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We introduce proof terms for string rewrite systems and, using these, show that various notions of
equivalence on reductions known from the literature can be viewed as different perspectives on the
notion of causal equivalence. In particular, we show that permutation equivalence classes (as known
from the λ -calculus and term rewriting) are uniquely represented both by trace graphs (known from
physics as causal graphs) and by so-called greedy-multistep reductions (as known from algebra). We
present effective maps from the former to the latter, topological multi-sorting TS, and vice versa, the
proof term algebra JK.

1 Introduction

In general, we are interested in all aspects of computations as modelled by rewrite systems. Here, we
are interested in finite computations ‘doing the same work up to the order of the tasks performed’. This
can be analysed from the perspective of causality with the idea that it is exactly the causally independent
tasks that can be reordered. Given that causality is omnipresent, it is no surprise it has been discussed and
mathematically modelled in many ways; to mention a few [21, 17, 4, 25, 28, 31, 11, 10, 20, 16, 18, 13, 8,
9, 7, 33]. In [30, Chapter 8] we showed the various notions of equivalence of reductions as known from
the λ -calculus and term rewriting literature to be the same in the case of left-linear term rewrite systems
(TRSs).1 The goal of this paper is to do the same for string rewrite systems, guided by that strings can
be represented as terms so that extant theory for term rewriting can be adapted to string rewriting.

String rewriting affords better properties than term rewriting due to linearity: whereas term rewrite
steps may be non-linear as they can replicate, erase or copy, subterms of arbitrary sizes, string rewrite
steps cannot do so; they are linear. We moreover forbid left- and right-hand sides of rules to be the
empty string. This restriction makes sense from the perspective of causality [31] as it entails all steps
being ex materia (forbidding ex nihilo steps) and having finite causes (forbidding infinite causes). By
imposing these (linearity and non-emptiness) restrictions, we are in a sweet spot; the resulting string
rewrite systems have sufficient structure to express the different perspectives on causal equivalence, and
these perspectives can in turn be proven equivalent with in a simple way due to the absence of replication.
As in [30, Chapter 8], to state and prove results proof terms are our tool of choice.

2 Proof terms for string rewriting

The usual definition of the finite strings over an alphabet Σ as the free monoid over Σ is abstract. To be
able to deal with matters of representation, we instead will be concrete here.

*Supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with sharing and unsharing. Most of this work was
performed while employed at the University of Bath, England.

1This was (partially) extended from first- to higher-order term rewriting in [5]; cf. [2] for a recent reprise of the orthogonal
higher-order case.
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Definition 1. A term rewrite system is oudenadic if all rule and function symbols have arity 0, it has a
nullary symbol ε (empty string) and a binary composition symbol ·h, and terms are considered modulo
≡M induced by the monoid laws, i.e. ε ·h s = s, s ·h ε = s, and (s ·h t) ·h u = s ·h (t ·h u).

We assume ·h is infix and right-associative and that it is left implicit, i.e. is represented by juxtaposi-
tion. To that end, we assume Σ has unique reading.

Remark 1. In our modelling strings are closed oudenadic terms over the alphabet modulo the monoid
laws. Uniquely representing such equivalence classes can itself be achieved by term rewriting: orienting
the above monoid laws from left to right yields a complete (confluent and terminating) term rewrite
system, having as normal forms strings of shape either ε or a1 . . .an for some n ≥ 1.

Example 1. The alphabet Σ := {A,B} has unique reading. Per our conventions ABAAB abbreviates the
term A ·h (B ·h (A ·h (A ·h B))), which is closed and in normal form with respect to the monoid rules, so
serves as the unique representative of the string (an ≡M-equivalence class containing, e.g., (AB)(AA)B).

Concretely, a string rewrite system over an alphabet Σ is an oudenadic term rewrite system having
the letters in Σ as nullary function symbols, with sources and targets of rules being nonempty strings (cf.
the introduction), and steps taking place modulo ≡M.

Remark 2. String rewriting could alternatively be represented by means of monadic term rewriting,
associating a unary function symbol to each letter; cf. [30, Section 3.4.4] for an account of both repre-
sentations. Our terminology oudenadic is an attempt to high-light that the representation employed here
associates nullary function symbols to letters.

We consider term rewrite systems in the sense of [30, Chapters 8 and 9], meaning that rules them-
selves will feature as symbols whose arity (0 for the oudenadic systems we consider here) is the number
of variables in the rule, and rules come equipped with source / target functions mapping them to their
lhs / rhs. This enables expressing reductions, and more generally proofs in rewrite logic [20], as proof
terms [30], terms over a signature comprising the letters, the rules, and a binary composition symbol ·v
representing the transitivity inference rule of rewrite logic [20]. In turn, this allows us to represent the
key notion of this paper, the notion of causal equivalence, as an equivalence on reductions / proof terms.

