
Floyd and Warshall meet Kleene

Marian Haselrieder

Bachelor Thesis

Supervisor:
Dr. Vincent van Oostrom

Department of Computer Science
Universität Innsbruck

Innsbruck, September 10, 2020

Abstract

Warshall’s algorithm computes the transitive closure of a binary relation, Floyd’s algo-
rithm calculates the shortest path between all pairs of nodes in a weighted multigraph
and Kleene’s algorithm converts a nondeterministic finite automaton with ε-moves into a
regular expression. Three different algorithms solving three different problems. A closer
look shows, that they don’t only share many characteristics, but are almost identical.
This bachelor thesis shows, that all these algorithms are instances of the same problem
related to Kleene algebras. It also presents a general solution for all Kleene algebras,
such that these three and other similar problems can be solved using one and the same
algorithm. Furthermore a tool that has been developed as part of this project is pre-
sented: It shows how the general algorithm can be used to solve all mentioned problems
and highlights their similarities, which is especially useful when teaching these topics.

Contents

1 Introduction 2

2 Related work 3

3 Generalization of the algorithms 4
1 The three Algorithms . 4

1.1 Floyd’s Algorithm . 4
1.2 Warshall’s Algorithm . 6
1.3 Kleene’s Algorithm . 7

Proof . 8
1.4 Similarities and differences . 9

Code and structure . 9
Complexity . 9
Graph interpretation of the algorithms 9

2 Kleene Algebra . 10
2.1 Definition . 10
2.2 Interpretation and further information 10
2.3 The three Kleene algebras . 11

Kleene algebra for Warshall’s algorithm 11
Kleene algebra for Floyds’s algorithm 12
Kleene algebra for Kleene’s algorithm 12

3 Homomorphims . 13
4 A general algorithm . 15

4.1 Matrix creation . 15
4.2 Algorithm . 16
4.3 Proof . 18
4.4 Corollaries . 19
4.5 Complexity . 20
4.6 Simplification . 21

4 Web application 23
1 Functionality . 24

Graph and automaton construction: 24

1

Step by step solution: . 25
2 Implementation . 26

2.1 Used technologies . 26
2.2 The algorithm . 27

5 Summary, conclusion and outlook 30
1 Summary . 30
2 Conclusion and outlook . 30

1

1 — Introduction

Warshall’s algorithm takes the adjacency matrix A of a binary relation R as an input and
replaces it with the adjacency matrix of its transitive closure R+. Floyd’s algorithm also
takes a matrix A as an input, an adjacency matrix representing a weighted multigraph
G. In this case A is replaced with a matrix containing the weights of the shortest paths
between al pairs of nodes. Kleene’s algorithm takes a matrix representing a nondeter-
ministic finite automaton as an input. It then computes one regular expression for each
pair of nodes, which represents the accepted language going from the first node of the
pair to the second one.

All three algorithms eliminate or add one node after another (depending on the point
of view). Whenever adding a node nk the algorithms check, whether an entry Ai,j con-
taining a value for the pair of nodes (ni, nj) can be replaced or extended by a path now
also going through nk. This boils down to generating all possible paths through a graph
or automaton, where each algorithm performs different operations on the paths:

• Warshall’s algorithm only needs to find one path for a pair of nodes, meaning that
the transitive closure of the relation contains this pair.

• Floyd’s algorithm chooses the smallest of the paths for each pair of nodes.

• Kleene’s algorithm keeps all generated paths where each edge/transition has it’s
own symbol and hence generates a regular expression for the accepted language
going from one node to another.

These similarities of the algorithms can and will be generalized in the following chap-
ters. Firstly a detailed explanation of the different algorithms and their properties will
be given. Then Kleene algebras will be introduced, the structure to which all these
algorithms comply to. Afterwards a general solution for the problem will be presented
as well as a web application showing a step-by-step solution and the similarties of all
three algorithms.

