
Uniform Normalisation beyond Orthogonality

Zurab Khasidashvili1, Mizuhito Ogawa2, and Vincent van Oostrom3

1 Department of Mathematics and Computer Science, Bar-Ilan University
Ramat-Gan 52900, Israel

khasidz@cs.bu.ac.il
2 Japan Science and Technology Corporation, PRESTO and

NTT Communication Science Laboratories
3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan

mizuhito@theory.brl.ntt.co.jp
3 Department of Philosophy, Utrecht University

P.O. Box 80089, 3508 TB Utrecht, The Netherlands
oostrom@phil.uu.nl

Abstract. A rewrite system is called uniformly normalising if all its steps are
perpetual, i.e. are such that if s → t and s has an infinite reduction, then t has one
too. For such systems termination (SN) is equivalent to normalisation (WN). A
well-known fact is uniform normalisation of orthogonal non-erasing term rewrite
systems, e.g. the λI-calculus. In the present paper both restrictions are analysed.
Orthogonality is seen to pertain to the linear part and non-erasingness to the non-
linear part of rewrite steps. Based on this analysis, a modular proof method for
uniform normalisation is presented which allows to go beyond orthogonality. The
method is shown applicable to biclosed first- and second-order term rewrite sys-
tems as well as to a λ-calculus with explicit substitutions.

1 Introduction

Two classical results in the study of uniform normalisation are:

– the λI-calculus is uniformly normalising [7, p. 20, 7 XXV], and
– non-erasing steps are perpetual in orthogonal TRSs [14, Thm. II.5.9.6].

In previous work we have put these results and many variations on them in a unifying
framework [13]. At the heart of that paper is the result (Thm. 3.16) that a term s not in
normal form contains a redex which is external for any reduction from s.1 Since external
redexes need not exist in rewrite systems having critical pairs, the result does not apply
to these. The method presented here, is based instead on the existence of redexes which
are external for all reductions which are permutation equivalent to a given reduction.
Since this so-called standardisation theorem holds for all left-linear rewrite systems,
with or without critical pairs, the resulting framework is more general. It is applied
to obtain uniform normalisation results for abstract rewrite systems (ARSs), first-order
term rewrite systems (TRSs) and second-order term rewrite systems (P2RS) in Sect. 2, 3

1 According to [11, p. 404], a redex at position p is external to a reduction if in the reduction no
redex is contracted above p to which the redex did not contribute.

and 4, respectively. In each section, the proof method is presented for the orthogonal
case first, deriving traditional results. We then vary on it, relaxing the orthogonality
restriction. This leads to new uniform normalisation results for biclosed rewrite systems
(e.g. Cor. 2, 5, 6, and 8). In Sect. 5 uniform normalisation for λx−, a prototypical λ-
calculus with explicit substitutions, is shown to hold, extending earlier work of [6] who
only shows it for the explicit substitution part x of the calculus. The proof boils down
to an analysis of the (only) critical pair of λx− and uses a particularly simple proof of
preservation of strong normalisation for λx−, also based on the standardisation theorem.

2 Abstract rewriting

Although trivial, the results in this section and their proofs form the heart of the follow-
ing sections. Moreover, they are applicable to various concrete (linear) rewrite systems,
for instance to interaction nets [16]. The reader is assumed to be familiar with abstract
rewrite systems (ARSs, [15, Chap. 1] or [1, Chap. 2]).

Definition 1. Let a be an object of an abstract rewrite system. a is terminating (strongly
normalising, SN) if no infinite reductions are possible from it. We use ∞ to denote the
complement of SN. a is normalising (weakly normalising, WN) if some reduction to
normal form is possible from it.

Definition 2. A rewrite step s → t is critical if s ∈ ∞ and t ∈ SN, and perpetual
otherwise. A rewrite system is uniformly normalising if there are no critical steps.

First, note that a rewrite system is uniformly normalising iff WN ⊆ SN holds. More-
over, uniform normalisation holds for deterministic rewrite systems.

Definition 3. A fork in a rewrite system is pair of steps t1 ← s→ t2. It is called trivial
if t1 = t2. A rewrite system is deterministic if all forks are trivial, and non-deterministic
otherwise.

To analyse uniform normalisation for non-deterministic rewrite systems it thus seems
worthwhile to study their non-trivial forks.

Definition 4. A rewrite system is linear orthogonal if every fork t1 ← s → t2 is either
trivial or square, that is, t1 → s′ ← t2 for some s′ [1, Exc. 2.33].

We will show the fundamental theorem of perpetuality:

Theorem 1 (FTP). Steps are perpetual in linear orthogonal rewrite systems.

Corollary 1. Linear orthogonal rewrite systems are uniformly normalising.

In the next section we will show (Lem. 1) that the abstract rewrite system associated
to a term rewrite system which is linear and orthogonal, is linear orthogonal. Linear
orthogonality is a weakening of the diamond property [1, Def. 2.7.8], and a strength-
ening of subcommutativity [15, Def. 1.1.(v)] and of the balanced weak Church-Rosser
property [25, Def. 3.1], whence:

Proof. (of Thm. 1) Suppose s ∈ ∞ and s → t. We need to show t ∈ ∞. By the first
assumption, there exists an infinite reduction S : s0 → s1 → s2 → . . ., with s0 = s.
One can build an infinite reduction T from t as follows: let t0 = t be the first object
of T . By orthogonality we can find for every non-trivial fork si+1 ← si → ti a next
object ti+1 of T such that si+1 → ti+1 ← ti. Consider a maximal reduction T thus
constructed. If T is infinite we are done. If T is finite, it has a final object, say tn, and a
fork sn+1 ← sn → tn exists which is trivial, i.e. sn+1 = tn. Hence, T and the infinite
reduction S from sn+1 on can be concatenated. ut

FTP can be brought beyond linear orthogonality. Let →= and � denote the reflexive
and reflexive-transitive closure of→, respectively.

