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Abstract5

We present a method to derive the Z-property for a first-order term rewrite system T from com-6

pleteness of an associated context-sensitive term rewrite system T , µ with replacement map µ.7

By only requiring left-linearity of T and that T -critical peaks are also T , µ-critical peaks, we8

generalise results in the literature. In particular we allow completeness of T , µ to be established9

in arbitrary ways, not necessarily by means level-decreasingness or variations thereof as usually10

assumed. We answer the first of two open problems raised by Gramlich and Lucas in 2006, whether11

level-decreasingness can be dropped from their preservation of confluence result, in the affirmative,12

partially. We moreover answer their second open problem, asking whether confluence in the limit13

holds under mild assumptions, in the affirmative. We consider both the potentially and actually14

infinite cases, of infinite reductions on finite terms respectively of strongly convergent reductions15

from finite to (possibly) infinite terms.16
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1 Leitmotiv26

There is a tight connection between CSR and modularity (starting with Toyama [26]) and27

neededness (starting with Huet and Lévy [13]). Our overarching Leitmotiv here will be that28

layers relate to layered terms as function symbols relate to terms. This Leitmotiv is at the29

basis of the categorical (monadic) approach to (modularity in) rewriting introduced by Lüth30

and Ghani [18], and also of our algebraic approach in [1].1 Despite that this correspondence31

has been noted and used before, cf. the introduction of [16] or [5], we think still more leverage32

(both conceptually and technically) can be gotten out of these approaches, in each of the33

areas, to prove analogous results not by analogy (redoing; as is currently mostly the case) but34

by developing and building on a common substratum; the axiomatic needed normalisation35

results with respect to a general set of results, e.g. (weak) head-normal forms, come to36

mind [7, 19], cf. [25, Remark 9.2.12].237

1 See in particular Section 6 of [1], where explicit maps between layers (called components there) and
function symbols (of the component algebra) are set-up.

2 E.g. a large part of the modularity literature for TRSs is essentially based on that the rank (the number
of layers) of terms does not increase along rewrite steps. Viewing layers as function symbols, the rank
corresponds to the height of a term, so it should be fruitful to factor those modularity results through
results on non-height-increasing TRSs. (We have obtained preliminary results on this some years ago.)
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For the results about about ω-confluence in Section 3, there is a second Leitmotiv, namely38

that the active and frozen arguments as determined by the replacement map of a function39

symbol correspond to inductive and co-inductive arguments, in a setting combining them40

both. E.g. infinite terms should then be obtained by a metric completion where the former41

are at depth 0 and the latter at depth 1.42

The above only serves as a backdrop here; we leave its formal development to future43

research. Our remarks below often serve to shed further light on potential links between the44

themes mentioned above (modularity, neededness, co-induction), the developments in this45

note, and the literature on CSR [15, 16, 17],3 suggesting commonalities and abstractions.46

Readers not interested in that are advised to skip such remarks.47

We base ourselves on [8, 17]. Given a context-sensitive term rewrite system (CSR) T , µ,48

with T a term rewrite system (TRS) and µ a replacement map µ, we use → to denote the49

rewrite system induced by T , and ↪→ to denote the rewrite system induced by T , µ. Inspired50

by [10]4 we are interested in methods to transfer confluence of a terminating CSR T , µ to51

the TRS T , i.e. of ↪→ to →. In Section 2 we derive confluence of the TRS by establishing52

the stronger Z-property [23] for → for the so-called layered bullet map •⊚ that inside–out53

and layer-wise ↪→-normalises a term. In Section 3 we derive ω-confluence of the TRS via54

the ω-angle property, cf. [23], for the bullet map ◦ mapping a term to its (possibly infinite)55

normal form via outside–in context-free ↪→-reduction.56

▶ Remark 1. A CSR T , µ is a special case of a context-sensitive conditional expression57

reduction system in the sense of [14]: it is unconditional (no conditions on the substitution58

in a rewrite step) and its context-sensitivity is convective: the restriction on the context59

in a rewrite step is brought about (only) by the symbols along the path to the hole, in a60

compositional way via the replacement map µ, not by the rest of the context.61

2 The Z-property via context-sensitive completeness62

In this section we are interested in transferring confluence of ↪→ to that of →. To that end,63

we will work under the following two assumptions, unless stated otherwise:64

(i) T critical peaks are T , µ critical peaks.65

(ii) T , µ is a left-linear and complete (confluent and terminating) CSR.66

Observe that if the replacement map µ of a CSR T , µ is canonical [8], i.e. if only the variables67

may occur frozen in the left-hand sides of rewrite rules,5 then T , µ satisfies assumption (i).68

To maximise the chance that the context-sensitive rewrite system ↪→ is terminating, it is69

best to minimise the number of accessible arguments or, stated differently, to maximise the70

number of frozen arguments [8]. That is, letting µ map each function symbol to the empty71

set ∅ would be best, but that may not be possible as assumption (i) forces for every rule ℓ→r72

that for every position p in ℓ such that ℓ|p unifies with some left-hand side of a rule, p be73

accessible / not frozen. Formally, we define a replacement map µ to be convective if µcon ⊆ µ,74

i.e. if µ is not more restrictive than µcon , where µcon is the most restrictive replacement map75

such that i ∈ µcon(ℓ(q)) for any qi ⪯ p (and that for all such p), guaranteeing that if two76

3 I am not an expert on CSR, so would be interested in being notified of results relevant to the developments
here.

4 In particular in its contemplation of cofinal strategies, which raised the obvious question whether the
Z-property could play a rôle here, as that gives rise to a (hyper-)cofinal bullet strategy [23].

5 Formally, µ is canonical if µcan ⊆ µ, i.e. if µ is not more restrictive than µcan , where µcan is defined by
i ∈ µcan(f) if for some position p and some rule ℓ → r, we have ℓ(p) = f and ℓ(pi) is a function symbol.
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left-hand sides have overlap the one is accessible iff the other is, but nothing more.6 Our77

methods will only apply to convective replacement maps.78

▶ Remark 2. (a) Without assumption (i) one can’t expect to transfer confluence from ↪→79

to →, simply because context-sensitive rewriting in T , µ may miss out on (say nothing80

about) critical peaks of T . For instance, consider the TRS T with rules a→b and f(a)→c81

where we used (as we will do below) overlining7 to indicate that the argument of f is82

frozen, i.e. that µ(f) := ∅. Then ↪→ is confluent, which may be shown by checking that83

the only ↪→-reducible terms are a and f(a), and those are deterministic. In particular,84

we do not have f(a) ↪→ f(b) since a is frozen in f(a), see [8, 17]. However, → is not85

confluent due to the non-joinable critical peak f(b)← f(a) ↪→ c.86

(b) Neither assumption (i) nor assumption (ii) is necessary. That assumption (i) is not,87

may be shown by adjoining c→ f(b) to T . That preserves confluence of ↪→, which may88

be transferred to confluence of → using that the source of f(a)→ f(b) is ↪→-reducible89

to its target: f(a) ↪→ c ↪→ f(b), showing that the problematic critical peak is redundant,90

cf. [11]. We defer the study of redundancy to later work.91

(c) In general we have µcon ⊆ µcan, and this inclusion may be proper. For instance, for92

orthogonal TRSs µcon freezes all arguments, µcon = ∅, and then our assumptions reduce93

to that rewriting be root-terminating. That is, up to the root-termination condition, our94

method below recovers the classical result that orthogonal TRSs are confluent.895

▶ Lemma 3. If t→ s then t• ↠ s•, where • maps a term to its unique ↪→-normal form.96

Proof. We claim t q−→ s entails t• ↠ ŝ←←↩ s for some ŝ. From the claim we conclude using97

ŝ ↠ s• by assumption (ii) and ↪→ ⊆ →. We prove the claim by induction on t w.r.t. ←↩98

well-founded by assumption (ii), and by distinguishing cases on t q−→ s:99

If t q−→ s decomposes as t ↪→ t′ q−→ s, we conclude by the IH for t′ q−→ s and t• = t′•.100

Otherwise t q−→ s only contracts non-µ-redexes, occurring at depths at least 1 in t. By101

assumption (i) those cannot have overlap with any redex-pattern at depth 0 in t, as that102

would give rise to a critical peak of T that is not a critical peak of T , µ.103

If t = t• we may trivially set ŝ := s.104

Otherwise, for some t′ there is a step t ↪→ t′ orthogonal to t q−→ s, hence by the assumed105

left-linearity of T the steps commute. Because t ↪→ t′ is not below (any redex-pattern in)106

t q−→ s, the residual of the former after the latter is again a (single) ↪→-step, inducing a107

diagram of shape t ↪→ t′ q−→ s′ ←↩ s. By the IH for t′ q−→ s′ and assumption (ii) we conclude108

to t• = t′• ↠ ŝ←←↩ s′ ←↩ s for some ŝ, as desired. ◀109

▶ Remark 4. (a) if T , µ is level-decreasing [8], i.e. if the depth of each variable occurrence in110

the right-hand side r of a rule ℓ→ r does not exceed the depth of any of its occurrences111

(unique in case of left-linearity) in the left-hand side ℓ, then the maximal depth of the112

steps in t• ↠ s• is bounded by the maximal depth of the steps in t ↠ s, as seen by113

enriching the statement and proof with the corresponding invariant; level-decreasingness114

is then (only) needed in the proof to show that the depth of the residual of a non-µ-step115

ϕ after a µ-step is bounded by the depth of ϕ.116

6 The idea of the terminology is to view a term as a fluid, and the paths from the root of a left-hand side
to the roots of overlapping left-hand sides as representing flows within the fluid, with the flow enabling
activation of the latter. A term is in ↪→-normal form iff there’s no flow from the root of the term to any
redex-pattern, that is, if no redex-pattern can be activated, and it then makes some intuitive sense to
speak of its layer at depth 0 as being solid.