2

2 — Related work

Within the scope of this bachelor thesis project, only the algorithms of Floyd, Kleene
and Warshall will be discussed. But there also exist other algorithms and problems
which comply to the same pattern, for example State Elimination [11].

There are several open problems regarding Kleene’s algorithm or equivalent algorithms
on Kleene algebras. One would be that an exponential growth of the length of regular
expressions or algebraic terms is sometimes inevitable. This topic will shortly be dis-
cussed as part of this thesis, but more details can be found in the papers Simplifying
Regular Expressions, A Quantitive Perspective [6] and Representation of Events in Nerve
Nets and Finite Automata [9]. More information regarding the time complexity of the
simplifications can be found in the paper The minimum consistent DFA problem cannot
be approximated within any polynomial [14].

3

3 — Generalization of the
algorithms

1 The three Algorithms

In this section we look at all three algorithms in a more detailed manner.

1.1 Floyd’s Algorithm

Floyd’s algorithm [13] computes the shortest path between all pairs of vertices in a
weighted finite multigraph G. Both directed and undirected multigraphs are allowed.
Theoretically also negative edge weights are possible, with the restriction that there
aren’t any negative cycles.

Let G be a multigraph with the nodes n0, n1, n2, . . . and the edges e0, e1, e2, . . . where
w(ei) denotes the weight of the edge ei. We construct the matrix A as follows:

A[i,j] =

0, if i = j.

∞, if there is no edge from ni to nj

min({b(ek) | ek is an edge from ni to nj}), otherwise

Then the following algorithm overrides the matrix A with a new matrix, such that A[i,j]

contains the length of the shortest path from the node ni to the node nj :

Algorithm 1: Floyd’s Algorithm

len← length of A
for k ← 0 . . . (len− 1) do

B ← A
for i← 0 . . . (len− 1) do

for j ← 0 . . . (len− 1) do
B[i,j] ← min(A[i,k] +A[k,j], B[i,j])

A← B

The algorithm bases on the following perception: If the shortest path from ea to eb goes
through the node ec, the path from ea to ec and the path from ec to eb must already be

4

minimal. Let’s assume we already know the shortest paths between all pairs of nodes
with an index less than k. To calculate the shortest paths between all pairs of nodes
with an index less or equal to k there are two options for a path from ei to ej . Either
the already known path going only through nodes with index smaller than k from ei to
ej stays the shortest, or the known paths going from ei to ek and then from ek to ej is
even shorter. The algorithm starts with k = 0 and increases k constantly after updating
all entries. The proof of the algorithm is being omitted here, since it just formalizes this
concept.

Previously we noted, that graphs containing negative cycles are not allowed by the
algorithm. It’s obvious that a graph containing a negative cycle contains paths of length
−∞, when looping through the cycle infinitely. The algorithm does not detect the cylces
at runtime and hence delivers wrong results. Nevertheless it can detect the cycles at the
end of its execution, namely if at least one entry A[i,j] with i = j contains a negative
result. Although the algorithm can be used to detect negative cycles, there exist faster
algorithms as the Bellman–Ford algorithm [4].

To demonstrate how the algorithm works, a step by step solution is presented in Figure
3.2. It performs the algorithm on the multigraph shown in Figure 3.1, starting from the
created matrix A and increasing the variable k step by step:

0 1

23

8

1 1

10

2

9

Figure 3.1

0 8 ∞ 1
∞ 0 1 ∞
∞ ∞ 0 ∞
∞ 2 9 0

 A1−−→

0 8 ∞ 1
∞ 0 1 ∞
∞ ∞ 0 ∞
∞ 2 9 0

 A2−−→

0 8 9 1
∞ 0 1 ∞
∞ ∞ 0 ∞
∞ 2 3 0

 A3−−→

0 8 9 1
∞ 0 1 ∞
∞ ∞ 0 ∞
∞ 2 3 0

 A4−−→

0 3 4 1
∞ 0 1 ∞
∞ ∞ 0 ∞
∞ 2 3 0

Figure 3.2

5

1.2 Warshall’s Algorithm

Warshall’s algorithm [13] takes a binary relation as an input and calculates its transitive
closure, the smallest transitive relation on X that contains R. The procedure works as
follows:

Let A be the adjacency matrix of some binary relation R on a set X, then the fol-
lowing algorithm overrides A with the adjacency matrix of R+, the transitive closure of
the relation R:

Algorithm 2: Warshall’s Algorithm

len← length of A
for k ← 0 . . . (len− 1) do

B ← A
for i← 0 . . . (len− 1) do

for j ← 0 . . . (len− 1) do
if A[i,k] = 1 and A[k,j] = 1 then A[i,j] ← 1

else B[i,j] ← A[i,j]

A← B

Take the relation R = {(0, 1), (0, 3), (1, 1), (1, 2), (1, 3)} on the set X = {0, 1, 2, 3} as
an example. The respective graph representation and adjacency matrix of the relation
would be the following:

0 1

23

Figure 3.3

0 1 0 1
0 1 1 1
0 0 0 0
0 0 0 0

Figure 3.4

For this input Warshall’s algorithm computes the set R+ = R ∪ {(0, 2)}, since (0, 2) is
the only pair that has to be added, to make R transitive.

It is easy to see, that Warshalls’s algorithm is quite similar to Floyd’s algorithm. Espe-
cially when looking at the graph representation of the relation it becomes clear, that the
transitivity of a relation is equivalent to the reachability within its graph. Note that the
definition of reachability requires at least one edge between two nodes and hence not all
pairs (a, a) are being added automatically.

Warshall’s algorithm can easily be changed to compute the reflexive transitive closure

6

of a relation, by modifying the matrix construction. It is sufficient to set the entries
A[i,i] of the adjacency matrix to 1 for all i = 0, 1, . . . , |X|. One could also modifiy the
algorithm and matrix construction to use a third value, which denotes pairs that have
not been added because of transitivity but because of the reflexive property. Using this
approach one could extract both the transitive and the reflexive transitive closure from
the resulting matrix.

1.3 Kleene’s Algorithm

Kleene’s algorithm [7] converts a nondeterministic finite automaton with ε-moves into
a regular expression that represents the language accepted by the automaton. More
intuitively: It returns a regular expression that represents all words than can be formed
by beginning at a starting state, pathing through the automaton and stopping at an
accepting state.

Let G be an NFA-ε with states s1, s2, . . . and edges e1, e2, . . . where w(ei) = a denotes
the symbol a of the edge ei with a ∈ Σ∪{ε}. Then, just like Floyd’s algorithm, a matrix
has to be generated from the input:

A[i,j] =

ε+ w(eu) + . . .+ w(ev), if i = j, with eu, . . . , ev being

all the edges from si to sj

∅ + w(eu) + . . .+ w(ev), otherwise, with eu, . . . , ev being

all the edges from si to sj

The reason we have ε in addition to all transitions for i = j is that one can ”loop”
or ”remain” in a state by doing ε-moves without changing the resulting word. In con-
trast to that we set A[i,j] to ∅ if i 6= j and no ε-move or other transition from si to sj
is available. Note that ∅+a = a and hence the ∅ simplifies away if any transition exists.

Kleene’s algorithm takes this matrix A as an input and replaces it with a matrix con-
taining a regular expression for each pair of states. Each regular expression represents
the language accepted by the automaton by moving from the first state of the pair to
the second one.

Algorithm 3: Kleene’s Algorithm

len← length of A
for k ← 0 . . . (len− 1) do

B ← A
for i← 0 . . . (len− 1) do

for j ← 0 . . . (len− 1) do
B[i,j] ← A[i,j]+A[i,k](A[k,k])*A[k,j]

A← B

7

Since an automaton has explicit starting an accepting steps, only the entries of the pairs
(si, sj) where si is a starting state and sj is an accepting state are relevant for the solu-
tion. To form one solution out of these entries, they are being concatenated with the +
operator.