Definition 5. A fork t1 ← s → t2 is closed if t1 � t2. A rewrite system is linear
biclosed if all forks are either closed or square.2

By replacing the appeal to triviality by an appeal to closedness in the proof of FTP,
i.e. by replacing sn+1 = tn by sn+1 � tn, we get:

Corollary 2. Linear biclosed rewrite systems are uniformly normalising.

3 First-order term rewriting

In this section first the uniform normalisation results of Section 2 are instantiated to
linear term rewriting. Next, the fundamental theorem of perpetuality for first-order term
rewrite systems is established:

Theorem 2 (F1TP). Non-erasing steps are perpetual in orthogonal TRSs.

Corollary 3. Non-erasing orthogonal TRSs are uniformly normalising.

The chief purpose of this section is to illustrate our proof method based on standard-
isation. Except for the results on biclosed systems, the results obtained are not novel
(cf. [15, Lem. 8.11.3.2] and [9, Sect. 3.3]). The reader is assumed to be familiar with
first-order term rewrite systems (TRSs) as can be found in e.g. [15] or [1]. We sum-
marise some aberrations and additional concepts:

Definition 6. – A term is linear if any variable occurs at most once in it. Let % : l→ r

be a TRS rule. It is left-linear (right-linear) if l (r) is linear. It is linear if Var(l) =
Var(r) and both sides are linear. A TRS is (left-,right) linear if all its rules are.

– Let % : l → r be a rule. A variable x ∈ Var(l) is erased by % if it does not occur
in r. The rule % is erasing if it erases some variable. A rewrite step is erasing if the
applied rule is. A TRS is erasing if some step is.

– Let % : l → r and ϑ : g → d be rules which have been renamed apart. Let p be a
non-variable position in l. % is said to overlap ϑ at p if a unifier σ of l|p and g does
exist. If σ is a most general such unifier, then both 〈l[d]σp , rσ〉 and 〈rσ , l[d]σp 〉 are
critical pairs at p between % and ϑ.3

2 Beware of the symmetry: if the fork is not square, then both t1 � t2 and t2 � t1.
3 Beware of the symmetry (see the next item and cf. Footnote 2).

– If for all such critical pairs 〈t1, t2〉 of a left-linear TRSR it holds that:
∃s′ t1 � s′ ←= t2, thenR is strongly closed [10, p. 812]
t1 � t2, thenR is biclosed [22, p. 70]
t1 = t2, thenR is weakly orthogonal
t1 = t2 and p = ε, thenR is almost orthogonal
t1 = t2, p = ε and % = ϑ, thenR is orthogonal

Some remarks are in order. First, our critical pairs for a TRS are the critical pairs 〈s, t〉
of [1, Def. 6.2.1] extended with their opposites (〈t, s〉) and the trivial critical pairs be-
tween a rule with itself at the head (〈r, r〉 for every rule l → r). Next, linearity in our
sense implies linearity in the sense of [1, Def. 6.3.1], but not vice versa. Linearity of a
step s = C[lσ]→ C[rσ] = t as defined here captures the idea that every symbol in the
context-part C or the substitution-part σ in s has a unique descendant in t, whereas lin-
earity in the sense of [1, Def. 6.3.1] only guarantees that there is at most one descendant
in t. Remark:

orth. =⇒ almost orth. =⇒ weakly orth. =⇒ biclosed =⇒ strongly closed

3.1 Linear term rewriting

In this subsection the results of Section 2 for abstract rewriting are instantiated to linear
term rewriting. First, remark that linear strongly closed TRSs are confluent (combine
Lem. 6.3.2, 6.3.3 and 2.7.4 of [1]). Therefore, a linear TRS satisfying any of the above
mentioned critical pair criteria is confluent.

Lemma 1. IfR is a linear orthogonal TRS,→R is a linear orthogonal ARS.

Proof. The proof is based on the standard critical pair analysis of a fork t1 ←R s→R

t2 as in [1, Sect. 6.2]. Actually, it is directly obtained from the proof of [1, Lem. 6.3.3],
by noting that:

Case 1 (parallel) establishes that the fork is square (joinable into a diamond),
Case 2.1 (nested) also yields that the fork is square,4 and
Case 2.2 (overlap) can occur only if the steps in the fork arise by applying the same
rule at the same position, by orthogonality, so the fork is trivial. ut

From Lem. 1 and Cor. 1 we obtain a special case of Corollary 3.

Corollary 4. Linear orthogonal TRSs are uniformly normalising.

Lemma 2. IfR is a linear biclosed TRS,→R is a linear biclosed ARS.

Proof. The analysis in the proof of Lem. 1 needs to be adapted as follows:

Case 2.2 , the instance of a critical pair, is closed by biclosedness of critical pairs
and the fact that rewriting is closed under substitution. ut

Corollary 5. Linear biclosed TRSs are uniformly normalising.