7 The overlining notation suggests that the overlined argument is cut off from its context, i.e. frozen.
8 It should be interesting to know the frequency of root-termination among orthogonal TRSs (in practice).
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(b) If µ is canonical and T left-linear in a CSR T , µ then the set of terms in ↪→-normal form117

constitutes a rather well-behaved set of results, cf. [7, 19] as discussed in Section 1:118

Terms in ↪→-normal form are preserved under non-µ-reduction, i.e. for any step t ↛µ s,119

if t is in ↪→-normal form then so is s, since each occurrence of the redex-pattern of120

the left-hand side of a rule must be encompassed by a single layer, so no non-µ-step121

can contribute to the creation of a redex-pattern in a layer closer to the root.122

Both canonicity and left-linearity are necessary. Without left-linearity, a balancing step123

in some layer may create a redex in a layer closer to the root: f(a, b)→ f(b, b) ↪→ . . .124

in the CSR with rules a→ b and f(x, x)→ . . .. Without canonicity redex-patterns125

may extend over several layers, so may be created by non-µ-steps as witnessed by126

f(a)→ f(b) ↪→ c for the (convective) CSR with rules a→ b and f(b)→ c.127

Terms in ↪→-normal form are preserved under non-µ-expansion9 i.e. for any step128

t→ ̸µ s, if s is in ↪→-normal form then so is t. This holds by the same token as in the129

previous item, since a step being a µ-step or not is positional in that it is exclusively130

determined by the path to the root of its redex-pattern (cf. [25, Remark 9.3.20]): since131

the redex-pattern of the lhs of a rule for a µ-step from t must be encompassed by the132

layer at depth 0 by canonicity, it cannot be eliminated (cf. [25, Proposition 9.2.2]) by133

t→ ̸µ s as that step is in a layer at depth ≥ 1.134

Both left-linearity and canonicity are seen to be necessary as in the previous item,135

for the same reason; consider . . .←↩ f(a, a)→ f(b, a) in the non-left-linear CSR with136

rules a→ b and f(x, x)→ . . ., and . . . ←↩ f(a) → f(b) in the non-canonical (and137

non-convective) CSR with rules a→ b and f(a)→ c.138

Generalising the first item, µ-steps can be preponed, i.e. ↠ · ↪→ ⊆ ↪→ ·↠. This is a139

consequence of that q−→ ̸µ · ↪→ ⊆ ↪→+ · q−→ ̸µ, which in turn may, using the methodology140

of [22], be seen to be a consequence of orthogonality between ̸µ←, (the converse of141

→ ̸µ) and ↪→ and yielding q−→ ̸µ · ↪→ ⊆ ↪→ · q−→ from which we conclude by splitting142

and sequentialising the q−→-step into ↪→-steps (residuals of the frozen ↛µ-step that143

have become active)10 followed by the → ̸µ-steps (residuals that remained frozen).144

Another consequence (cf. [22]) is µ, ̸µ-factorisation ↠ ⊆ ↪→→ ·↠ ̸µ [15, Theorem 5.7].145

Generalising the second item, µ-steps commute with non-µ-steps in the sense that146

←↩ ·↠ ̸µ ⊆↠ · ←↩. This is a consequence of that ←↩ · q−→ ̸µ ⊆ q−→ ·←↩ which holds by147

orthogonality between µ-steps and non-µ-steps (using left-linearity and non-overlap)148

using standard residual theory, see [25, Chapter 8]. Note that as in the previous item,149

residual(s) of a non-µ-steps may become active.150

(c) If T is a left-linear confluent TRS, µ a canonical replacement map, and ↪→ normalising,151

then ↪→ is confluent up to non-µ-convertibility. To see this, note that for any peak152

t ←←↩ s ↪→→ u11 normalisation of ↪→ yields a peak t′ ←←↩ t ←←↩ s ↪→→ u ↪→→ u′ for some153

9 In [8] the connexion to the abstract approaches to normalisation in the literature was not made, this
property was called backward invariance of →µ-normal forms and established under the additional
(superfluous) condition of level-decreasingness [8, Lemma 5].

10 Qua abstract properties, being active is different from being needed [13] in that non-neededness is
preserved by residuation, cf [25, Section 9.2]. In CSR non-0-collapsingness (see Lemma 21) is needed to
guarantee that being frozen is preserved by residuation.

11 Beware that we use ↪→→ to denote the reflexive–transitive closure of single-step context-sensitive rewriting
↪→. This differs from the meaning (layered rewriting) assigned to it in CSR [16]. We feel deviating
from the latter is justified (despite the topic being CSR), since there is a long tradition in the rewriting
literature [2, 25], to employ double-headed arrows to denote the reflexive–transitive closure of the
relation / rewrite system denoted by the corresponding single-headed arrow. For instance, ↠β is often
used in the λ-calculus literature to denote many-step β-reduction. We follow this tradition here.
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↪→-normal forms t′, s′. By confluence of ↪→, there is a valley t′ ↪→→ r ←←↩ u′ for some term154

r. By the previous item all steps in the valley are non-µ-steps, from which we conclude.12
155

(d) Independently, Nao Hirokawa showed [9] Lemma 3 and also the Z-property for an outside–156

in defined bullet function, under (among others) the assumptions of canonicity and157

level-decreasingness originating from [8], which we have re(placed / laxed) in Lemma 3158

to convectivity. We think the bullet functions coincide (extensionally) on finite terms for159

canonical replacement maps, but that they diverge for convective replacement maps or160

infinite terms.161

(e) One of the novel results of [10] is that the full parallel-outermost strategy13 −→po is a162

hyper-normalising parallel strategy for →, for T , µ with T a left-linear confluent TRS,163

µ a canonical replacement map, and ↪→ terminating. As shown there, the result is a164

consequence of hyper-normalisation of layered CSR [16], allowing to perform ↪→-steps in165

in subterms if all layers on the path to the root are in ↪→-normal form.166

Following up on Section 1 again, note that the proof strategy implicit in employing layered167

CSR is analogous to the explicit way of proving (hyper-)normalisation of the needed168

strategy from (hyper-)head normalisation [20, 25]14 and that since ↪→-normal forms169

in CSR are analogous to terms-in-head-normal-form in TRSs, layered CSR [16] could170

alternatively have been described as the context free ↪→-strategy [25, Definition 9.1.29].15
171

To flesh out this intuition, note first that under the assumptions the relative rewrite [6]172

system ↪→/→ := ↠ · ↪→·↠ is terminating as follows from ↪→-preponement (see item (b))173

and termination of ↪→. From that, we immediately obtain hyper-active-normalisation,174

the property that always eventually contracting an active redex, i.e. performing a ↪→-step,175

yields a term in ↪→-normal form. This is the analogon of hyper-(head-)normalisation of176

the (head-)needed strategy.177

By confluence of ↪→ up to non-µ-convertibility (see item (c)) we moreover obtain that the178

layers at depth 0 of all ↪→-normal forms are the same, with their respective arguments179

→-convertible, hence →-joinable, below the top layer. From this we conclude by an180

easy induction (since terms hence the normal form has a finite number of layers) that181

the context free ↪→-strategy is hyper-normalising as desired. This extends to a proof of182

infinitary hyper-normalisation by co-induction, but then fairness16 (combined with the183

12 In related work of ours (which we will pursue elsewhere) we extended the normalisation-by-random-
descent results of [24] to a method for showing head-normalisation. The similarity with that work, cf.
Section 1, is that in an infinitary / co-inductive setting one can in general not expect to have confluence,
but it suffices to produce the same head / top layer, with, e.g., convertibility of corresponding arguments
of the head / top layer guaranteeing that one can iterate the process on those arguments, yielding
ω-confluence. Think of different algorithms for producing the decimal expansion of π (possibly with
different rates of convergence). For instance, the TRS T with rules π → a, π → s(a), a → s(s(a)) is
ω-confluent, but not confluent; see Example 28(m) and cf. the work of Blom, Ariola, and Klop.