The automaton displayed in Figure 3.5 with its corresponding matrix in figure 3.6 serves
as an example. After performing the algorithm and simplyfing all the entries (more
about this in section 4.6) one ends up with the matrix in Figure 3.7. As only A[0,1] is
relevant for the solution, one ends up with the regular expression a*b(a*b)*.

0 1

b
a

a

b

Figure 3.5

(
ε+ a ∅ + b
∅ + a ε+ b

)
Figure 3.6

(
(a+ bb*a)* a*b(a*b)*
b*a(b*a)* (b+ aa*b)*

)
Figure 3.7

Proof

In this section we prove that Kleene’s algorithm truly returns the mentioned result. It is
sufficient to prove the following invariant by performing induction on k: Ak[i,j] (denoting
A[i,j] after the k-th iteration) contains the regular expression representing all words that
can be formed by moving from si to sj only visiting states with an index smaller or equal
to k.

Base case k = 0:
Follows directly from the construction of A0[i,j].

Step case k − 1→ k:
Assuming there is a path p from si to sj only visiting states with an index smaller or
equal to k we can distinguish two cases:

• p doesn’t visit k: Then we can use Ak−1[i,j] to describe the corresponding words.

• p visits k: Then we can split the p into multiple pieces. The first one is a path from
si to sk that doesn’t visit sk, the last one is a path from sk to sj that doesn’t visit sk.
Inbetween there is an arbitrary amount of paths from sk to sk that are not visiting
sk. It follows from the I.H. that the regular expression Ak−1[i,k](Ak−1[k,k])*Ak−1[k,j]
represents the set of all words that can be formed.

Combining the two regular expressions we get Ak−1[i,j] + Ak−1[i,k](Ak−1[k,k])*Ak−1[k,j]
which represents all words that can be formed by moving from si to sj only visiting
states with an index smaller or equal to k. Since the algorithm assigns exactly this term
to Ak[i,j], the invariant holds.

8

1.4 Similarities and differences

Code and structure

Not only are all three algorithms dynamic programming algorithms, but they also only
differ by a single line of code (without taking the matrix creation into consideration).
They all update a matrix several times based on its previous values and they all iterate
through the nodes or states in the same order. Each algorithm introduces an alternative
between two values, where the first one is the value from the previous iteration and
the second one is computed by taking into consideration the same new node as an
”intermediate step”. The algorithms slighty differ in the creation of the matrix, more
about this in section 4.1.

Complexity

It’s trivial to see that all three algorithms run in O(n3) where n denotes the total number
of nodes or states. Also regarding the space complexity there are hardly any differences.
All three store O(n2) values, one for each pair of nodes or states. It’s important to point
out though, that Kleene’s algorithm takes up more than O(n2) space, since the length of
the regular expressions grows exponentially [5]. This topic will be picked up in section
4.6.

Graph interpretation of the algorithms

Thinking of the algorithms as graph problems highlights their similarities even more.
One could think of Kleene’s algorithm as an algorithm generating all possible paths
between every pair of nodes. Floyd’s algorithm does the same, but whenever a new path
is being found it doesn’t add it as an alternative but throws away the longer path since
it doesn’t contain any relevant information. Also Warshall’s algorithm sort of computes
all possible paths between every pair of nodes, but after finding one suitable path for a
pair of nodes it throws away all additional information since it isn’t relevant anymore.
So all three algorithms perform the same ”path generation”, but hold on to different
information. One could generally say that for every algorithm all edges and paths have
a certain value and each algorithm has their own operation on choosing between two
paths/values, concatenating two paths/values or iterating a path/value. There is indeed
a more general structure which generalizes this concept, the Kleene algebra. In the next
section a definition of Kleene algebras will be given as well as a suitable algebra for each
of the algorithms.