4 Note that the case x 6∈ Var (r1) cannot happen, due to our notion of linearity.

3.2 Non-linear term rewriting

In this subsection the results of the previous subsection are adapted to non-linear TRSs,
leading to a proof of F1TP (Thm. 2). The adaptation is non-trivial, since uniform nor-
malisation may fail for orthogonal non-linear TRSs.

Example 1. The term e(a) in the TRS {a → a, e(x) → b} witnesses that orthogonal
TRSs need not be uniformly normalising.

Non-linearity of a TRS may be caused by non-left-linearity. Although non-left-linearity
in itself is not fatal for uniform normalisation of TRSs (see [9, Chap. 3], e.g. Cor. 3.2.9),
it will be in case of second-order rewriting (cf. Ex. 2) and our method cannot deal with
it. Hence: We assume TRSs to be left-linear.
Under this assumption, non-linearity may only be caused by some symbol having zero
or multiple descendants after a step. The problem in Ex. 1 is seen to arise from the
fork e(a) ← e(a) → b which is not balancedly joinable: it is neither trivial (e(a) 6= b)
nor square (@s′ e(a) → s′ ← b). Erasingness is the only problem. To prove F1TP, we

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

context
context

context contextargument
argument

termstring

a

c

c′

d

b

e

l

l

Fig. 1. Split

will make use of the apparent asymmetry in the non-linearity of term rewrite steps: an
occurrence of a left-hand side of a rule l → r splits the surrounding into two parts (see
Fig. 1):

– the context-part above or parallel to [1, Def. 3.1.3] l, and
– the argument-part, below l.

Observe that term rewrite steps in the context-part might replicate the occurrence of the
left-hand side l, whereas steps in the argument-part cannot do so. To deal with such
replicating steps in the context-part, we will actually prove a strengthening of F1TP for
parallel steps instead of ordinary steps.

Definition 7. Let % : l → r be a TRS rule. s parallel rewrites to t using %, s ‖−→% t [10,
p. 814],5 if it holds that s = C[lσ1 , . . . , lσk] and t = C[rσ1 , . . . , rσk], for some k ≥ 0.
The step is erasing if the rule is. The context(argument)-part of the step is the part above
or parallel to all (below some) occurrences of l.

5 Actually our notion is a restriction of his, since we allow only one rule.

To reduce F1TP to FTP it suffices to reduce to the case where the infinite reduction does
not take place (entirely) in the context-part, since then the steps either have overlap or
are in the, linear, argument-part. To that end, we want to transform the infinite reduction
into an infinite reduction where the steps in the context-part precede the steps in the
argument-part.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������

�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�

�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�

�
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

�
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
� �
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�

�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�

�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�

!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!!
!
!

"
"
""
"
""
"
""
"
""
"
""
"
""
"
""
"
""
"
""
"
""
"
""
"
""
"
""
"
""
"
""
"
""
"
""
"
""
"
"

t :s :

r

overlaps position p

path to p untouched

q
by reduction

g

pattern of g at position q

ppp

l

Fig. 2. Standard

Definition 8. A reduction is standard (see Fig. 2) if for any step C[lσ]p → C[rσ]p in
the reduction, p is in the pattern of the first step after that step which is above p. That
is, if D[gτ]q displays the occurrence of the first redex with p = qo, we have that o is a
non-variable position in g.

Theorem 3 (STD). Any reduction in a TRS can be transformed into a standard one.
The transformation preserves infiniteness.

Proof. The first part of the theorem was shown to hold for orthogonal TRSs in [11,
Thm. 3.19] and extended to left-linear TRSs possibly having critical pairs in [8]. That
standardisation preserves infiniteness follows from the fact that at some moment along
an infinite reduction S : s0 → s1 → . . . a redex at minimal position p w.r.t. the
prefix order≤ [1, Def. 3.1.3] must be contracted. Say this happens the first time in step
si →p si+1. Permute all steps parallel to p in S after this step resulting in S0; S1, where
S0 contains only steps below p and ends with a step at position p, and S1 is infinite.
Standardise S0 into T0, note that it is non-empty and that concatenating T0 with any
standardisation of S1 will yield a standard reduction by the choice of p. Repeat the
process on S1. ut

Proof. (of Thm. 2) Suppose s ∈∞ and s ‖−→
k

% t is non-erasing, contracting k redexes
w.r.t. rule % : l → r in parallel. We need to show t ∈ ∞. If k = 0, then t = s ∈ ∞.
Otherwise, there exists by the first assumption an infinite reduction S : s0 →q0

s1 →q1

s2 → . . ., with s0 = s and si →qi
si+1 contracting a redex at position qi w.r.t. rule

ϑi : gi → di. By STD S may be assumed standard. Consider the relative positions of
the redexes in the fork s1 ←q0

s ‖−→% t.

(context) If g0 occurs entirely in the context-part of the parallel step, then by the

Parallel Moves lemma [1, Lem. 6.4.4] the fork is joinable into s1 ‖−→
k′

% t1 ←q0
t0.

Since t0 → t1, s1 ∈∞, and s1 ‖−→% t1 is non-erasing, repeating the process will
yield an infinite reduction from t0 = t as desired.