13 Huet introduced in [12] the notation q−→ for parallel rewriting associated to a TRS T , allowing to
contract an arbitrary number of redexes at parallel positions. Unfortunately that same notation is
sometimes used for (what we call) full parallel rewriting, allowing to contract only a maximal number of
parallel redexes. We suggest to avoid conflating both no(ta)tions, and propose to employ the notation
−→ for the latter instead, with the notation already suggesting that −→ is a full version of q−→.
This is analogous to that we use •−→ to denote the full version (contracting a maximal number of
non-overlapping redex-patterns) of multistep rewriting ◦−→ (contracting an arbitrary number of such)
in our work [25, 23]. (Note that just as •−→ is deterministic for TRSs without critical pairs, −→ is
deterministic for system without overlay critical pairs.)

14 But note that the outermost-fair strategy is normalising but need not be head-normalising for weakly
orthogonal TRSs [21], cf. [25, Example 9.3.11].

15 The name context free meshes well with ↪→ itself being context sensitive (but not a →-strategy [25]).
16 Without fairness, the context free ↪→-strategy would allow to rewrite a for the CSR with rule a → c(a, a),

into the tree ℓ := c(ℓ, a) by always selecting the leftmost redex. Fairness overcomes this, yielding the
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pigeon hole principle) is required as usual.17
184

(f) If T , µ is level-decreasing and µ canonical, then the combination of items (a) and (e)185

yields that for a peak where the depth of its steps is bounded by n, successively applying •186

at depths 0, . . . , n to its source yields a common reduct, giving a simple alternative proof187

of [8, Theorem 2].18 This alternative proof, though simple, still uses [8, Lemma 1] to188

obtain confluence of ↪→, which is an assumption (assumption (i)) here but a consequence189

of further assumptions put forward in [8], cf. also [17].190

(g) For the non-left-linear CSR with rules a→ b and f(x, x)→ c, the lemma fails on f(a, a).191

Assumption (ii) ensures ↪→ has the Z-property for bullet map • by [23, Lemma 11]. That192

bullet map is extensive for ↪→, i.e. t ↪→→ t• [23, Definition 4]. We show → has the Z-property193

under assumptions (i) and (ii) for some bullet map •⊚ based on •. To define •⊚ we use that194

any term can be uniquely decomposed into its active layer at depth 0 w.r.t. µ,19 and its frozen195

arguments at depth 1. Accordingly, we write C ⟨⃗t⟩ to denote such a unique decomposition,196

where C is the active layer and t⃗ the (vector of) frozen arguments.197

▶ Definition 5. The layering •⊚ (of •) is inductively defined by C ⟨⃗t⟩•⊚ := C ⟨⃗t•⊚⟩•.198

▶ Remark 6. The idea of the layering •⊚ is the same as that of (super)development bullet199

functions20 • in [23], namely to first recursively apply the map to the sub-layers, and200

then perform an appropriate action on the top-layer. As observed in Remark 2(c), for201

orthogonal TRSs the convective replacement map µcon is empty, so all arguments are202

frozen. If moreover no rhs is unifiable with any lhs (entailing the TRS is non-collapsing),203

so that contracting a redex cannot create another ↪→-step, then the layering •⊚ even204

coincides with the superdevelopment bullet function of [23].205

It would be interesting to formulate and prove a preservation result, more precisely to206

show that, under suitable conditions, a bullet map • having the Z-property for the rewrite207

system ↪→ on single layers, induces its layering •⊚ also has the Z-property for →. The208

proof method below is not suitable for that, since it hinges on that • be idempotent,209

(t•)• = t•, a property which almost forces that • maps terms to their ↪→-normal form,210

which is much stronger than just having the Z-property (normal forms as obtained by211

• are maximal upper bounds, whereas for the Z-property typically non-maximal upper212

bounds are used [23]; e.g. also •⊚ typically will neither be idempotent nor maximal).213

Our first result bears witness to the inside–out, layer-wise nature of the layering •⊚ of •.214

▶ Lemma 7. C [⃗t•⊚] ↠ C [⃗t]•⊚
215

Proof. By induction and cases on C. The base cases C = □ and C = x being trivial, suppose216

C has shape f(C⃗) and decompose t⃗ accordingly. We conclude to C [⃗t•⊚] = f(
−−−→
C [⃗t•⊚]) ↠217

f(
−−−→
C [⃗t]•⊚) ↠ f(

−−→
C [⃗t])•⊚ = C [⃗t]•⊚ by, respectively, the decomposition of C [⃗t], the induction218

hypothesis for C⃗ and closure under contexts of →, the claim that g(s⃗•⊚) ↠ g(s⃗)•⊚ for all g219

and s⃗, and by definition of the decomposition again.220

To prove the claim, first observe that g(s⃗•⊚) ↠ g(s⃗•⊚)• by extensivity of • and ↪→ ⊆ →.221

Therefore, to conclude it suffices to show g(s⃗•⊚)• = g(s⃗)•⊚. To that end, let g(s⃗) uniquely222

infinite normal form t := c(t, a) as desired.
17 Alternatively, transfinite reductions could be employed to go beyond ω-length reduction.
18 Below we show the requirements of level-decreasingness and µ being canonical to be too restrictive.
19 In [16] this is called the maximal replacing layer and denoted by MRC µ.
20 Developments and superdevelopments are also known as full multisteps and supersteps.
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decompose as g(
−−→
D[u⃗]) with for i∈µ(g), Di⟨u⃗i⟩ the unique decomposition of si, and for i ̸∈µ(g),223

Di = □ and u⃗i = si. Hence g(s⃗)•⊚ = g(
−−−→
D[u⃗•⊚])• per construction of the decomposition and224

by definition of •⊚. To conclude to g(s⃗•⊚)• = g(s⃗)•⊚ = g(
−−−→
D[u⃗•⊚])• it then suffices to show that225

g(s⃗•⊚) and g(
−−−→
D[u⃗•⊚]) are ↪→-convertible since ↪→ is complete by assumption (ii). Convertibility226

follows from that for each active argument i ∈ µ(g) we have that si uniquely decomposes227

as Di⟨u⃗i⟩ so that s•⊚
i = Di⟨u⃗i

•⊚⟩• hence s•⊚
i and Di⟨u⃗i

•⊚⟩ are ↪→-convertible and by i being228

active this extends to the respective ith arguments of g(s⃗•⊚) and g(
−−−→
D[u⃗•⊚]), and from that for229

each frozen argument i ̸∈ µ(g) we have by definition of Di and u⃗i that s•⊚
i = Di[u⃗i

•⊚]. ◀230

Note •⊚ is extensive for →, as an instance / consequence of Lemma 7 (for t⃗ empty).231

▶ Theorem 8. → has the Z-property for •⊚.232

Proof. We have to show that if ϕ : t→ s is a TRS step, then there are reductions s ↠ t•⊚
233

and t•⊚ ↠ s•⊚, giving rise to the Z in [23, Figures 1 and 5]. This we prove by induction on234

the decomposition C ⟨⃗t⟩ of the source t of ϕ and by cases on whether or not ϕ is a µ-step.235

if t ↪→ s, then by definition of •⊚ and extensivity of •⊚, there is a reduction t↠ t•⊚ that236

decomposes into a reduction γ : C ⟨⃗t⟩↠ C ⟨⃗t•⊚⟩ with steps at depth at least 1, followed by237

a reduction δ :C ⟨⃗t•⊚⟩ ↪→→ C ⟨⃗t•⊚⟩• = t•⊚ with steps at depth 0. Since ϕ is a step at depth 0,238

assumption (i) yields it and its residuals (after any prefix of γ) are orthogonal to (the239

corresponding suffix of) γ, giving rise by standard residual theory [25, Chapter 8] to a240

valley completing the peak between ϕ and γ that comprises a step ϕ/γ : C ⟨⃗t•⊚⟩ ↪→ u and241

reduction γ/ϕ : s↠ u for some term u.242

To conclude to s ↠ t•⊚ we compose γ/ϕ : s ↠ u with the ↪→-reduction (lifted to243

a →-reduction using ↪→ ⊆ →) of its target u to ↪→-normal form, which is t•⊚ since244

t•⊚ = C ⟨⃗t•⊚⟩• = u• by definition respectively ϕ/γ and completeness of ↪→.245

To conclude to t•⊚ ↠ s•⊚, we claim that u has shape E[u⃗•⊚] and s has shape E[u⃗]246

for some context E and vector of terms u⃗. Then, composing ϕ/γ : C ⟨⃗t•⊚⟩ ↪→ u with247

u = E[u⃗•⊚] ↠ E[u⃗]•⊚ = s•⊚ obtained by Lemma 7, yields C ⟨⃗t•⊚⟩ ↠ s•⊚. From this we248

conclude to t•⊚ = C ⟨⃗t•⊚⟩• ↠ (s•⊚)• = s•⊚ by Lemma 3 and idempotence of •.249

It remains to prove the claim that u has shape E[u⃗•⊚] and s has shape E[u⃗] for some250

context E and vector of terms u⃗. The idea is that both C and ℓ are preserved under251

non-µ-steps, so their join is so too, and we set E be the result of contracting ℓ in the join.252