Definition 2. Consider for an oudenadic term rewrite system ⟨Σ,P⟩, the extension of the oudenadic
signature for Σ by the rules ρ in P as nullary symbols and the binary composition symbol ·v. Proof terms
are a subset of the terms over this signature defined inductively, together with source and target functions
src and tgt to strings, on the left in Table 2, where we use γ : s ⩾ t to denote that γ is a proof term having
string s as source and string t as target, and employ γ,δ ,ζ ,η , . . . to range over proof terms.

(empty) ε : ε ⩾ε

(letter) a : a⩾a for each letter a
(rule) ρ : ℓ⩾r for each rule ρ : ℓ→ r
(juxtaposition) γ1γ2 :s1s2⩾ t1t2 if γi : si ⩾ ti
(transitivity) γ ·δ : s⩾u if γ : s ⩾ t, and δ : t ⩾ u

Table 1: Proof terms for string rewriting

Remark 3. • To keep the two binary compositions ·h and ·v apart, we refer to the former as hori-
zontal and to the latter as vertical composition. We abbreviate vertical composition ·v to ·, assume
it is right-associative, and that it binds weaker than horizontal composition ·h / juxtaposition.
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(h-left unit) εγ =γ (v-left unit) s · γ =γ

(h-right unit) γε =γ (v-right unit) γ · t=γ

(h-associativity) (γδ )ζ =γ(δζ ) (v-associativity) (γ ·δ ) ·ζ =γ · (δ ·ζ )
(exchange) γδ ·ζ η =(γ ·ζ )(δ ·η)

Table 2: Laws generating permutation equivalence

• By the vertical composition being on strings the target of γ is only required to be equivalent modulo
the monoid laws to the source of δ in (transitivity). We have t : t ⩾ t for every oudenadic term t.

The name proof term for such terms is justified by that they be viewed as a proof that their target
string is reachable from their source string by using the rewrite rules. Building on Example 1, we take
the following as a running example to illustrate concepts and results.

Example 2. Let ⟨Σ,P⟩ be the string rewrite system having rules P := {α : BB→A,β : AAB→BAAB}.
The proof term γ := ABβ ·AαAAB ·AAβ ·βAAB ·BβAAB ·αAABAAB ·AβAAB proves the reachability
statement ABAAB ⩾ ABAABAAB. An alternative witness to that statement is the proof term γ ′ := ABβ ·
Aαβ ·βAAB ·BβAAB ·αβAAB.

For the (vertical) compositions in these proof terms to be well-defined it is essential to work modulo
the monoid laws. For instance, although the target (BAAB)AAB of βAAB and the source B(AAB)AAB
of BβAAB are distinct as oudenadic terms, they are both represented by the string BAABAAB, allowing
their vertical composition in γ .

Although in the example the proof terms γ and γ ′ intuitively do ‘the same amount of work’, the latter
is shorter than the former. This is due to that the former is maximally sequentialised, performing one
step at the time, whereas the latter is maximally concurrent, performing steps as soon as possible as
concurrency permits.

Definition 3. A multistep is a proof term without vertical compositions. It is empty / a (single) step if
it has no / one occurrence of a rule. A (multistep) reduction either is an empty multistep or a vertical
composition, associated to the right, of nonempty (multi)steps. Permutation equivalence ≡ between proof
terms is generated by the equivalences in Table 2, where the sides of the equivalences are restricted to
proof terms, i.e. sources and targets of the proof terms γ,δ ,ζ and the oudenadic term s are assumed to
match appropriately.

We use Φ,Ψ,X , . . . to range over multisteps, and φ ,ψ,χ, . . . to range over steps. Observe that the
source / target of the left- and right-hand side of each law in Table 2 are the same (as strings).