9

2 Kleene Algebra

2.1 Definition

A Kleene algebra is an algebra (A,+, ·, 0, 1,*) where the operations + : A × A → A,
· : A×A→ A and * : A→ A, satisfy the following axioms:

(A,+, ·, 0, 1) is a semiring:

(1) a+ 0 = 0 + a = a (Identity element of +)
(2) (a+ b) + c = a+ (b+ c) (Associativity of +)
(3) a+ b = b+ a (Commutativity of +)
(4) a · 1 = 1 · a = a (Identity element of ·)
(5) (a · b) · c = a · (b · c) (Associativity of ·)
(6) a · 0 = 0 · a = 0 (Annihilation by 0)
(7) a · (b+ c) = (a · b) + (a · c) (· left distributes over +)
(8) (a+ b) · c = (a · c) + (b · c) (· right distributes over +)

+ is idempotent:

(9) a+ a = a

* has the following properties where the partial order ≤ on A is defined
as: a ≤ b⇐⇒ a + b = b:

(10) 1 + a · a* ≤ a*
(11) 1 + a* · a ≤ a*
(12) b+ a · x ≤ x⇒ a* · b ≤ x
(13) b+ x · a ≤ x⇒ b · a* ≤ x

2.2 Interpretation and further information

When working with Kleene algebras, each operation and identity element has a certain
and similar role. The table 3.8 should give the reader an idea of what the meaning of
each operation and identity element usually is:

Operation Intuition

+ Choice, union, addition
· Sequential composition, multiplication
0 Neutral element of +, fail, false
1 Neutral element of ·, skip, true
* Iteration, a* = 1 + a+ aa+ . . .

Figure 3.8

10

An example of a Kleene algebra, as one can easily verify, would be the following (note
that it is equivalent to the algebra proposed in section 2.3 for Warshall’s algorithm):

({true, false},∨,∧, false, true,*) with a* = true for all a.

The priorities of the operators are the following: The * operator has a higher priority
than the · operation and the · operator has a higher priority than the + operator. In-
stead of a · b one can simply write ab.

There are multiple lemmas and equivalences regarding Kleene algebras, which can be
used to simplify elements and expressions. Here we only list a few of them, namely the
ones that have been used in our tool to simplify elements of the algebra (together with
the axioms (1), (4) and (6) 2.1). More about this in section 4.6.

a) 0* = 1

b) 1* = 1

c) (a*)* = a*

d) (1 + a)* = (a+ 1)* = a*

2.3 The three Kleene algebras

In this section we provide a Kleene algebra for each of the three algorithms, which can
later be used with the general algorithm.

Kleene algebra for Warshall’s algorithm

Finding a Kleene algebra fitting the needs of Warshall’s algorithm is quite intuitive. It’s
sufficient to use the two elements 1 and 0 as truth values: 1 denotes that a pair is part of
the relation, 0 that it isn’t. Hence the + operation corresponds to a logical ∨, meaning
that if some elements demand a pair to be added (and some others might not), we still
have to add it to make the relation transitive. The · operation corresponds to a logical
∧, meaning that two pairs (a, b) and (b, c) only demand the pair (a, c) to be added to
the relation, if both pairs are already part of the relation. Obviously 0 is the neutral
element of ∨ and 1 the neutral element of ∧. Since a* = 1+a+aa+ . . ., the * operation
trivially evaluates to 1 for both 0 and 1.
This results in the following algebra and operations:

({0, 1},∨,∧, 0, 1,*)

∨ 0 1

0 0 1

1 1 1

∧ 0 1

0 0 0

1 0 1

*

0 1

1 1

11

Kleene algebra for Floyds’s algorithm

A suitable set for the algebra would be A = N0 ∪ {∞}, where ∞ denotes that there is
no path (which can also be seen as a path of infinite length). It is worth pointing out
that variations of the sets Z,Q or R could be used instead (by including +∞ and −∞
and adapting the following function definitions). The + operation chooses the minimum
of two elements and hence the shorter path of two available options. The · operation
adds the length of two sequenced paths together. ∞ is the neutral element of +, since
every path is shorter than a path of infinite length. 0 is the neutral element of ·, since it
doesn’t change the length of a path. Since the * operation corresponds to 1+a+aa+ . . .
where 1 denotes the element 0 (i.e. a path of length 0) it becomes clear that a* = 0 for
all a. We end up with the following algebra:

(N0 ∪ {∞},+, ·,∞, 0,*)

a+ b = min(a, b) a · b = add(a, b) a* = 0

Kleene algebra for Kleene’s algorithm

In this and the following sections, whenever both the operations of Kleene algebras and
regular expressions are used, we always use +K , ·K and *K for the operations of the
Kleene algebra and +R, ·R and *R for the operations of regular expressions.