(non-context) Otherwise g0 must be below one or overlap at least one contracted
left-hand side l, say the one at position p. Hence, s ‖−→

k
t can be decomposed as

s→p s′ ‖−→
k−1

t. We claim s′ ∈∞. The proof is as for FTP, employing standard-
ness to exclude replication of the pivotal l-redex. Construct a maximal reduction T

as follows. Let t0 = s′ be the first object of T . If g0 overlaps the l at position p,
then T is empty. Otherwise, g0 must be below that l and we set o0 = q0.

– Suppose the fork si+1 ←qi
si →p ti is such that the contracted redexes do not

have overlap. As an invariant we will use that oi records the outermost position
below l (at p) and above q0 where a redex was contracted in the reduction S

up to step i, hence p ≤ oi+1 ≤ oi ≤ q0. Then qi < p is not possible, since
by the non-overlap assumption gi would be entirely above p, hence above oi

as well, violating standardness of S. Hence, qi is parallel to or below l (at
p). By another appeal to the Parallel Moves lemma the fork can be joined via
si+1 →p ti+1 ‖←−

k
ti, where k > 0 by non-erasingness of si → ti (†). The

invariant is maintained by setting oi+1 to qi if qi < oi, and to oi otherwise.
If T is infinite we are done. If T is finite, it has a final object, say tn, and a fork
sn+1 ←qi,ϑi

sn →p tn such that the redexes have overlap (‡). By the orthogonality
assumption we must have qn = p and ϑn = %, hence sn+1 = tn. By concatenating
T and the infinite reduction S from sn+1, the claim (s′ ∈∞) is then proven. From
the claim, we may repeat the process with an infinite standard reduction from s′

and s′ ‖−→
k−1

t.

Observe that the (context)-case is the only case producing a rewrite step from t, but it
must eventually always apply since the other case decreases k by 1. ut

By replacing the appeal to orthogonality by an appeal to biclosedness in the proof of
F1TP, i.e. by replacing sn+1 = tn by sn+1 � tn, we get:

Theorem 4. Non-erasing steps are perpetual in biclosed TRSs.

Corollary 6. Non-erasing biclosed TRSs are uniformly normalising.

Note that we are beyond orthogonality since biclosed TRSs need not be confluent. The
example is as for strongly closed TRSs [10, p. 814], but note that the latter need not be
uniformly normalising! Next, we show [15, Lem. 8.11.3.2].

Definition 9. A step C[lσ]→ C[rσ] is ∞-erasing, if it erases all ∞-variables, that is,
if x ∈ Var(r) then xσ ∈ SN.

Theorem 5. Non-∞-erasing rewrite steps are perpetual in biclosed TRSs.

Proof. Replace in the proof of Thm. 4 everywhere non-erasingness by non-∞-erasingness.
The only thing which fails is the statement resulting from (†):

– By another appeal to the Parallel Moves Lemma the fork can be joined via si+1 →p

ti+1 ‖←−
k

ti, where k > 0 by non-∞-erasingness of si → ti.

We split this case into two new ones depending on whether some argument (instance of
variable) to l is ∞ or not.

– In the former case, ti ∈∞ follows directly from non-∞-erasingness.
– In the latter case, si → si+1 may take place in an erased argument, and si+1 →p

ti+1 = ti. But since all arguments to l are SN, this can happen only finitely often
and eventually the first case applies. ut

In [9] a uniform normalisation result not requiring left-linearity, but having a critical
pair condition incomparable to biclosedness was presented.

4 Second-order term rewriting

In this section, the fundamental theorem of perpetuality for second-order term rewrite
systems is established, by generalising the method of Section 3.

Theorem 6 (F2TP). Non-erasing steps are perpetual in orthogonal P2RSs.

Corollary 7. Non-erasing orthogonal P2RSs are uniformly normalising.

For ERSs and CRSs these results can be found as [12, Thm. 60] and [14, Cor. II.5.9.4],
respectively. The reader is assumed to be familiar with second-order term rewrite sys-
tems be it in the form of combinatory reduction systems (CRSs [14]), expression re-
duction systems (ERSs [13]), or higher-order pattern rewrite systems (PRSs [17]). We
employ PRSs as defined in [17], but will write x.s instead of λx.s, thereby freeing the
λ for usage as a function symbol.

Definition 10. – The order of a rewrite rule is the maximal order of the free variables
in it. The order of a PRS is the maximal order of the rules in it. PnRS abbreviates
nth-order PRS.

– A rule l → r is fully-extended (FE) if for every occurrence Z(t1, . . . , tn) in l of a
free variable Z, t1, . . . , tn is the list of variables bound above it.

– A rewrite step s = C[lσ] → C[rσ] = t is non-erasing if every symbol from C and
σ in s descends [20, Sect. 3.1.1] to some symbol in t.6

The adaptation is non-trivial since uniform normalisation may fail for orthogonal, but
third-order or non-left-linear or non-fully-extended systems.

Example 2. (third-order) [13, Ex. 7.1] Consider the 3rd-order PRS in Tab. 1. It is the
standard PRS-presentation of the λβ-calculus [17] extended by a rule. @ : o→o→o

and λ : (o→o)→o are the function symbols and M : o→o and N : o are the free-
variables of the first (β-)rule. We have made @ an implicit binary infix operation
and have written λx.s for λ(x.s), for the λ-calculus to take a more familiar form.
If Ω abbreviates (λx.xx)(λx.xx), the step fxy.(λu.x(u))y →β fxy.x(y) is non-
erasing but critical.