Remark 4. Our reductions, as proof terms of a specific shape, are formally distinct from the classical
notion of a reduction, as a finite sequence of steps, in rewriting [1, 30]. However, since there is an
obvious bijection between both we feel the confusion is acceptable. For instance, the proof term γ :=
ABβ ·AαAAB ·AAβ ·βAAB ·BβAAB ·αAABAAB ·AβAAB : ABAAB ⩾ ABAABAAB corresponds to:

ABAAB → ABBAAB → AAAAB → AABAAB → BAABAAB → BBAABAAB → AAABAAB → ABAABAAB

Similarly, the proof term γ ′ := ABβ ·Aαβ · βAAB ·BβAAB ·αβAAB corresponds to the following se-
quence of multisteps, where we employ the notation ◦−→ of [30, Chapter 8] for multisteps:

ABAAB ◦−→ ABBAAB ◦−→ AABAAB ◦−→ BAABAAB ◦−→ BBAABAAB ◦−→ ABAABAAB
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Logicality, cf. [22], of reductions expresses that if a reachability statement holds then it is provable
by a reduction that is permutation equivalent to the original proof term.

Lemma 1 (Logicality). If γ : s ⩾ t for some proof term γ , then there is a reduction γ ′ : s ⩾ t with γ ≡ γ ′.

Proof. By induction and cases on γ .

(empty) the empty string ε is an empty reduction;

(letter) a single letter a is an empty reduction;

(rule) a single rule ρ is a single step reduction from its lhs to its rhs;

(juxtaposition) suppose to have a proof term γ := γ1γ2 : s1s2 ⩾ t1t2 with γi : si ⩾ ti. By the IH we
have reductions γ ′i : si ⩾ ti with γi ≡ γ ′i . Set γ ′ to γ ′1⟨s2⟩ · ⟨t1⟩γ ′2, where for a reduction ζ and string u,
γ⟨u⟩ denotes the reduction obtained by suffixing each step of γ by u, and symmetrically for ⟨u⟩γ .
One verifies γ ′ : s1s2 ⩾ t1t2 and γ ≡ γ ′ by using (exchange) and vertical units unit repeatedly. Then
by repeated vertical associativity applied to γ ′ we obtain a reduction, except in case one or both of
the γ ′i is the empty reduction in which case we conclude by eliding one such by a horizontal unit.

(transitivity) by vertically composing the reductions obtained by the IH for the constituent proof
terms, possibly followed by associating to right and eliding empty reductions as before.

The proof is effective, transforming proof terms into reductions witnessing the same reachability.

Example 3. The procedure underlying the proof of Lemma 1 transform the proof term (in fact a multistep
reduction) γ ′ of Example 2 into the reduction γ . To see this it suffices, since vertical compositions
transform homomorphically, to note that the multisteps Aαβ and αβAAB in γ ′ are transformed into
the (two step) reductions AαAAB ·AAβ and αAABAAB ·AβAAB in γ , respectively.

Remark 5. Logicality is the raison d’être for the field of rewriting [1, 30], allowing to reduce the study of
reductions to that of steps. Cf. [20, Lemma 3.6] for the corresponding logicality result for term rewriting.

Although the logicality lemma allows to represent any proof term by a reduction, the latter is in
general far from unique (up to permutation equivalence). For instance, in Example 3 we could have
chosen to transform the multistep Aαβ in γ ′ into the two step reduction ABBβ ·AαBAAB instead, giving
rise to a reduction permutation equivalent to γ ′ but distinct from γ . Intuitively this is caused by that
factorising a proof term into a sequence of steps forces to order steps in some (arbitrary) way even though
they may be causally independent. For instance, α and β in the multistep Aαβ are concurrent / causally
independent, but still must be ordered to obtain a reduction; both orders will do. Such a representation
favours sequentiality over concurrency and length over width, so to speak. In the next sections we will go
into the opposite direction, maximally favouring concurrency over sequentiality and width over length.

From that perspective, the proof term γ := ABβ ·AαAAB ·AAβ ·βAAB ·BβAAB ·αAABAAB ·AβAAB
is a proof of the reachability statement ABAAB ⩾ ABAABAAB that is wasteful in two ways:

(too long) This can be remedied by proceeding greedily [7], employing proper multisteps instead of
steps. For instance, the second and third steps AαAAB ·AAβ : ABBAAB ⩾ AABAAB in γ can be
combined into the single multistep Aαβ :ABBAAB⩾AABAAB. Proceeding greedily, combining as
many of the single steps into multisteps as possible, and as early as possible, turns γ into the shorter
greedy multistep reduction γ ′ := ABβ ·Aαβ ·βAAB ·BβAAB ·αβAAB. As we will show, greedy
multistep reductions may serve as unique representatives of permutation equivalence classes.
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Figure 1: Reduction γ : ABAAB ⩾ ABAABAAB (right) and its evolution (left)

(too large) (Multi)steps not only represent what changes, rules, but also what does not change, letters
(cf. the frame problem). As a consequence, in general proof terms predominantly consist of letters;
this holds true in particular both for γ and γ ′. Causal graphs [32] (cf. Figure 2 left) remedy this by
eliding letters, only keeping the causal dependencies between rule symbols. This suffices, as we
will show, to let causal graphs serve as unique representatives of permutation equivalence classes.