Formally, we construct E as follows. Let ς := let X = C[x⃗] inX (⃗t) be the cluster [11]253

corresponding to the occurrence of the context C in t, and let ζ be the cluster of shape254

let Y = ℓ in . . . corresponding to the occurrence in t of the left-hand side ℓ of the rule255

ℓ→r contracted in the step ϕ : t ↪→ s. Their join ξ := ς⊔ζ has shape let Z = D[z⃗] inZ(u⃗)256

for some context D and terms u⃗, by ς being a root cluster of ς having overlap with ζ.257

Per construction of ξ and by the TRS T being left-linear, there is some step ψ from258

D[z⃗] contracting the occurrence of ℓ, such that ϕ is a substitution instance of ψ.21 Then259

we define E from the target of ψ writing that uniquely as E[w⃗] for w⃗ comprising the260

replicated variables of z⃗, so that ψ :D[z⃗] ↪→ E[w⃗]. In turn, we define u⃗ from the target261

21 Using traditional unification-speak D can be described as being obtained by unifying the occurrence
of the left-hand side ℓ with the context C (both linear and renamed apart). E is then the result of
contracting the ℓ-redex in D. We prefer to employ the lattice-theoretic language developed in [11] as
that is based on encompassment which encompasses both the subsumption (prefix; unification) and the
superterm (suffix) orders employed in such traditional accounts, and moreover avoids context-talk which
is imprecise here since D and E are not simply contexts, but linear terms; in particular, the names of
the holes in E do matter.
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s of ϕ : t ↪→ s, noting the latter can be written as the unique substitution instance262

E[w⃗]υ = E[u⃗] of the target E[w⃗] of ψ, for substitution υ mapping zi to ui such that263

ϕ = ψυ. Per construction, t = D[z⃗]υ and s = E[w⃗]υ = E[u⃗].264

Finally, we must show that u = E[u⃗•⊚]. To that end, note that any ↪→-step ϕ′ of shape265

ψσ for term substitution σ, is orthogonal to any non-µ-step χ having the same source,266

as (the redex-pattern of) χ can neither have overlap with ς by χ being non-µ, nor have267

overlap with ζ by assumption (i) using that ψ is at depth 0 and χ at depth at least 1, so268

χ cannot have overlap with their join ς ⊔ ζ either. Thus, χ is of shape D[z⃗]τ for some269

step-substitution22 τ , and χ/ϕ′ = E[w⃗]τ and ϕ′/χ = ψτ ′ with τ ′ the step-substitution270

such that τ ′(zi) is the target of τ(zi), for all i.271

By induction on the length of γ, we obtain from the above that the reduction γ : t =272

C ⟨⃗t⟩↠ C ⟨⃗t•⊚⟩, comprises only steps that are substitution instances of D[z⃗] so that C ⟨⃗t•⊚⟩273

is as well. In particular note that each reduction from ti to t•i does not change its top274

part (if any) overlapping the occurrence of ℓ, so is the same as that top part where all275

its arguments have been reduced to •⊚-normal form. That is, C ⟨⃗t•⊚⟩ has shape D[z⃗]υ •⊚ .276

By the above, u then has shape E[w⃗]υ •⊚ = E[u⃗•⊚] as common target of ϕ/γ and γ/ϕ, as277

claimed.278

if t→ s is not a µ-step then s = C⟨s⃗⟩ with ti → si for some i and tj = sj for all j ̸= i.279

Then the Z-property holds for s⃗, i.e. s⃗ ↠ t⃗•⊚ ↠ s⃗•⊚ since by the IH si ↠ t•⊚
i ↠ s•⊚

i , and280

sj ↠ t•⊚
j = s•⊚

j for all j ̸= i by extensivity of •⊚. We conclude to s = C⟨s⃗⟩ ↠ C ⟨⃗t•⊚⟩ ↠281

C ⟨⃗t•⊚⟩• = t•⊚ ↠ C⟨s⃗•⊚⟩• = s•⊚, using that the Z-property holds for s⃗ by the IH and closure282

of → under contexts for the first reduction, extensivity of • and ↪→ ⊆→ for the second,283

and Z for s⃗ and closure under contexts and preservation of ↠ by • for the third. ◀284

3 ω-confluence without confluence285

In this section we are interested in transferring local confluence of → to ω-confluence of286

→. To that end we assume throughout that T , µ is a CSR with T a left-linear locally287

confluent TRS, µ is canonical, and ↪→ is terminating, unless stated otherwise. Although288

these conditions do not entail confluence of ↪→ as shown in [8, Example 3] (see below), we289

show that they do entail ω-confluence. We first show that under the above assumptions any290

finite term t has a potentially infinite normal form, and that the latter is reachable from291

any reduct of t. Next, we extend our results to actually infinite reductions on infinite terms,292

in particular we show that ω-reduction has the triangle property for the context sensitive293

bullet-function ◦, mapping t to its (possibly infinite) normal form.294

▶ Definition 9. Let ↪→↪→ allow to contract a ↪→ step only in a layer of minimal depth.295

Then ↪→↪→ is a →-strategy (layered CSR; see Remark 4(e)) since for a term not in →-normal296

form, there is some minimal layer not in normal form. Observe that if a step at depth d297

occurs in a ↪→↪→-reduction, then all steps occurring later in it have depths ≥ d due to the298

canonicity and left-linearity assumptions. To set the stage, we first show that ↪→↪→ always299

produces a normal form and give an existential version of the universal Lemma 3.23
300

▶ Remark 10. This holds irrespective of the rules being collapsing or not, a condition often301

found in the study of infinitary rewriting, cf. [25, Chapter 12]. The reason for this is that302

22 A substitution τ such that for all i, τ(zi) either is a single step or a term.
23 The switch from universal to existential is needed since left-linearity and canonicity do not (yet) suffice

for uniqueness of ↪→-normal forms; the map • in Lemma 3 is not well-defined without more.
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the assumption that ↪→ be terminating already precludes collapsing the layer at depth 0303

arbitrarily often, on finite terms that is; cf. Remark 17.304

▶ Lemma 11. For any maximal ↪→↪→-reduction and any depth d, there is a tail of the reduction305

in which the first d layers are in ↪→-normal form.306

Proof. Consider a maximal ↪→↪→-reduction from t. By induction on d, with the base case307

being trivial because we may take the reduction itself as witness. In the step case, the308

induction hypothesis yields a tail, say from s, of the reduction in which the first d layers309

are in ↪→-normal form. By the observation the latter property is preserved by later steps,310

hence it suffices to show that there is a tail of that tail, in which all the layers at depth d311

are in normal form. If this were not the case, there would by maximality be infinitely many312

steps at depth d starting from s, entailing by s being finite and the pigeon hole principle313

that there would be infinitely many →-steps at depth d in some layer of s. But that would314

entail that the corresponding subterm allowed infinitely many ↪→ steps, contradicting the315

assumption that ↪→ is terminating. ◀316

▶ Proposition 12. For all →-reductions t↠ s, there are terms t′, s′ in ↪→-normal form such317

that t ↪→→ t′, s ↪→→ s′ and t′ ↠ s′ with all steps in the last at depth ≥ 1.318

Proof. By well-founded induction on t ordered by ←↩.319

If t is in ↪→-normal form, we may trivially set t′ := t and s′ := s. Otherwise we distinguish320

cases on whether or not t↠ s contains a step at depth 0.321

If it does, then by Remark 4(b) the µ-step can be preponed before the non-µ-steps before322

it (only using left-linearity and canonicity) in t ↠ s, yielding t ↪→ u and u ↠ s for some323

term u. we conclude by the IH for u↠ s.324

If it doesn’t, choose any ↪→-step t ↪→ t′ from t. Per assumption, that step (at depth 0) is325

orthogonal to the →-reduction (at depth ≥ 1) t ↠ s. Orthogonally projecting them over326

each other (possible by left-linearity and canonicity as the latter entails convectivity) yields327

s ↪→ s′ and t′ →→→ s′ (by sequentialising for each step of t ↠ s the parallel step that is its328

residual after t ↪→ t′). We conclude by the IH for t′ ↠ s′.24 ◀329

We did not yet employ local confluence of the TRS, i.e. of →. It guarantees uniqueness of330

normal layers.331

▶ Lemma 13. If t ↠ s, u with s, u in ↪→-normal form, then s = C⟨s⃗⟩ and u = C⟨u⃗⟩ for332

some layer C and →-convertible s⃗, u⃗.333

Proof. By well-founded induction on t ordered by ←↩. Suppose t ↠ s, u with s, u in ↪→-334

normal form. By postponement of non µ-steps after µ-steps (cf. the proof of Proposition 12),335

the reductions in the peak factorise as t ↪→→ ŝ ↠ ̸µ s respectively t ↪→→ û ↠ ̸µ u for some336

terms ŝ and û. Since ↛µ-steps cannot create µ-normal forms (Remark 4(b)), we have both337