6 A TRS step is non-erasing in this sense iff it is non-erasing in the sense of Def. 6.

third-order non-fully-extended non-left-linear
(λz.M(z))N → M(N) M(z)〈z := N〉 → M(N) M(x)〈x := N〉 → M(N)

fxy.Z(u.x(u), y) → Z(u.c, Ω) gxy.Z(y) → Z(a) g(x.Z(x), x.Z(x)) → Z(a)
e(x, y) → c e(x) → c

f(a) → f(a) f(a) → f(a)
Table 1. Three counterexamples against uniform normalisation of PRSs

(non-fully-extended) [13, Ex. 5.9] Consider the non-FE P2RS in Tab. 1. The step
gxy.e(z, x)〈z := f(y)〉 → gxy.e(f(y), x) is non-erasing but critical.

(non-left-linear) Consider the non-left-linear P2RS in Tab. 1. The rewrite step g(y.e(x)〈x:=
f(y)〉, y.c〈x := f(y)〉)→ g(y.e(f(y)), y.c〈x := f(y)〉) from s to t is non-erasing
but critical; t is terminating, but we have the infinite reduction

s→ g(y.c〈x := f(y)〉, y.c〈x := f(y)〉)→ c〈x := f(a)〉 → . . .

In each item, the second rule causes failure of uniform normalisation.

Hence, for uniform normalisation to hold some restrictions need to be imposed:
We assume PRSs to be left-linear and fully-extended P2RSs. For TRSs the fully-extendedness
condition is vacuous, hence the assumption reduces to left-linearity as in Sect. 3 The
restriction to P2RSs entails no restriction w.r.t. the other formats, since both CRSs and
ERSs can be embedded into P2RSs, by coding metavariables in rules as free variables of
type o→ . . .→o→o [23]. To adapt the proof of F1TP to P2RSs, we review its two main
ingredients. The first one was a notion of simultaneous reduction, extending one-step
reduction such that:

– The residual of a non-erasing step after a context-step is non-erasing.

The second ingredient was STD. It guarantees the following property:

– Any redex pattern l which is entirely above a contracted redex is external to the
reduction S; in particular, l cannot be replicated along S, it can only be eliminated
by contraction of an overlapping redex in S.

Since the residual of a parallel reduction after a step above it is usually not parallel, we
switch from ‖−→ to ◦−→, where the latter is the (one-rule restriction of the) simultaneous
reduction relation of [21, Def. 3.4]. The context-part of such a ◦−→-step is the part above
or parallel to all occurrences of l.

Definition 11. Let % : l → r be a rewrite rule. Write s ◦−→% t if it holds that s =
C[lσ1 , . . . , lσk] and t = C[rτ1 , . . . , rτk], where σi ◦−→% τi for all 1 ≤ i ≤ k.

Lemma 3 (Finiteness of Developments). (FD [20, Thm. 3.1.45]) Let s ◦−→ t by si-
multaneously contracting redexes at positions in P . Repeated contraction of residuals
of redexes in P starting from s terminates and ends in t.

The second lemma on ◦−→ is a close relative of [13, Lem. 5.1] and establishes the first
ingredient above. It fails for P3RSs as witnessed by the first item of Ex. 2.

Lemma 4 (Parallel Moves). Let % : l → r and ϑ : g → d be PRS rules, with ϑ second-
order. If s′ ←ϑ s ◦−→% t is a fork such that g is in the context-part of the non-erasing
simultaneous step, then the fork is joinable into s′ ◦−→% t′ ←ϑ t, with the simultaneous
step non-erasing.

Proof. Joinability follows by FD. It remains to show non-erasingness. ϑ being of order
2, each free variable Z occurs in g as Z(x1, . . . , xn) with xi : o and Z : o→ . . .→o→o

and in d as Z(t1, . . . , tn) with ti : o. Hence, the residuals in s′ of redexes of s ◦−→ t are
first-order substitution instances of them. Then, to show preservation of non-erasingness
it suffices to show that Var(s) ⊆ Var(sσ) for any first-order substitution σ, which
follows by induction on s. ut

Left-linearity and fully-extendedness are sufficient conditions for STD to hold.

Theorem 7 (STD). Any reduction in a P2RS can be transformed into a standard one.
The transformation preserves infiniteness.

Proof. The proof of the second part of the theorem is as for TRSs. For a proof of the
first part for left-linear fully-extended (orthogonal) CRSs see [18, Sect. 7.7.3] ([26]).
By the correspondence between CRSs and P2RSs this suffices for our purposes. (STD
even holds for PRSs [22, Cor. 1.5].) ut

Proof. (of Thm. 6) Replace in the proof of Thm. 2 everywhere ‖−→ by ◦−→. That the
(context)-case eventually applies follows by an appeal to FD. ut

The proofs of the results below are obtained by analogous modifications.

Theorem 8. Non-erasing rewrite steps are perpetual in biclosed P2RSs.

F2TP can be strengthened in various ways. Unlike for TRSs, a critical step in a P2RS
need not erase a term in ∞ as witnessed by e(f(x))〈x := a〉 → c〈x := a〉 in the PRS
{M(x)〈x := N〉 → M(N), e(Z) → c, f(a) → f(a)}. Note that f(x) ∈ SN, but by
contracting the 〈 := 〉-redex a is substituted for x and f(a) ∈∞.