To express and relate both remedies we will employ a bit of residual theory (going back to [6]) for multi-
steps below. To avoid things becoming too heavy for this short paper, we only develop the residual theory
necessary here and in an ad hoc informal fashion, referring the reader to Chapter 8 of [30] in general and
to Section 8.7 in particular, for background on (from the perspective of permutation equivalence) and a
formal treatment of, residuation.

Definition 4. For multisteps Φ, Ψ having the same source, we write Φ ⊆ Ψ to denote that Φ is contained
in Ψ, meaning that Φ is obtained from Ψ by mapping some occurrences of rule symbols to their source.
In that case, we denote by Ψ/Φ the residual of Ψ after Φ, that is, the multistep obtained from Ψ by
mapping the other occurrences of rules (the complement of those selected for Φ ⊆ Ψ) to their target.

Example 4. ABBAAB, ABBβ , AαAAB and Aαβ are the four multisteps contained in Aαβ in Example 2.
We have, e.g., Aαβ/ABBβ = AαBAAB and Aαβ/AαAAB = AAβ . Observe that if Φ ⊆ Ψ and Φ is
nonempty, then fewer rule symbols occur in Ψ/Φ than in Ψ by linearity of string rewriting.

3 Trace graphs by proof term algebra

We give a proof term algebra JK into tragrs, trace graphs, based on the causal graphs of [32]. The algebra
is shown to model permutation equivalence in that permutation equivalent proof terms are mapped to the
same tragr. We give a procedure dubbed topological multisorting, reading back a proof term from a tragr.

Before giving a formal treatment, we first give some underlying intuitions by means of an example
that links to the intermediate informal notion of an evolution [32], and to our discussion above.

Example 5. The reduction γ of Example 2 can be depicted as the evolution on the left of in Fig. 1 (taken
from [27]; based on [32, fig. a, p.498]). To that end, we interpret steps as rows of (possibly skewed)
blocks obtained by A 7→ □, B 7→ ■, α 7→ , and β 7→ . Vertical compositions of steps are
interpreted by stacking the rows of the interpretations of the steps on top of each other, interspersed
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Figure 2: Causal graph (left) and tragr from ABAAB to ABAABAAB (right)

with the evaluations of their sources and targets. For instance, the top three rows are the evaluations
□■□□■, , and □■■□□■ of the source, step, and target of ABβ : ABAAB ⩾ ABBAAB. (The
interpretations of the rule symbols α,β are given next to the evolution).

Looking at Figure 1 the correspondence between evolutions and reductions is clear though informal.
Evolutions nicely illustrate the point argued above in (too large) that letters (the white and black boxes
representing A and B) add nothing to the representation; the source and target strings and the causal
dependencies (represented by directed edges) between the rule symbols would suffice to read back the
multistep reduction γ ′ (permutation equivalent to γ) from the evolution. That idea will be formalised
below using the notion of tragr,2 short for trace graph, illustrated for γ / γ ′ in Figure 2.

Remark 6. The book [32] being intended for a general audience, causal graphs are not sufficiently for-
malised there to state our results here; in particular, causal graphs lack what we call below an interface
(dags of the source and target strings). Tragrs are our way to overcome that deficiency. We believe that if
Wolfram were to formalise his notion of causal graph, he would end up with something similar to tragrs.

Definition 5. Given a string rewrite system (Σ,P), a tragr from string s to string t is a port graph [3, 15,
29, 24] comprising the following three parts, as visualised in:

dag of source string

dag of target string

causal graph on rules in steps

ε

ε

• the dag of source string s having for every occurrence of a letter a in s a node labelled a, having
(in clockwise order) an input port of type ∗, an output port of type ∗, and an output port of type
a. The nodes are connected in a straight line by edges of type ∗, terminated by a node labelled ε

having an input port of type ∗, and an output port of type ε .

2Pronounce as tracker.
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• a dag, the causal graph, of nodes labelled by rule symbols ρ having (in clockwise order) as input
ports the letters of the source string of ρ and as output ports the letters of (the reverse of) the target
string, with each port having the type of its letter;

• the dag of target string t, as for the source string but in reverse direction, i.e. with input and output
port of type ∗ swapped.

The tragr is required to be a planar dag, to only have edges from input to output ports of the same type,
and to have exactly two ports without edges, both of type ∗: the first input port of the source string and
the first output port of the target string.