D⟨⃗̂s⟩ = ŝ and s = D⟨s⃗⟩ for some D and →-convertible ⃗̂s, s⃗ (in fact the former →-reduce338

to the latter), and E⟨⃗̂u⟩ = û and u = E⟨u⃗⟩ for some E and →-convertible ⃗̂u, u⃗. Hence it339

suffices to show D = E and ⃗̂s and ⃗̂u are →-convertible.340

To see this holds we distinguish cases on whether or not t is in ↪→-normal form. If it is,341

then we conclude since then we must have ŝ = t = û. Otherwise, the ↪→-reductions in the342

24 Although in this case all steps in t ↠ s are at depths ≥ 1 per assumption, this need hold true for t′ ↠ s′,
as we did not assume any restrictions on levels in rules here.
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peak must both be non-empty since ŝ, û are in ↪→-normal form, so the ↪→-reductions can be343

written as t ↪→ s′ ↪→→ ŝ respectively t ↪→ u′ ↪→→ û, for some terms s′, u′.344

By the local confluence assumption for → (and ↪→ ⊆ →) for the peak s′ ←↩ t ↪→ u′,345

there is a →-valley s′ ↠ r ↞ u′ for some term r, which we, by the assumption that ↪→ is346

terminating, may assume to be in ↪→-normal form, say it decomposes as C⟨r⃗⟩. By the IH347

for the peak s′ ↠ ŝ, r we have that D = C and that ⃗̂s and r⃗ are →-convertible, and by the348

IH for the peak u′ ↠ r, û we have that C = E and that r⃗ and ⃗̂u are →-convertible, so we349

conclude by transitivity to D = E and to convertibility of ⃗̂s, ⃗̂u, respectively. ◀350

▶ Remark 14. For the proof technique applied in the proof of Lemma 13, cf. Remark 4(c).351

▶ Theorem 15. From all convertible terms there are reductions that for all depths d have352

tails having their first d layers in normal form and common.353

Proof. We claim that if terms t, s are →-convertible, they can be →-reduced to C ⟨⃗t⟩ and354

C⟨s⃗⟩ respectively, for some C in normal form and →-convertible t⃗, s⃗. From the claim we355

conclude, since then repeating the procedure on ti, si for each i, produces a sequence of356

reducts of t, s that have an ever increasing number of layers in normal form in common.357

We prove the claim by induction on the number of peaks in a conversion between t, s.358

If there is no peak, then the conversion is a valley t↠ u↞ s for some term u, and we359

trivially conclude by ↪→-reducing u to ↪→-normal form C⟨u⃗⟩, and setting t⃗ := s⃗ := u⃗.360

Suppose there is peak, say t↞ u↠ t′ with t′ convertible to s with fewer peaks. Then by361

the IH t′, s can be →-reduced to C⟨t⃗′⟩ and C⟨s⃗⟩ respectively, for some C and convertible362

t⃗′, s⃗. Since by the termination assumption t reduces to some ↪→-normal form t̂, Lemma 13363

applied to u↠ t̂, C⟨t⃗′⟩ yields that t̂ has shape C ⟨⃗t⟩ for (the same C and) terms t⃗ that are364

convertible to t⃗′. We conclude since t↠ t̂ = C ⟨⃗t⟩ and s↠ C⟨s⃗⟩, and t⃗, s⃗ are convertible by365

transitivity of convertibility. ◀366

Combining the theorem with Lemma 11 yields that ↪→↪→ is an infinitary cofinal strategy. This367

is not to be interpreted in the standard sense that any →-reduct s of a term t reduces further368

to some term in any ↪→↪→-reduction from t (that may not hold as our examples below show).369

We do have though a reduction from s whose terms share an ever increasing number of layers370

in normal form with the ↪→↪→-reduction from t.371

If the formulations in the above are a bit awkward, this is due to that we have thus372

far only employed the potential not the actual infinite. We now deal with the latter, by373

extending the above reasoning. We adopt infinitary rewriting for iTRSs as in [25, Chapter 12].374

More precisely, while allowing to rewrite infinite terms we still assume left- and right-hand375

sides of rules to be finite, which allows us to restrict attention to strongly converging376

reductions of length at most ω, denoted by triply-replicating arrow-heads like →→→, since377

by [25, Theorem 12.7.1] reductions of greater ordinal length can be compressed to such.378

▶ Definition 16. An iTRS is ω-confluent [3] if →→→ has the diamond property from finite379

terms, and has the ω-angle property if →→→ has the angle property [23] from finite terms.380

As in the finite case [25, Chapter 1], the ω-angle property entails ω-confluence.381

▶ Remark 17. It is perfectly reasonable [25, Chapter 12] to try to lift the restriction that382

the sources of diamonds and angles be finite terms. Care is required though since such383

choices typically do affect properties. For instance, for the collapsing rule c(x)→ x, ↪→ is384

terminating on finite terms (our assumption here throughout), but not on the infinite term385

t := c(t). Cf. also the classical example [25, Chapter 12] of the iTRS with rules a(x)→ x and386

b(x)→ x which is complete on finite terms, hence ω-confluent, but non-infinitary-terminating387
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and non-infinitary-confluent since the peak t →→→ s, u for the infinite terms t := a(b(t)),388

s := a(s) and u := b(u) is not infinitary joinable. Similarly, but stronger, the infinite term389

t0 := p(s(s(p(p(p(. . .)))))) (formally defined by tn := sn(un+1) and un := pn(tn+1)) in the390

weakly orthogonal iTRS due to Klop [4] with rules p(s(x))→ x and s(p(x))→ x, infinitary391

reduces to distinct infinite normal forms sω := s(sω) and pω := p(pω);25 see Example 28(n).392

▶ Theorem 18. The ω-angle property holds.393

Proof. We show that →→→ has the triangle property for the map ◦ that maps any finite term394

t to its, possibly infinite, ↪→↪→-normal form denoted by t◦, existing uniquely by the above.395

To show this, consider an ω-reduction t→→→ s. We claim then t ↪→→ t′, s ↪→→ s′ for some396

t′, s′ in ↪→-normal form such that t′ →→→ s′ with all steps at depth ≥ 1. This suffices since397

by the above then t◦ and t′ have the same layer at depth 0, which per construction is the398

same as that of s′, and for the arguments the assumption holds again. Hence repeating399

the construction yields ↪→↪→-reductions through t, t′, t′′, . . . and s, s′, s′′, . . . respectively, whose400

terms share 0, 1, 2, . . . layers in normal form, hence also with t◦. That is, both are strongly401

converging ω-reductions to t◦.402

To prove the claim we proceed as in the proof of Proposition 12, by well-founded induction403

on t ordered by ←↩.404

If t is in ↪→-normal form, we may trivially set t′ := t and s′ := s. Otherwise we distinguish405

cases on whether or not t→→→ s contains a step at depth 0.406

If it does, then by t →→→ s being of length at most ω the first ↪→-step takes place at a407

finite index in the ω-reduction. Per our assumptions all terms in it up to that index are408

finite, so factorisation applied to it yields t ↪→ u and u →→→ s for some (finite) term u. we409

conclude by the IH for u→→→ s.410

If it doesn’t, choose any ↪→-step t ↪→ t′ from t. Per assumption, that step (at depth 0)411

is orthogonal to the ω-reduction (at depth ≥ 1) t→→→ s. Orthogonally projecting them over412

each other (possible by left-linearity and canonicity as the latter entails convectivity) yields413

s ↪→ s′ and t′ →→→ s′ (by sequentialising for each step of t →→→ s the parallel step that is its414

residual after t ↪→ t′). We conclude by the IH for t′ →→→ s′.26 ◀415

In the above, the assumption that the TRS be locally confluent was only used in the proof416

of Lemma 13. It may be relaxed, while preserving the conclusion of the lemma.417

▶ Definition 19. A CSR is 0-locally confluent if for for every local peak s←↩ t ↪→ u there is418

a C in ↪→-normal form such that s↠ C⟨s⃗⟩ and u↠ C⟨u⃗⟩ with →-convertible s⃗, u⃗.419

Note that for left-linear CSRs with canonical replacement map, local confluence entails420

0-local confluence as in the proof of the lemma by ↪→-normalising the common reduct, that421

that proof factors through 0-local confluence, yielding:422

▶ Corollary 20 (to the proof of Theorem 18). The ω-angle property holds for any left-linear423

0-locally confluent CSR having a canonical replacement map and terminating ↪→.424

Note that 0-local confluence is not decidable, because already local confluence is not (since→425

need not be terminating; termination of ↪→ does not bring much qua decidability as required426

25 This is a variation on the Grandi’s series. This variation is nice in that it suffices to repeatedly cancel
adjacent +1 and −1 to obtain distinct results; i.e. that is a matter of bracketing only.