Let Σ be some alphabet and S = {x | x is a regular expression over Σ} be the set of all
regular expressions over Σ. Using S as the set of the Kleene algebra leads to multiple
problems, one being that two different regular expressions defining the same language
are not automatically equivalent regarding the algebra. Also one cannot simply take
+R, ·R and *R as operations of the algebra, since then a +K ∅ = a +R ∅ which is not
equivalent to a as the axioms of Kleene algebra demand. Therefore a different approach
is being used. We say two regular expressions a ∈ S and b ∈ S are equivalent and write
a ≡ b, whenever L(a) = L(b). Clearly ≡ is an equivalence relation on S where [a] defined
as [a] := {x | x ≡ a} denotes the equivalence class of some a ∈ S (the set of all regular
expressions that define the same language as a). We define P as the set of all equivalence
classes of ≡ i.e. as S modulo ≡ and it follows directly that P is a partition of S. Using
P as the set of the algebra and hence the equivalence classes as elements solves the
problem regarding the equality and results in simple operations, as they can be shifted
to the respective regular expressions. Hence we intuitively get [a] +K [b] = [a +R b],
[a] ·K [b] = [a ·R b] and [a]*K = [a*R]. The neutral element of +K is [∅] and the neutral
element of ·K is [ε]. It is easy to see, that these operations satisfy all the necessary
axioms. We end up with with the following Kleene algebra and operations:

(P,+K , ·K , [∅], [ε],*K)

12

[a] +K [b] = [a+R b] [a] ·K [b] = [a ·R b] [a]*K = [a*R]

Allthough the elements of the algebra are equivalence classes, it suffices to use one regular
expression to represent an equivalence class for inputs, storage and return values. When
we refer to the language of an equivalence class x (which is the language that all of its
elements define), we informally also write L(x).

3 Homomorphims

With the just defined algebras for the three algorithms, it is now possible to introduce
homomorphisms to further emphasize their similarities and to introduce a hierarchy:
Let K be the Kleene algebra for Kleene’s algorithm, F the Kleene algebra for Floyd’s
algorithm and W the Kleene algebra for Warshall’s algorithm. Recall that L(x) is the
language defined by the regular expression x and that l(w) defines the length of a word
w [12]. Furthermore, we definemin len(L) where L is a regular language as the minimum
length of all words in L:

min len(L) =

{
0, if L = ∅
min{l(w) | w ∈ L} otherwise

Lemma 1: ϕ : K → F defined as follows is a homomorphism:

ϕ(x) =

{
∞, if x = [∅]

min len(L(x)), otherwise

Proof: We have to show that ϕ(a+ b) = min(ϕ(a), ϕ(b)) and ϕ(a · b) = add(ϕ(a), ϕ(b))
hold. For the case that a = ∅ we get ϕ(a+b) = ϕ(b) = min(∞, ϕ(b)) = min(ϕ(a), ϕ(b))
and ϕ(a · b) = ϕ(∅) = ∞ = add(∞, ϕ(b)) = add(ϕ(a), ϕ(b)). For b = ∅ the same rea-
soning can be done. Otherwise we have ϕ(a+ b) = min len(L(a+ b)) = min len(L(a) +
L(b)) = min{l(w) | w ∈ L(a)+L(b)} which is trivially equivalent to min(min{l(w) | w ∈
L(a)},min{l(w) | w ∈ L(b)}) = min(min len(L(a)),min len(L(b))) = min(ϕ(a), ϕ(b)).
Also ϕ(a · b) = min{l(w) | w ∈ L(a)L(b)} which is equivalent to add(min{l(w) | w ∈
L(a)},min{l(w) | w ∈ L(b)}) = add(ϕ(a), ϕ(b)) since the concatenation of the shortest
word of L(a) with the shortest word of L(b) is trivially the shortest word of L(a)L(b).