We indicate the input / output ports of a tragr by dangling edges, and refer to the dags of the source
and target strings combined as its interface.

Example 6. The graph on the right in Figure 2 is a tragr with the types of edges being indicated by color.

Remark 7. Tragrs are not (too large) in the sense discussed above; letters only feature in the interface
but not in the causal graph of a tragr; cf. the text below [30, Def. 8.6.17].

Definition 6. For a string rewrite system (Σ,P) the proof term algebra JK on tragrs is given by:

(letter and empty) JaK and JεK are the tragrs:

ε

εa

a ε

ε

(rule) JρK is a tragr having the straight line dags for its source and target as interface, comprising
a single rule node connected to the interface in an orderly way, illustrated for rules α and β by:

β

B

A

B

BA AB

A A B

α

ε

ε

1, i 2, i

1,o

ε

ε

(juxtaposition) Jγδ K is obtained from JγK and Jδ K by removing the εs from the former, and redirect-
ing the input and output of the latter accordingly:

src graph

tgt graph

causal graph

src graph’

causal graph’

tgt graph’

ε

ε

ε

ε

src graph

tgt graph

causal graph

src graph’

causal graph’

tgt graph’

ε

ε

(transitivity) The tragr Jγ ·δ K is obtained from JγK and Jδ K by connecting the output of the former
to the input of the latter, and subsequently eliding the intermediate interface:
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src graph

tgt graph

=

causal graph

src graph’

causal graph’

tgt graph’

ε

ε

ε

ε

src graph

tgt graph

causal graph

=

src graph’

causal graph’

tgt graph’

ε

ε

ε

ε

src graph

causal graph

causal graph’

tgt graph’ ε

ε

where elision from the middle to the right is achieved by normalising with respect to the rules:

ε

⇒

a

a

⇒

ε

Observe that if γ : s ⩾ t then JγK is a tragr from s to t.

Example 7. The tragrs JγK and Jγ ′K of the permutation equivalent γ,γ ′ are as on the right in Figure 2.

Remark 8. • Elision ⇒ is complete: terminating because the number of nodes decreases in each
step and confluent because elision can be viewed as an interaction net rule [15].

• JγK is finite so that all maximal paths in it lead from its input to its output, using that nodes have
at least one input / output port, by the assumption that left- and right-hand sides are non-empty.

• We modelled trace graphs, tragrs, after the trace relations of [30, Definition 8.6.17 / Figure 8.37]
with the main difference between both being that the latter do not allow parallel edges between
the same two nodes. That makes the latter unsuitable for our purposes here; only knowing that
a rule causally depends on another not how, is in general not sufficient to read back proof terms.
For instance, for rules A→BBB, BB→B and BB→C, the reductions A → BBB → BB → C and
A → BBB → BB →C induce the same trace relation, despite not being permutation equivalent.3

• The algebra JK illustrates that horizontal and vertical composition are closely related to parallel
and series composition of graphs.

We show that JK maps permutation equivalent proof terms to the same tragr,4 see Example 7, defer-
ring showing the converse to the next section.

Lemma 2. JK maps permutation equivalent proof terms to the same5 tragr.

Proof. We show for each law in Table 2 its left- and right-hand sides are mapped to the same tragr by JK:

• For the monoid laws (h-left unit), (h-right unit) and (h-associativity) for horizontal composition,
the former two follow from that the parallel composition of a tragr with JεK on either side, amounts
to first introducing and then immediately removing εs. Associativity holds since removing the εs
and redirecting the respective input and output edges are local and independent actions.

3It is interesting to compute their respective tragrs and see that / how they differ.
4Our proof below for trace graphs follows that for trace relations [30, Lemma 8.6.14].
5Formally, the same up to graph isomorphism.
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causal graph1 causal graph1’

causal graph2 causal graph2’

src graph1 src graph1’

tgt graph2’tgt graph2

ε

ε

Figure 3: Tragr illustrating (exchange)

• For the monoid laws (v-left unit), (v-right unit) and (v-associativity) for vertical composition,
the former two follow from that for any string s, JsK is a ladder, a tragr only comprising the
straight line graphs of its source and target string, each the reverse of the other. For the sequential
composition with a ladder on either side, elision amounts to the immediate removal of (the reverse
of) the ladder. Associativity holds since elision is complete (confluent and terminating) and can
be postponed until after connecting the respective input and output ports, which are local and
independent actions.

• The (exchange) law holds by combining the reasoning in the previous two items; combining re-
moval of εs with elision ⇒ is complete and can be postponed until after redirecting the input and
output edges, which are local and independent actions; see Figure 3.

