ∪R−1

f(t1, . . . , tn).

Checking preservation for all other combinations is as easy.

Proposition 2. Closing relations in the order of Definition 11 preserves the
properties/inference rules earlier in the order.

Proof. First, note that all operations are monotonic in the sense that they
may generate new conclusions, but preserve all existing ones. As the (emb)and
(ref)inference rules have empty premisses, monotonocity explains the correspond-
ing rows in the following table, which displays vertically the property which is to
be preserved under closing with respect to the horizontally indicated inference
mode.

(emb) (comp) (ref) (sym) (trans)
(emb) x mon mon mon mon
(comp) x x (ref) (sym) (trans)

(ref) x x x mon mon
(sym) x x x x (trans)
(trans) x x x x x

No closures are taken after (trans), which explains the last row. Preservation in
the (comp)- and (sym)-rows follows by easy structural manipulations, using the
inference rule given in the table in the end. For instance, the proof that (comp)
is preserved under (sym) employs (sym) as final rule, as shown in Example 17.
The other entries are dealt with in an analogous way. ut

Remark 2. Alternatively, one could permute any two consecutive inference rule
in a derivation which are in the ‘wrong’ order. One easily shows that permutation
is always possible, that the process terminates (use e.g. recursive path orders),
and that the resulting derivation (the normal form) is a conversion.

Theorem 2 (Logicality). ` s S t iff s S(→) t, for specifications S.

Proof. (⇒) It suffices to verify that the term algebra T (Σ,X) with relation
S(→) constitutes a relational model. It follows directly from Proposition 2.

(⇐) Trivial, since S(→) is constructed by successively closing under the in-
ference rules which are also part of the sub-equational specification S. ut

As a final application combining the Birkhoff and Logicality theorems con-
sider the following result due to Zantema [1, Theorem 6.2.2]:



Theorem 3. A TRS is terminating if and only if it admits a compatible well-
founded monotone algebra.

Proof. View the TRS as a positive ordering specifications. From the above we
then have that→+ is sound and complete w.r.t. positively ordered models. If the
order is required to be well-founded such models coincide with compatible well-
founded monotone algebras. Hence the if-direction follows from the existence
of such a model by soundness. The only-if direction follows by the relational
term model construction, and the observation made above that quotienting a
terminating relation does nothing.

Note that for this example to work it was necessary to drop (ref), i.e. one could
work with neither equational nor rewriting logic. Also, building-in transitivity
in the order of a monotone algebra would not have been necessary; working
with a terminating relation instead would be fine as well. More generally, often
a big step semantics can easily be replaced by a small step semantics without
problems.

5 Conclusion

We have given a uniform presentation of Birkhoff-style sound- and completeness
results for various sub-equational logics. Moreover, we have given a uniform
proof of logicality of rewriting for each of them. Although the results are not
very surprising, we have not seen such a uniform presentation before. Moreover
we do think the resulting presentation is elegant and the analysis required and
performed is useful.
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