Lemma 2: ψ : F →W defined as follows is a homomorphism:

ψ(x) =

{
0, if x =∞
1, otherwise

Proof: We have to show that ψ(min(a, b)) = ψ(a) ∨ ψ(b) and that ψ(add(a, b)) =

13

ψ(a)∧ψ(b). If a =∞ then ψ(add(a, b)) = 0 = 0∧ψ(b) = ψ(a)∧ψ(b) and ψ(min(a, b)) =
ψ(b) = 0 ∨ ψ(b) = ψ(a) ∨ ψ(b). The reasoning for b = ∞ is the same. Otherwise
ψ(min(a, b)) = 1 = ψ(a) ∨ ψ(b) and ψ(add(a, b)) = 1 = ψ(a) ∧ ψ(b).

Lemma 3: The function φ : K →W defined as follows is a homomorphism:

φ(x) = ψ(ϕ(x))

Proof: The composition of two homomorphisms is a homomorphism.

Lemma 4: χ : W → F defined as follows is a homomorphism and an embedding:

χ(x) =

{
∞, if x = 0

0, otherwise

Proof: Omitted.

Lemma 5: τ : F → K defined as follows is a homomorphism:

τ(x) =

{
∅, if x =∞
ε, otherwise

Proof: Omitted.

Lemma 6: The function κ : W → K defined as follows is a homomorphism:

κ(x) = τ(χ(x))

Proof: Omitted.

Clearly there is a homomorphism for each pair of the defined algebras, but the direction
(ϕ : K → F , ψ : F → W , φ : K → W) is more interesting. As already mentioned
in section 1.4, Kleene’s algorithm retains more information than Floyd’s algorithm and
Floyd’s algorithm retains more information than Warshall’s algorithm. The same thing
regarding the stepwise degradation of the information holds for the corresponding al-
gebras and homomorphisms. The homomorphism ϕ : K → F shows that Kleene’s
algorithm can be used instead of Floyd’s algorithms in case of all edges having the same
weight (i.e. finding the path with the fewest edges). In the other direction one cannot

14

compute any useful results using Floyd’s algorithm instead of Kleene’s. One can also
see that both the elements of K and F , e.g. results from Floyd’s or Kleene’s algorithm,
contain all the needed information to compute the solution for Warshall’s alogrithm by
using the homomorphisms ψ : F → W and φ : K → W . The homomorphism (and
embeddings) for the other direction (χ : W → F , τ : F → K, κ : W → K) are less
imporant since they map from a less general to a more general structure. The fact that
the functions are not isomophisms underlines this fact even more. All this shows the
structural similarities and the hierarchy of the three algorithms. In the next section this
is being highlighted even more, by generalizing the problems that the algorithms solve
and providing a generalized solution.

4 A general algorithm

In this section we assume that the input for all three algorithms is a multigraph G. For
Warshall’s algorithm one gets the graph representation of the relation as an input, for
Kleenes algorithm the transitions and ε-moves are being treated as edges and the states
as nodes.

4.1 Matrix creation

Not only can the core piece of the algorithm be generalized, but also the step of the
matrix creation. Let K = (M,+, ·, 0, 1,*) be a Kleene algebra and G be a graph with
nodes N = {n0, n1, . . .} and edges E = {e0, e1, . . .}. Furthermore let we(ei) ∈M be the
weight (i.e. an element of the algebra), s(ei) the source node and t(ei) the target node
of an edge ei. Then one can generalize the matrix construction as follows:

A[i,j] =

a+ w(eu) + . . .+ w(ev), if i = j, with eu, . . . , ev being

all the edges from ni to nj

b+ w(eu) + . . .+ w(ev), otherwise, with eu, . . . , ev being

all the edges from ni to nj

For all three algorithms b is the element 0 (0,∞, [∅]) with the intuition that the node
is not reachable. The element a is the element 1 for Floyd’s and Kleene’s algorithm
(0, [ε]), but Warshall’s algorithm differs in this case. Intuitively one would also assume
the element 1. But the element 0 has to be used, since 1 would result in computing the
reflexive transitive closure as the matrix construction would add all reflexive pairs.