We conclude this section with showing that any tragr can be read back into a multistep reduction,
by means of a procedure we dub topological multisorting, which is like topological sorting but selects in
each stage all minimal elements, instead of just a single such, cf. [26].

Definition 7. The topological multisorting function TS mapping a tragr from s to t to a multistep reduc-
tion having s as source and t as target, is defined by induction on size and cases on its causal graph.

If the causal graph is empty, planarity of tragrs dictates the tragr is a ladder (as in the Proof of
Lemma 2; cf. the bottom-right of Appendix A), so we have s = t and may return the empty multistep s.

If the causal graph is non-empty, let its minimal layer M comprise its minimal nodes w.r.t. the partial
order induced by the dag. To construct the multistep Φ we juxtapose, starting from the input of the tragr,
the labels (letters) of nodes in the dag for s not covered by nodes in M, interspersed with the labels (rule
symbols) of those covering nodes in M. Let s′ be the target of Φ, and consider the tragr obtained by
replacing for every node labelled by some rule ρ in T the source dag of ρ by its target dag. By planarity
it follows (cf. the top row of Appendix A) that the resulting tragr is from s′ to t. Therefore, it suffices to
vertically compose Φ with the TS-image of this tragr, which exists by the IH.

In both case, we obtain a vertical composition of multisteps having s as source qnd t as target, giving
rise to a multistep reduction after removing a trailing empty multistep.

Example 8. Applying topological multisorting TS to the tragr on the right in Figure 2 gives rise to the
6 successive stages displayed in Appendix A.

4 Greedy multistep reductions

We first give a standard algorithm for transforming a proof term into a permutation equivalent greedy
one [7], and next show there is a bijection between such greedy multistep reductions and tragrs. From this
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we conclude, in a semantic way, that both constitute unique representatives of permutation equivalence
classes of proof terms.

We give a novel description of greediness and the greedy algorithm of [7], based on the analogy with
sorting and standardisation [14, 30] in the literature. In sorting, (adjacent) inversions are consecutive
elements that are out-of-order, and in term rewriting, anti-standard pairs [14, 19] are consecutive steps in
a reduction such that the latter is outside (to the left of) the former. Such pairs of out-of-order elements are
of interest since they provide a local characterisation both of being sorted, i.e. the absence of such pairs,
and of bringing the list / reduction closer to being sorted, by permuting the out-of-order pair. This makes
both processes amenable to a rewriting approach, with bubblesort being an example for sorting and the
extraction of the leftmost-contracted-redex being an example for standardisation [14, 12, 18, 30, 19, 5].
To make the greedy algorithm fit the mould, we define loath pairs as consecutive multisteps where some
rule symbol in the 2nd is not caused by the 1st, so may be permuted up front, signalling non-greediness.
This is phrased in terms of residuation; see Definition 4.

Definition 8. A proof term is greedy if it is a multistep reduction without loath pairs, where a pair Φ ·Ψ of
consecutive multisteps is loath if there is a step X co-initial with Φ such that Φ ⊆ X and having residual
step ψ := X/Φ with ψ ⊆ Ψ. Swapping X for Φ ·Ψ then results in X · (Ψ/ψ). Exhaustive swapping
followed by removing trailing empty multisteps yields a greedy decomposition.

Example 9. The multistep reduction γ ′ is greedy, but γ isn’t as is clear from ABβ ·AαAAB ·AAβ ·βAAB ·
BβAAB ·αAABAAB ·AβAAB, where we have overlined its loath pairs, and underlined the rule symbols
and their left-hand sides involved in swapping. The loath pair AαAAB ·AAβ swaps into Aαβ ·AABAAB,
and αAABAAB ·AβAAB swaps into αβAAB ·ABAABAAB. As one may verify, exhaustive swapping yields
γ ′ ·ABAABAAB ·ABAABAAB, hence a greedy decomposition of γ is γ ′. Intuitively, this is as desired since
γ ′ exhibits maximal concurrency while performing the same tasks performed in γ .

By standard residual theory [30, Chapter 8], swapping yields a pair of consecutive multisteps permu-
tation equivalent to the original pair, as in the example. Moreover, the size (qua number of rule symbols)
of the 2nd multistep decreases per construction, so swapping decreases the Sekar–Ramakrishnan mea-
sure [30, Definition 8.5.17], measuring a multistep reduction by the lexicographic product of the sizes
of the multisteps in it from tail to head. Since if necessary we may first transform a proof term into a
permutation equivalent (single step hence multistep) reduction by the Logicality Lemma 1, we have:

Lemma 3. A proof term can be transformed into a permutation equivalent greedy multistep reduction.