26 Although in this case all steps in t →→→ s are at depths ≥ 1 per assumption, this need not hold true for
t′ →→→ s′, as we do not assume any restrictions on levels in rules here.
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reductions can be easily ‘hidden’ inside frozen arguments). We identify a simple case, in427

the spirit of Huet’s critical peak lemma, in which 0-local confluence follows from the same428

restricted to critical ↪→-peaks.429

▶ Lemma 21. If all rules are non-0-collapsing, that is, if for any rule and each variable that430

has level ≥ 1 in the lhs only occurs at levels ≥ 1 in the rhs, then 0-local confluence follows431

from the same for critical ↪→-peaks432

Proof. Consider a local peak s←↩ t ↪→ u and distinguish cases on whether or not the steps433

are orthogonal to each other. If they are, they commute and we conclude. Otherwise, the434

peak is obtained by closing some critical peak ŝ←↩ t̂ ↪→ û under a substitution υ an an active435

context D. By assumption, there are a C in ↪→-normal form and→-convertible ⃗̂s, ⃗̂u such that436

ŝ ↠ C⟨⃗̂s⟩ and û ↠ C⟨⃗̂u⟩. By → being closed under substitutions and contexts we obtain437

s = D[ŝυ] ↠ D[Cυ⟨⃗̂sυ⟩] and u = D[ûυ] ↠ D[Cυ⟨⃗̂uυ⟩] with→-convertible ⃗̂sυ, ⃗̂uυ. Let γ be the438

↪→-reduction from D[Cυ⟨x⃗⟩] to ↪→-normal form E[y⃗] with y⃗ a permutation / replication of x⃗,439

which exists by the assumption that ↪→ is terminating. By non-0-collapsingness all y⃗ occur in440

E at levels ≥ 1. Let τ and σ map x⃗ to ⃗̂sυ respectively ⃗̂uυ so that D[Cυ⟨⃗̂sυ⟩] = D[Cυ⟨x⃗τ ⟩] and441

D[Cυ⟨⃗̂uυ⟩] = D[Cυ⟨x⃗σ⟩]. Then projecting the conversion between D[Cυ⟨⃗̂sυ⟩] and D[Cυ⟨⃗̂uυ⟩]442

at levels ≥ 1 over γ yields a conversion between E[y⃗τ ] and E[y⃗σ] with steps ‘within’ the443

terms substituted for the y⃗, hence with steps at levels ≥ 1 again. ◀444

▶ Remark 22. The above can be thought of as employing →-convertibility as bisimulation.445

4 Related work446

As already observed above in Remark 4(f) our approach to confluence via the Z-property in447

Section 2 has (local) confluence of context-sensitive rewriting ↪→ as an assumption, whereas448

in e.g. [8, 17] that is a consequence of further (‘more local’) assumptions, in particular of449

level-decreasingness of T , µ and canonicity of µ in [8]. However, any way to establish local450

confluence of ↪→ suffices to apply our results in Section 2. For instance, as we will show now,451

it suffices to assume level-decreasingness only for variables active in the left-hand side, what452

we call 0-preservingness.453

▶ Remark 23. 0-preservingness is obtained by specialising the LHRV-condition known454

from the literature, cf. [17, Definition 11], to the left-linear TRSs dealt with here [17,455

Proposition 13(3)]. We employ our naming as it already suggests that the condition is456

the weakening of level-decreasingness only restricting active variables.457

Despite that Lemma 24 below is a special case of [17, Theorem 30], arising by (additionally)458

assuming left-linearity and the absence of extended critical pairs [17, Definition 29], we459

present it as this specialisation is easy to state, understand and prove.27
460

Local confluence of context-sensitive rewriting ↪→ may be established by any of the461

other techniques developed in [17], e.g. the one based on non-trivial instances of [17,462

Theorem 30] using extended critical pairs and automated reasoning to establish their463

↪→-joinability.464

(iii) T , µ is 0-preserving if, whenever a variable occurs at depth 0 in the left-hand side of a465

rule, then all its occurrences in the right-hand side are at depth 0 as well.466

27 The proof is obtained from that of [17, Theorem 30] by simply dropping the complex cases.
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▶ Lemma 24. If T , µ is a left-linear CSR satisfying assumptions (i) and (iii) with ↪→-467

joinable critical peaks, then context-sensitive rewriting ↪→ is locally confluent468

Proof. A local ↪→-peak s←↩ t ↪→ u either is overlapping or not.469

In the former case, the peak is an instance of a critical ↪→-peak occurring in some context470

at an active position. Then we conclude by assumption (i) and ↪→-joinability of critical471

peaks.472

The latter case further splits into the disjoint (a) and nested redex-patterns cases (b)473

and (b’) in the proof of [25, Lemma 2.7.15], Huet’s Critical Pair Lemma. The proof of case (a)474

carries over directly from → to ↪→. The proof of cases (b) and (b’) carries over as well, but475

using assumption (iii) to ensure that the residuals (at parallel positions) of the nested step476

remain at depth 0, so are ↪→-steps again. ◀477

Since convectivity entails assumptions (i), and ↪→-joinability of critical peaks and 0-478

preservingness entail confluence of ↪→ for left-linear CSRs by Lemma 24, combining this with479

termination of T all assumptions of Theorem 8 are satisfied:480

▶ Corollary 25. If T , µ is a left-linear 0-preserving CSR such that µ is convective, critical481

peaks are ↪→-joinable, and context-sensitive rewriting ↪→ is terminating, then the TRS T , i.e.482

the rewrite system →, has the Z-property for the layered bullet function •⊚.483

This generalises [8, Theorem 2], the main result of that paper, both by relaxing two of its484

assumptions, canonicity to convectivity and level-decreasingness to 0-preservingness, and485

by strengthening its conclusion from confluence to the Z-property, in particular entailing486

the bullet strategy •⊚−→ is a hyper-cofinal (hence hyper-normalising) strategy [23, Lemma 51487

and Theorem 50]. Moreover, the layered bullet function •⊚ induces an effective (if ↪→ is)488

confluence construction and cofinal strategy.489

▶ Remark 26. By relaxing both level-decreasingness to 0-preservingness and canonicity of490

the replacement map to convectivity, the corollary partially settles [8, Open Problem 1].491

In our approach to ω-confluence in Section 3 we assumed local confluence of unrestricted492

rewriting → instead of of context-sensitive rewriting ↪→, and showed that this entails493

confluence in the limit, both potentially (Theorem 15; approaching the infinite normal form)494

and actually (Theorem 18; ω-confluence) so.495

The latter result answers [8, Open Problem 2] in the affirmative, and indeed without496

requiring that the TRS be non-collapsing as was already suggested on [8, p. 78].497

We think the former result is interesting in its own right as it stays within the world498

of finite terms. Comparing the conditions of our results in Sections 2 and 3, note that we499

even have two ways to establish that result for a CSR T , µ with T a left-linear TRS and µ a500

canonical replacement map such that ↪→ is terminating. On the one hand, via local confluence501

of → and Theorem 15 as just discussed, and on the other hand via local confluence of ↪→502

and Corollary 25, since then, by the Z-property of → for bullet map •⊚, the layered bullet503

strategy •⊚−→ is a cofinal strategy producing in each step a next layer, stable by canonicity.504

▶ Remark 27. If µ is only convective, then the top layer may fail to stabilise in the layered505

bullet strategy •⊚−→, in that always (eventually) a ↪→-step may be possible. To see this, consider506

the CSR with rules a→ b and f(b)→ f(a), which meets all the assumptions mentioned in the507

above except for the replacement map only being convective, not canonical (here blocking508