Definition 12. An occurrence of (the head symbol of) a subterm is potentially infinite
if some descendant [20] of it along some reduction is in ∞. A step is ∞-erasing if it
erases all potentially infinite subterms in its arguments.

For TRSs this notion of ∞-erasingness coincides with the one of Def. 9.

Corollary 8. Non-∞-erasing rewrite steps are perpetual in biclosed P2RSs.

Many variations of this result are possible. We mention two. First, the motivation for
this paper originates with [13, Sect. 6.4], where we failed to obtain:

Theorem 9. ([5]) λ-δK-calculus is uniformly normalising.

Proof. By Cor. 8, since λ-δK-calculus is weakly orthogonal. ut

Second, we show that non-fully-extended P2RSs may have uniform normalisation. By
the same method, P2RSs where non-fully-extended steps are terminating and postpon-
able have uniform normalisation.

Theorem 10. Non-∞-erasing steps are perpetual in λβη-calculus [24,Prop. 27].

Proof. It suffices to remark that η-steps can be postponed after β-steps in a standard
reduction [2, Cor. 15.1.6]. Since η is terminating, an infinite standard reduction must
contain infinitely many β-steps, hence may be assumed to consist of β’s only and the
proof of F2TP goes through unchanged. ut

5 λx−

In this section familiarity with the nameful λ-calculus with explicit substitutions λx−

of [4] is assumed. We define it as a P2RS and establish the fundamental theorem of
perpetuality for λx−:

Theorem 11 (FxTP). Non-erasing steps are perpetual in λx−.

Definition 13. The alphabet of λx− [4] consists of the function symbols @ : o→o→o,
λ : (o→o)→o and 〈 := 〉 : (o←o)→o→o. As above, we make @ an implicit infix
operator associating to the left. The rules of λx− are (for x 6= y):

(λx.M(x))N →Beta M(x)〈x := N〉

x〈x := N〉 →= N

y〈x := N〉 → 6= y

(λy.M(y, x))〈x := N〉 →λ λy.M(y, x)〈x := N〉

(M(x)L(x))〈x := N〉 →@ M(x)〈x := N〉L(x)〈x := N〉

The last four rules are the explicit substitution rules denoted x, generating→x.

→x is a terminating and orthogonal P2RS, hence the normal form of a term s exists
uniquely and is denoted by s↓x. Note that s↓x is a pure λ-term, i.e. it does not contain
closures (〈 := 〉-symbols). λx− implements (only) substitution [4]:

Lemma 5. 1. If s =x t, then s↓x = t↓x.
2. If s→Beta t, then s↓x ◦−→β t↓x.
3. If s is pure and s→β t, then s→Beta · →

+
x t.

Remark that in the second item the number of β-steps might be zero, but is always
positive when the Beta-step is not inside a closure. We call λx−-reductions without
steps inside closures pretty. λx− preserves strong normalisation in the sense that any
pure term which is β-terminating is λx−-terminating.

Lemma 6 (PSN). [4, Thm. 4.19] If s is pure and β-SN, then s is λx−-SN.

Proof. Suppose s ∈∞. Since λx− is a fully-extended left-linear sub-P2RS7, we may by
STD assume an infinite standard reduction S : s0 → s1 → . . . from s = s0. We show
that we may choose S to be pretty decent, where a reduction is decent [4, Def. 4.16] if
for every closure 〈x := t〉 in any term, t ∈ SN.

7 It only is a sub-P2RS since the y in the → 6=-rule ranges over variables not over terms.

(init) s is decent since it is pure.
(step) Suppose si ∈ ∞ and si is decent. From the shape of the rules we have that
‘brackets are king’ [19]8: if any step takes place in t inside some closure 〈x := t〉 in
a standard reduction, then no step above the closure can be performed later in the
reduction. This entails that if t is terminating, S need not perform any step inside t.
Hence assume si → si+1 is pretty.
(Beta) Suppose si →Beta si+1 contracting (λx.M(x))N to M(x)〈x := N〉. We

may assume that N is terminating since otherwise we could instead perform
an infinite reduction on N itself, hence the reduct is decent.

(x) Otherwise, decency is preserved, since x-steps do not create closures.

Since x is terminating S must contain infinitely many Beta-steps. Since S is pretty S↓x
is an infinite β-reduction from s by (the remark after) Lem. 5. ut

Our method relates to closure-tracking [3] as preventing to curing. Trying to apply it to
prove [4, Conj. 6.45], stating that explicification of redex preserving CRSs is PSN, led
to the following counterexample.

Example 3. Consider the term s = (λ̃(x.b))a in the P2RSRwith rewrite rules {(λ̃x.M(x))N →
M(g(N, N)), a → b, g(a, b) → g(a, b)}. On the one hand s is terminating, since
s → b[x:=g(a, a)] = b. On the other hand, explicifying R will make s infinite, since
g(a, a)→ g(a, b)→ g(a, b). The PRS is redex preserving in the sense of [4, Def. 6.44]
since any redex in the argument g(N, N) to M occurs in N already. So s is a term for
which PSN does not hold.

We expect the conjecture to hold for orthogonal CRSs. For our purpose, uniform nor-
malisation, we will need the following corollary to Lem. 6, on preservation of infinity.
It is useful in situations where terms are only the same up to the Substitution Lemma [2,
Lem. 2.1.16]: M(x, y)〈x :=N(y)〉〈y :=L〉↓x = M(x, y)〈y :=P 〉〈x :=N〈y :=L〉〉↓x.