Remark 9. To give an idea how residual theory [30, Table 8.5] may be employed to show swapping
preserves permutation equivalence, first note that Φ ⊆ X entails Φ/X is an empty multistep. Therefore,
by commutativity of join X ≡ X · (Φ/X) ≡ Φ · (X/Φ). Similarly, X/Φ = ψ ⊆ Ψ entails Ψ ≡ (X/Φ) ·
(Ψ/(X/Φ)). By combining both Φ ·Ψ ≡ Φ · (X/Φ) · (Ψ/(X/Φ))≡ X · (Ψ/(X/Φ)) = X · (Ψ/ψ).

Remark 10. An efficient procedure for searching for loath pairs can be based on the observation that
due to linearity of string rewrite systems, an occurrence of either a source or target of a rule can be
identified with a pattern in the sense of [30, Definition 8.6.21], i.e. with a convex set of positions in the
tree of the string having vertices as boundary. Following the main idea of [23], to see whether Φ ·Ψ is
loath, it therefore suffices to check whether each pattern of a source of a rule occurring in Ψ has overlap
with some target of a rule occurring in Φ. Since a pattern in a string simply is an interval, characterised
by the two vertices constituting its boundary, a single top–down pass through both string-trees checking
disjointness of intervals via their boundaries, suffices. If for some pattern there is no overlap, we obtain
a loath pair by setting X to Φ in which the pattern was replaced by the rule.
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For example, using underlining to indicate occurrences of patterns, that αAABAAB,AβAAB in γ is
a loath pair follows from that the pattern {2̊,3, 3̊,4, 4̊} in AAABAAB corresponding to the source AAB
of the rule β , does not have overlap with the pattern {1̊} in AAABAAB corresponding to the target A of
the rule α . This in turn follows from that the corresponding intervals [2̊, 4̊] and [1̊] are disjoint since 1̊ is
smaller than 2̊. By disjointness / non-overlap, replacing in αAABAAB the β -pattern AAB by the rule β

yields the multistep αβAAB, as desired.

Theorem 1. There is a(n effective) bijection between greedy multistep reductions and tragrs.

Proof. We show that TS and JK are maps from tragrs to greedy multistep reductions and from greedy
multistep reductions, respectively, and are inverse to each other.

• We show the composition of JK with TS is the identity by induction on the length of a greedy
multistep reduction. We employ the no(ta)tions of Definition 7, in particular we employ M to
denote the layer of minimal elements of (the causal graph of) a tragr.
For the empty and single-multistep reductions this is trivial. Otherwise, the reduction has shape
Φ ·γ . By definition JΦ ·γK is the serial composition of JΦK and JγK and we claim that by greediness
the steps in the minimal layer JΦ ·γK of the tragr are those of JΦK, i.e. M(JΦ ·γK) =M(JΦK). Then,
Φ is the result of the first stage of TS and TS(JΦ · γK) = Φ ·TS(JγK) = Φ · γ by the IH for γ .
It remains to prove the claim that M(JΦ · γK) =M(JΦK) for a greedy multistep reduction of shape
Φ · γ , so with γ non-empty. Since M(JΦ · γK) ⊇ M(JΦK) trivially holds, for arbitrary multistep
reductions, suppose for a proof by contradiction that M(JΦ · γK)⊆M(JΦK) does not hold, for Φ · γ
of minimal length. Then there must be some node in M(JγK) in M(JΦ · γK), per construction of
JΦ ·γK as the serial composition of JΦK and JγK. By minimality this node must in fact be in M(JΨK)
for Ψ the first multistep of γ , with the node corresponding to, say, step ψ ⊆ Ψ. But then Φ ·Ψ

would be a loath pair, as it allows swapping the join of Φ with ψ .6 This contradicts the assumed
greediness of Φ · γ .

• For the converse direction, we first show that when computing the TS-image of a tragr, consecutive
stages yield multisteps that are not loath pairs, by induction on the number of stages. There is only
something to show when there is more than one stage. So suppose TS yields a composition Φ · γ
with Φ obtained from the minimal layer of rule nodes M of the tragr, and γ· from its remaining
nodes / causal graph R, non-empty by assumption. By the IH γ is greedy, and non-empty so has
some first multistep, say Ψ, constructed from the minimal layer, say N, of R. Per definition of TS
each of the nodes in N is reachable from some node in M. Since there are no edges between the
nodes in a single layers, this entails that for each of the nodes in N there is an edge to it from some
node in M. As a consequence, cf. again Remark 10, the corresponding pair Φ ·Ψ of consecutive
multisteps is greedy / not loath.
From this it easily follows that every tragr is mapped to itself, by induction on the number of
stages, by showing that for Φ the multistep of a stage, the tragr JΦK yields the stage again.