µ, ̸µ-factorisation of reductions). Still, since the replacement map is convective, Corollary 25509

applies, so •⊚−→ is a cofinal strategy; e.g. we have f(a) •⊚−→ f(a) by first normalising a to b in510

the layer at depth 1, and next normalising f(b) to f(a) in the layer at depth 0.511
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5 Illustrating the techniques on examples512

We present examples illustrating our techniques and their limitations. The examples are513

mostly from the literature [8, 17].514

▶ Example 28. (a) The CSR with convective replacement map µcon for [8, Example 1]28 is:515

g(a) → f(g(a))
g(b) → c

a → b

f(x) → h(x, x)
h(x, y) → c

516

Due to the critical peak between the first and third rules, convectivity entails we must517

at least have 1∈ µ(g). Since with this convective replacement map µcon the critical peak518

can be completed to a ↪→-diagram with legs g(a) ↪→ f(g(a)) ↪→ h(g(a), g(a)) ↪→ c and519

g(a) ↪→ g(b) ↪→ c and the rules are vacuously 0-preserving in the absence of variables520

occurring at depth 0 in left-hand sides, Corollary 25 applies so → has the Z-property, is521

confluent, and •⊚−→ is a cofinal ↠-strategy.522

Since in this case the convective replacement map µcon is the same as the canonical523

replacement map µcan of [8, Example 1] and the rules are seen to be level-decreasing524

(all occurrences of the variables are at depth 1) confluence of → is in this case also a525

consequence of the main result of [8] as was observed on [8, p. 75].526

By canonicity also Theorems 15 and 18 apply to yield ω-confluence.527

(b) The CSR with convective replacement map µcon for [8, Example 2]29 is:528

nats → 0 : inc(nats)
inc(x : y) → s(x) : inc(y)
hd(x : y) → x

tl(x : y) → y

inc(tl(nats)) → tl(inc(nats))

529

Due to the critical peak between the first and fifth rules, convectivity entails we must530

at least have 1 ∈ µ(inc), µ(tl). Since with this convective replacement map µcon the531

critical peak can be completed to a ↪→-diagram with legs inc(tl(nats)) ↪→ tl(inc(nats)) ↪→532

tl(inc(0:inc(nats))) ↪→ tl(s(0):inc(inc(nats))) ↪→ inc(inc(nats)) and inc(tl(nats)) ↪→ inc(tl(0:533

inc(nats))) ↪→ inc(inc(nats)) and all rules are vacuously 0-preserving in the absence of534

variables occurring at depth 0 in left-hand sides, Corollary 25 applies so → has the535

Z-property, is confluent, and •⊚−→ is a cofinal ↠-strategy.536

In this case the convective replacement map µcon is not the same as the canonical537

replacement map µcan :30 since in the left-hand side of the third rule the argument of hd538

has the function symbol : as head symbol, canonicity requires that 1 ∈ µcan(hd). This539

results in the canonical replacement map µcan and with this the critical peak and its540

diagram remain as above (hd does not occur in it). However, to obtain confluence of →541

as a consequence of the main result of [8], rules also need to be level-decreasing. For the542

28 The TRS is COPS #19. The claim there that this is Example 2 of [8, Example 1] seems a typo?
29 Methods to prove confluence of this TRS (COPS #20) are the theme of [10].
30 Although our µcon coincides with the replacement map given on [8, p. 70] for these rules, the claim there

that that is the canonical replacement map µcan cannot be correct I think, for the reason given above.

https://cops.uibk.ac.at/?q=20&s=asc
https://cops.uibk.ac.at/?q=20&s=asc
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second rule this also entails 1 ∈ µ(s). This replacement map works (note that critical543

peak diagrams of ↪→ are preserved by making the replacement map less restrictive, in544

this case by changing the argument of s from frozen into active).545

By canonicity of the resulting replacement map, not only their [8, Theorem 2] applies to546

yield confluence, but also our Theorems 15 and 18 apply to yield ω-confluence.547

(c) Consider the CSR31 obtained by replacing the first and last rule in the previous item by548

the following three rules and preserving the replacement map:549

nats → from(0)
from(x) → x : from(s(x))

inc(tl(from(x))) → tl(inc(from(x)))
550

Due to the critical peak between between the second and third added rules, also for these551

rules that replacement map is the convective replacement map µcon. That critical peak552

gives rise to the diagram with legs inc(tl(from(x))) ↪→ tl(inc(from(x))) ↪→ tl(inc(x :553

from(s(x)))) ↪→ tl(s(x) : inc(from(s(x)))) ↪→ inc(from(s(x))) and inc(tl(from(x))) ↪→554

inc(tl(x : from(s(x)))) ↪→ inc(from(s(x))) and since rules are still vacuously 0-preserving,555

Corollary 25 applies so→ has the Z-property, is confluent, and •⊚−→ is a cofinal ↠-strategy.556

As in the previous item, canonicity requires we have 1 ∈ µcan(hd). The resulting557

replacement map is µcan hence is convective and since the rules are still 0-preserving558

Corollary 25 still applies with consequences as before, in particular that → is confluent.559

However, this time that cannot be obtained by the methods of [8]. These require level-560

decreasingness of the rules and the second added rule is not for µcan: the level of x in561

the lhs is 1 whereas in the rhs it occurs not only with level 1 but also with level 3. The562

only way to regain level-decreasingness is to make both the second argument of : and the563

argument of s accessible, but that would violate termination of ↪→ (the second added564

rule becomes spiralling), one of the other assumptions of [8, Theorem 2].565

However, for our Theorems 15 and 18 level-decreasingness is irrelevant, canonicity and566

termination of ↪→ suffice, yielding also ω-confluence of →.567

(d) A CSR in a spirit similar to those in the previous two items is obtained from the TRS568

in [25, Section 12.1], used there as a motivating example for infinitary rewriting, with569

the convective replacement map µcon, which is empty here since the TRS is orthogonal:570

filter(x : y, 0,m) → 0 : filter(y,m,m)
filter(x : y, s(n),m) → x : filter(y, n,m)

sieve(0 : y) → sieve(y)
sieve(s(n) : y) → s(n) : sieve(filter(y, n, n))

nats(n) → n : nats(s(n))

primes → sieve(nats(s(s(0))))

571

Since ↪→ has no critical peaks and is trivially terminating (only ↪→-redexes for the third572

and fourth rules can be created, with the former being size-decreasing and the latter573

yielding a ↪→-normal form), Corollary 25 applies so → has the Z-property, is confluent,574

and •⊚−→ is a cofinal ↠-strategy.575

31 Suggested to us by Nao Hirokawa as an example of a system that can be handled by our context-sensitive
methods but not by those of [8].
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For the canonical replacement map µcan has 1, 2 ∈ µcan(filter), 1 ∈ µcan(sieve) and576

1 ∈ µcan(:), but ↪→ is not terminating32 since sieve(filter(nats(n), 0, 0)) ↪→ sieve(filter(n :577

nats(s(n)), 0, 0)) ↪→ sieve(0 : filter(nats(s(n)), 0, 0)) ↪→ sieve(filter(nats(s(n)), 0, 0)) giving578

rise to an infinite spiralling reduction. Since for all canonical replacement maps → is579

‘less’ terminating than for µcan , the methods of [8] cannot be applied to yield confluence580

of this example, and for the same reason neither can ω-confluence be shown by our581

Theorem 15.582

Just like it is interesting to restrict termination to basic terms, function( symbol)s applied583

to terms comprising constructors only, it is interesting to restrict productivity to basic584

terms / a given basic term. Given that this TRS was designed to generate, starting from585

primes, the infinite list of prime numbers, it is no surprise that that infinite list is produced586

by the context-free ↪→-strategy, and one expects both confluence and ω-confluence to587

hold for basic terms. At the same time, to show productivity for primes obviously requires588

Euclid’s result that there are infinitely many prime numbers, so should be challenging to589

establish automatically (note that primes would not be productive if we were to replace590

its rhs by sieve(nats(s(0))), i.e. by simply removing an s).591

(e) A CSR with convective replacement map µ for [8, Example 3] is:592

b → a

b → c

c → h(b)
c → d

a → h(a)
d → h(d)

593

For this CSR ↪→ is obviously not confluent for the critical peak a←↩ b ↪→ c: the respective594

↪→-reduction graphs a ↪→ h(a) of a and c ↪→ h(b), c ↪→ d ↪→ h(d) of c are disjoint. For595

the other convective replacement map, µcon, with the only difference being that the596

argument of h is active, ↪→ is obviously not terminating (the fifth rule then is spiralling).597

Hence our results do not apply to yield confluence of →. This is as it should be: since598