Corollary 9. If s is decent and s↓x = t↓x, then s ∈∞ implies t ∈∞.

How should non-erasingness be defined for λx−? The naı̈ve attempt falters.

Example 4. From the term s = ((λx.z)(yω))〈y := ω〉, where ω = λx.xx, we have a
unique terminating reduction starting with a ‘non-erasing’ Beta-step:

s→Beta z〈x := yω〉〈y := ω〉 →x z〈y := ω〉 →x z

On the other hand, developing 〈y := ω〉 yields the term ωω ∈∞.

Translating the example into λβ-calculus shows that the culprit is the ‘non-erasing’
Beta-step, which translates into an erasing β-step. Therefore:

Definition 14. A λx−-step contracting redex s to t is erasing if s→ t is

(λx.M(x))N →Beta M , with x 6∈ Var(M(x)↓x), or

y〈x := N〉 → 6= y

8 Thinking of terms as trees representing hierarchies of people, creating a redex above (overrul-
ing) someone (the ruler) from below (the people) is a revolution. For closures/brackets this is
not possible, whence these are king.

Proof. (of Thm. 11) Since λx− is a sub-P2RS, it suffices by the proof of F2TP to consider
perpetuality of a step s →p,% t, for some infinite standard reduction S : s0 →q0,ϑ0

s1 →q1,ϑ1
. . . starting from s = s0 such that s1 ← s → t is an overlapping fork (case

(‡) on p. 7). λx− has only one non-trivial critical pair. It arises by @ and Beta from
s′ = ((λx.M(x, y))N(y))〈y := P 〉, so let s = C[s′].

(Beta,@) In case s→Beta C[M(x, y)〈x := N(y)〉〈y := P 〉] = s1, we note that

s→p,@ C[(λx.M(x, y))〈y := P 〉N(y)〈y := P 〉] = t

→λ C[(λx.M(x, y)〈y := P 〉)N(y)〈y := P 〉]

→Beta C[M(x, y)〈y := P 〉〈x := N(y)〈y := P 〉〉] = t1

Consider a minimal closure in s1 (or s1 itself) which is decent and ∞, say at
position o. If o is parallel or properly below p, i.e. inside one of M(x, y), N(y)
or P , then obviously t1 ∈ ∞. Otherwise, o is above p and t1 ∈ ∞ follows from
Corollary 9, since s1|o↓x = t1|o↓x.

(@,Beta) The case s→p,Beta C[M(x, y)〈x:=N(y)〉〈y:=P 〉] = t is more involved.
Construct a maximal reduction T as follows. Let t0 = t be the first term of T and
set o0 = p.

– Suppose si →qi,ϑi
si+1 does not contract a redex below oi. As an invariant we

will use that oi traces the position of @ (initially at p) along S. If qi is parallel
to oi, then we set ti →qi,ϑi

ti+1. Otherwise qi < oi and by standardness this is
only possible in case of an @-step distributing closures over the @ at oi. Then
we set ti+1 = ti and oi+1 = qi.

If this process continues, then T is infinite since in case no steps are generated
oi+1 < oi, hence eventually a step must be generated. If the process stops, say at n,
then by construction sn = D[u]on

and tn = D[v]on
, with u = (λx.M(x, y))〈y :=

P 〉N(y)〈y := P 〉, v = M(x, y)〈x := N(y)〉〈y := P 〉 and 〈y := P 〉 abbreviates a
sequence of closures the first of which is 〈y := P 〉. Per construction, on ≤ qn for
the step sn →qn

sn+1 and we are in the ‘non-replicating’ case: by standardness the
@ cannot be replicated along S and it can only be eliminated as part of a Beta-step.
Consider a maximal part of S not contracting on. Remark that if any of M(x, y),
N(y) and P is infinite, then tn ∈∞, so we assume them terminating.
(context) If infinitely many steps parallel to oi take place, then D ∈ ∞, hence

tn = D[v] ∈∞.
(left) Suppose infinitely many steps are in (λx.M(x, y))〈y := P 〉. This implies

M(x, y)〈y := P 〉 ∈∞, hence M(x, y)〈y := P 〉〈x := N(y)〈y := P 〉〉 ∈∞,
which by Corollary 9 implies tn ∈∞.

(right) Suppose infinitely many steps are in N(y)〈y := P 〉. By non-erasingness of
s→Beta t, x ∈M(x, y)↓x hence

v �x M(x, y)↓x〈x := N(y)〉〈y := P 〉

= E[x, . . . , x]〈x := N(y)〉〈y := P 〉

�x E∗[x〈x := N(y)〉〈y := P 〉, . . . , x〈x := N(y)〉〈y := P 〉]

�= E∗[N(y)〈y := P 〉, . . . , N(y)〈y := P 〉] ∈∞

where E∗ arises by pushing 〈x := N(y)〉〈y := P 〉 through E, and E[, . . . ,] is
a pure λ-calculus context with at least one hole. Hence t = D[v] ∈∞.