We can now establish our main result, that one may compute a greedy multistep reduction, unique
modulo permutation equivalence, for any proof term by first evaluating into its tragr / causal graph (using
JK), followed by the topological multisort (using TS) yielding the greedy multistep reduction.

6More precisely, the join of Φ with the origin of ψ along the converse of Φ, which is a step acting on an interval in the dag
of the source string of Φ, as observed in Remark 10. Note our reasoning would fail if rules were allowed to have empty left- or
right-hand sides: If ψ were due to a rule with an empty left-hand side, or if Φ were to contain a rule with an empty right-hand
side, then X might not be swappable.
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Theorem 2. For every proof term γ , there exists a unique greedy multistep reduction γ ′ such that γ ≡ γ ′.

Proof. Lemma 3 shows existence. To show uniqueness, consider greedy multistep reductions γ ′ and
γ ′′ both permutation equivalent to γ . By Lemma 2, Jγ ′K and Jγ ′′K are the same tragr. Therefore, γ ′ =
TS(Jγ ′K) =TS(Jγ ′′K) = γ ′′ by TS being inverse to JK on greedy multistep reductions by Theorem 1..

Remark 11. • The proof only employs one direction (the first half of the proof) of Theorem 1.

• As a consequence, using that the greedy multistep reductions are the normal forms w.r.t. swapping,
we have that swapping is confluent on multistep reductions. This could alternatively be established
via Newman’s Lemma, using that swapping is terminating and showing locally confluence.

Example 10. The greedy multistep reduction γ ′ is the unique representative of the permutation equiva-
lence class of γ . Both are mapped to the tragr on the right in Figure 2 by the proof term algebra JK, and
topological multisorting

5 Conclusions

We have given further support to that, as stated in the introduction, notions of causal equivalence are om-
nipresent. Here we have shown that Lévy’s notion of permutation equivalence [17] as known from term
rewriting [30] corresponds, after specialising it to string rewriting, to the notion of causal equivalence as
employed by Wolfram in his physics project [32, 33].

This we achieved by introducing tragrs, refining Wolfram’s notion of causal graph, as representatives
of permutation equivalence classes of reductions. Representing reductions as term themselves, so-called
proof terms [20], allowed us to specify the representation map, from reductions to tragrs, effectively by
means of a (proof term) algebra that models permutation equivalence. To show representatives unique,
we gave a map back from tragrs to so-called greedy multistep reductions as known from Dehornoy’s
work in algebra [7], using a topological multisorting procedure, showing both maps to be inverse to each
other.

We think that giving different perspectives on the same notion, as we did for causal equivalence here
but also before in [30, Chapter 8], is important. Hence we also think it unfortunate to (re)invent wheels
without noticing wheels to be the same. That seems to be the situation for causal equivalence though;
in the literature as given in the introduction cross-references beyond the borders of the specific field (to
name a few: rewriting, algebra, physics, category theory, proof theory, concurrency theory) of a paper
are few and far between. We hope our short paper can contribute to creating at least some awareness of
that unfortunate situation for causal equivalence, and the need to overcome it.7

The concepts and techniques developed and employed here are simple.8 For instance, topological
multisorting could be easily presented in undergraduate Discrete Mathematics or Data Structures and
Algorithms courses. We view this as a strength rather than as a weakness. Only because the results are
simple in the linear case of string rewriting do we entertain hope to extend them to non-linear cases, e.g.
to our main field of study term rewriting.

All results here are effective / constructive, but we didn’t study the complexity of them. However,
we do hope the concrete representations of permutation equivalence classes by means of tragrs (certain
graphs) and greedy multistep reduction (certain terms) could be useful for such, cf. [7].

7Several people we spoke to expressed views such as: “that paper is not relevant since it is on concurrency theory not on
rewriting”, and then didn’t think their view to be problematic.

8This could also be the reason for the observed disjointedness of the literature on causal equivalence: simplicity allows to
reinvent in an ad hoc way.
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Willem Klop that Wolfram’s causal graphs should characterise permutation equivalence. Being aware of
that, my short reply then was to refer him to trace relations [30] and drawing Figure 2. Realising a single
picture was too cryptic, that was expanded10 into a 10-page submission to the workshop Termgraph 2022.
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