→ is not confluent, they should not apply [8, p. 75].599

Still since the replacement map µ is canonical, ↪→ is terminating (the argument of h600

being frozen blocks spirals / non-termination), and → is locally confluent [8, Example 3],601

the assumptions of Theorems 15 and 18 are satisfied, yielding ω-confluence. For instance,602

t := h(t) is the unique infinitary normal form of b, independent of whether we reduce b603

to, say, a or c first.604

Note that the road to ω-confluence via any cofinal strategy (not just cofinal strategies605

induced by the Z-property) is blocked here, simply because cofinality would entail606

confluence, and → is not confluent.607

(f) Consider the following CSR, a modification of that in the first item, for the TRS of [8,608

Example 5]:609

g(a) → f(g(a))
g(b) → c(a)
a → b

f(x) → h(x)
h(x) → c(b)

610

32 As found automatically by, e.g., Aprove.
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Due to the critical peak between the first and third rules we must have 1 ∈ µ(g) for611

replacement map µ. As observed in [8, Example 5], the critical peak is not ↪→-joinable612

for this µ: g(a) ↪→ f(g(a)) ↪→ h(g(a)) ↪→ c(b) and g(a) ↪→ g(b) ↪→ c(a). In a CSR such a613

non-confluence peak can be completed in two ways, either in the classical way of adjoining614

a rule between the respective targets (in ↪→-normal form) c(a) ↪→ c(b), or by making615

the argument of c active (since we already did have c(a)→ c(b)). However, the former616

way gives rise to a new critical peak with the third rule that is not a critical peak of617

the CSR, so to which our results do not apply. As observed in [8, Example 5] the latter618

way does work however, preserving termination of ↪→ and completing the diagram by619

the step c(a) ↪→ c(b), yielding a CSR to which [8, Theorem 2] applies so → is confluent,620

hence also Corollary 25 applies so→ has the Z-property, is confluent, and •⊚−→ is a cofinal621

↠-strategy, and Theorems 15 and 18 apply to yield ω-confluence.622

(g) Combining the TRS of [8, Example 6] with the convective replacement map µcon , which623

is the empty replacement here by orthogonality of the TRS, yields the CSR:624

from(x) → x : from(s(x))
sel(0, y : z) → y

sel(s(x), y : z) → sel(x, z)
625

As argued in Remark 2(c), for applicability Corollary 25 it suffices to check context-626

sensitive rewriting ↪→ is terminating, It trivially is (only sel-steps are of interest and627

these are size-decreasing), so → has the Z-property by Corollary 25.628

Since context-sensitive rewriting ↪→ is also terminating for replacement map µcan [8,629

Example 6], Theorems 15 and 18 apply to yield ω-confluence.630

This example served in [8] to exemplify the limitations of the results presented there;631

their methods do not apply to this TRS, they fail to show its confluence. In particular,632

for a replacement map to be level-decreasing as required by them, the second argument633

of : must be active, entailing non-termination of ↪→ (as in the third item).634

(h) For the CSR T , µ with rules635

f(x) → c(f(x))
f(x) → c(f(f(x)))

636

the TRS is left-linear and (→ is) confluent (as e.g. shown by decreasing diagrams and637

rule labelling), µ is canonical (and convective), and context sensitive rewriting ↪→ is638

terminating. The context free ↪→-strategy (layered CSR) therefore is a hyper-normalising639

→-strategy and hence the parallel-outermost strategy −→po is so as well, as shown in [10].640

However these results are not relevant here since terms in this CSR typically do not641

have a normal form. Still, every such term does have an infinite normal form, t := c(t),642

and Remark 4(e) yields that that is found by either strategy. (Fairness is not an issue643

here since there are no binary function symbols, but note that even when adjoining such,644

−→po remains infinitary hyper-normalising since it is fair by maximality.) That (infinite)645

normal forms are unique follows from ω-confluence, which holds by Theorem 15.646

Note that ↪→ is not confluent since the peak c(f(x)) ←↩ f(x) ↪→ c(f(f(x))) is not ↪→-647

joinable, so the route to infinitary normalisation via the Z-property, to yield cofinality of648

the bullet strategy •⊚−→, is blocked; Theorem 8 is not applicable. Even stronger, neither649

the parallel outermost strategy −→po of [10] nor the bullet strategy •⊚−→ are in fact cofinal650

in this case. Starting from the term f(x) both strategies may give rise to an infinite651

reduction with successive terms f(x), c(f(x)), c(c(f(x))), . . . by always selecting the first652
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rule,33 and no term in this sequence is reachable from the target c(f(f(x))) of the step653

f(x)→ c(f(f(x))) (they would need to have at least two occurrences of f).34
654

(i) Consider the TRS T on [8, p. 78] with rules:35
655

a(x) → x

b(x) → x

c → a(b(c))
656

Since there is the head loop c ↪→ a(b(c)) ↪→ b(c) ↪→ c, for any CSR T , µ context-free657

rewriting ↪→ is non-terminating independent of the replacement map µ. Hence none of658

our techniques apply to this example.659

Although the full development bullet map • of [23, Definition 19] has the Z-property660

since T is orthogonal, so •−→ is a cofinal strategy,36 that is of no avail here because c661

has no (head-)normal form as a consequence of that it is ↠–recurrent in the sense of662

Statman: if c↠ t then t↠ c [23, Definition 54]. Interestingly, this can be shown by the663

very same Z-property, since both c •−→ a(b(c)) and a(b(c)) ↠ c, see [23, Remark 53].664

(j) Consider the CSR of [8, p. 78] (a variation on the CSR in the previous item) with rules:665

a(x) → x

b(x) → x

c → d(a(b(c)))
666

To this CSR all our techniques apply yielding the Z-property and ω-confluence.667

(k) The CSR of [17, Example 38]:668

f(x) → g(x)
g(x) → x

669

is not 0-preserving (due to the first rule), so Corollary 25 does not apply. Still, since ↪→670

is confluent (as argued in [17, Example 53] based on the extended-critical-pair results671

developed there, delegating some proof obligations to Prover9), Theorem 8 does apply,672

so the Z-property holds. The CSR also satisfies the assumptions of Theorem 15 so673

ω-confluence holds. (Note these consequences are obvious anyway by orthogonality and674

termination of the TRS).675

(l) There is no critical peak between the first two rules of the CSR:676

a → b

f(a) → c

c → f(b)
677

though there is a critical peak in the TRS hence the indicated replacement map is not678

convective. Hence our methods do not apply to this CSR, though the TRS is confluent679

as noted in Remark 2(b). For the only other replacement map, which is equal to both680

µcan and µcon, all our methods apply, yielding both confluence and ω-confluence, which681

however is neither helpful (the CSR is the TRS) nor surprising (the TRS is trivially682

shown to be complete).683

33 The problem with •⊚−→ is thus that it is not even well-defined since • is not, by non-confluence of ↪→.
34 Always contracting the outermost redex by the second rule does seem to be a cofinal strategy here.
35 This is the canonical example due to Kennaway, cf. [25, Chapter 12] of an orthogonal (hence confluent)

TRS that is not ω-confluent, since both A := a(A) and B := b(B) are reachable from c.
36 This strategy is also known as Gross–Knuth reduction or full substitution.
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(m) Context-sensitive rewriting ↪→ is trivially terminating for the left-linear and canonical684

CSR:685

a → b

a → s(b)
b → s(s(b))

686

Its critical peak b←↩ a ↪→ s(b) is not →-joinable (the numbers of bs in the reducts of its687

targets b and s(b) are even and odd respectively; they are out-of-sync), so neither ↪→ nor688

→ is confluent, and Theorem 18 cannot be applied to yield ω-confluence. However, the689

targets b and s(b) of the critical peak reduce to the terms s(s(b)) and s(b) having the690

same layer s(□) at depth 0, and arguments s(b) and b at depth 1 that are convertible by691

s(b)← a→ b, hence 0-local confluence holds for the (only) critical ↪→-peak. Since the692

rules are vacuously non-0-collapsing, we conclude by Lemma 21 that 0-local confluence693

holds for all ↪→-peaks, so we may conclude to ω-confluence by Corollary 20.694

(n) Consider the weakly orthogonal CSR:695

d → b(0, 0)
a(0,m) → b(m, r(m))

a(r(n),m) → s(a(n,m))
b(0,m) → a(m, r(m))

b(r(n),m) → p(b(n,m))
p(s(x)) → x

s(p(x)) → x

696

Since the CSR is not even convective (due to the critical peaks between the last two697

rules), none of our techniques applies. Note that although the TRS is weakly orthogonal698

so confluent on finite terms, the CSR is not ω-confluent: from d there are strongly699

converging ω-reductions to the distinct infinite normal forms sω and pω. Thus, that our700

results for ω-confluence do not apply to it, is as it should be.701

Our methods still do not apply after making the arguments of p and s active to restore702

convectivity, as that leads to failure of termination of ↪→, which can be seen e.g. by that703

d then produces p(s(s(p(p(p(. . .)))))) as argued above.704
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