(Beta) Suppose on is Beta-reduced sometime in S. By standardness steps before
Beta can be neither in occurrences of the closures 〈y := P 〉 nor in M(x, y),
hence we may assume S proceeds as:

sn �λ D[(λx.M(x, y)〈y := P 〉)N(y)〈y := P 〉]

→Beta D[M(x, y)〈y := P 〉〈x := N(y)〈y := P 〉〉] = u′

We proceed as in item (Beta,@), using u′↓x = v↓x to conclude v ∈ ∞ by
Corollary 9. The only exception to this is an infinite reduction from N(y)〈y :=
P 〉, but such a reduction can be simulated from v by non-erasingness of the
Beta-step as in item (right). ut

The proof is structured as before, only di/polluted by explicit substitutions travelling
through the pivotal Beta-redex. Again, one can vary on these results. For example, it
should not be difficult to show that non-∞-erasing steps are perpetual, where y〈x :=
N〉 → 6= y is ∞-erasing if N ∈ ∞ and (λx.M(x))N →Beta M is ∞-erasing if
x 6∈ Var(x(M(x))) and N contains a potentially infinite subterm.

6 Conclusion

The uniform normalisation proofs in literature are mostly based on particular perpetual
strategies, that is, strategies performing only perpetual steps. Observing that the non-
computable9 such strategies usually yield standard reductions we have based our proof
on standardisation, instead of searching for yet another ‘improved’ perpetual strategy.
This effort was successful and resulted in a flexible proof strategy with a simple invari-
ant easily adaptable to a λ-calculus with explicit substitutions. Nevertheless, our results
are still very much orthogonality-bound: the biclosedness results arise by tweaking or-
thogonality and the λx− results by interpretation in the, orthogonal, λβ-calculus. It
would be interesting to see what can be done for truly non-orthogonal systems. The
fully-extendedness and left-linearity restrictions are serious ones, e.g. in the area of
process-calculi (scope extrusion) or even already for λx [4], so should be ameliorated.
Acknowledgments We would like to thank R. Bloo, E. Bonelli, D. Kesner, P.-A. Melliès,
A. Visser and the members of PAM at CWI for feedback.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. CUP, 1998.
[2] H. Barendregt. The Lambda Calculus, Its Syntax and Semantics. NH, 1984.
[3] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of explicit substi-

tutions which preserves strong normalisation. JFP, 6(5):699–722, 1996.

9 No computable strategy exists which is both perpetual and standard, since then one could for
all terms s, t decide whether SN(s) ⇒ SN(t) or SN(t) ⇒ SN(s).

[4] R. Bloo. Preservation of Termination for Explicit Substitution. PhD thesis, Technische
Universiteit Eindhoven, 1997.

[5] C. Böhm and B. Intrigila. The ant-lion paradigm for strong normalization. I&C, 114(1):30–
49, 1994.

[6] E. Bonelli. Perpetuality in a named lambda calculus with explicit substitutions. MSCS, To
appear.

[7] Alonzo Church. The Calculi of Lambda-Conversion. PUP, 1941.
[8] Georges Gonthier, Jean-Jacques Lévy, and Paul-André Melliès. An abstract standardisation

theorem. In LICS’92, pages 72–81, 1992.
[9] Bernhard Gramlich. Termination and Confluence Properties of Structured Rewrite Systems.

PhD thesis, Universität Kaiserslautern, 1996.
[10] Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting

systems. JACM, 27(4):797–821, 1980.
[11] Gérard Huet and Jean-Jacques Lévy. Computations in orthogonal rewriting systems, I.

In Computational Logic: Essays in Honor of Alan Robinson, pages 395–414. MIT Press,
1991.

[12] Z. Khasidashvili. On the longest perpetual reductions in orthogonal expression reduction
systems. TCS, To appear.

[13] Z. Khasidashvili, M. Ogawa, and V. van Oostrom. Perpetuality and uniform normalization
in orthogonal rewrite systems. I&C, To appear.
http://www.phil.uu.nl/˜oostrom/publication/ps/pun-icv2.ps.

[14] Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, Rijksuniversiteit Utrecht,
1980. Mathematical Centre Tracts 127.

[15] J.W. Klop. Term rewriting systems. In Handbook of Logic in Computer Science, volume 2,
pages 1–116. OUP, 1992.

[16] Yves Lafont. From proof-nets to interaction nets. In Advances in Linear Logic, pages
225–247. CUP, 1995.

[17] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence.
Theoretical Computer Science, 192:3–29, 1998.

[18] Paul-André Melliès. Description Abstraite des Systèmes de Réécriture. Thèse de doctorat,
Université Paris VII, 1996.

[19] Paul-André Melliès. Personal communication, 1999.
[20] Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewriting. Academisch

proefschrift, Vrije Universiteit, Amsterdam, 1994.
[21] Vincent van Oostrom. Development closed critical pairs. In HOA’95, volume 1074 of

LNCS, pages 185–200. Springer, 1996.
[22] Vincent van Oostrom. Normalisation in weakly orthogonal rewriting. In RTA’99, volume

1631 of LNCS, pages 60–74. Springer, 1999.
[23] F. van Raamsdonk. Confluence and Normalisation for Higher-Order Rewriting.

Academisch proefschrift, Vrije Universiteit, Amsterdam, 1996.
[24] M.H. Sørensen. Effective longest and infinite reduction paths in untyped lambda-calculi.

In CAAP’96, volume 1059 of LNCS, pages 287–301. Springer, 1996.
[25] Yoshihito Toyama. Strong sequentiality of left-linear overlapping term rewriting systems.

In LICS’92, pages 274–284, 1992.
[26] J.B. Wells and Robert Muller. Standardization and evaluation in combinatory reduction

systems, 2000. Working paper.