By the nature of the generalization and the comparison of the three algorithms, us-
ing the algorithm for the reflexive transitive closure would probably be more suitable
than Warshall’s algorithm. Alternatively, one could also introduce another Kleene al-
gebra using three elements. The added element then catches all cases of reflexive pairs
that do not have to be added due to transitivity.

15

But since the algorithm should be used for teaching we stick with the original elements
and algebra. Therefore we leave the element for a as an input for the matrix creation
algorithm. The following code implements this concept:

Algorithm 4: Matrix creation

n← |N |
A← New array of size n× n
for i← 0 . . . (n− 1) do

for j ← 0 . . . (n− 1) do
if i = j then

A[i][j]← a // The element a of the input

else
A[i][j]← 0 // The neutral element of +

for edge/transition e in E do
A[s(e)][t(e)]← A[s(e)][t(e)] + w(e) // + operation of K

4.2 Algorithm

In this section we introduce an algorithm that solves the given problem for Kleene al-
gebras in general. One can then call this algorithm with any Kleene algebra, in our
case with the algebras defined in section 2.3, and obtain the desired solution. Since
we generalize the algorithm, a generalized definition of the problem that the algorithm
actually solves has to be given as well:

Let K = (M,+, ·, 0, 1,*) be a Kleene algebra and G be a graph with nodes N =
{n0, n1, . . .} and edges E = {e0, e1, . . .}. Let w(ei) ∈ M be the weight (i.e. an ele-
ment of the algebra) of the edge ei. Furthermore we call wp(pi) the weight of a path
pi = (ea, eb, . . .), defined as wp(pi) = we(ea) · we(eb) · The + operation is applied on
the weights of two paths that are being compared, the · operation will be applied when
two paths are being combined one after the other and the * operation will be used to
compare all the possible iterations of a path. Then for every pair (ni, nj) of nodes the
algorithm computes one element A[i,j] ∈M satisfying the following condition:

Let Σ be the set that holds a unique symbol for each unique value in w(e0), w(e1), . . .
and s : {w(e0), w(e1), . . .} → Σ the function that maps an edge weight to its symbol and
s−1 be it’s inverse. Now we construct an automaton G′ as follows: G′ has a state for each
node and a transition for each edge of G, where a transition holds the corresponding
symbol of the edges weight. We define the function F , mapping regular expressions to

16

elements of the given algebra as follows:

F (x) =

0K , if x = ∅
1K , if x = ε

s−1(x), if x ∈ Σ

F (a) +K F (b), if x = a+R b

F (a) ·K F (b), if x = a ·R b
F (a)*K , if x = a*R

We define r to be the regular expression that defines the language accepted by the au-
tomaton G′ going from node ni to node nj (computed by e.g. Kleene’s algorithm). Then
A[i,j] = F (r) i.e. the regular expression computed by e.g. Kleene’s algorithm for the pair
of states (ni, nj) mapped to its corresponding algebraic value.

This statement bases on the following perception: We know that Kleene’s algorithm
computes a regular expression for each pair (si, sj) of states, a generator for all possible
words/paths going from si to sj . Kozen proved [10], that there exists an isomorphism
between regular expressions and the free Kleene algebra on free generators Σ. Hence
we can use regular expressions to argue about all Kleene algebras, without any loss of
generality. The general algorithm only differs from Kleene’s algorithm in one point: It
uses the operations of Kleene algebras instead of the operations of regular expressions.
So one could say that the algorithm basically computes a regular expression (equivalent
to Kleene’s algorithm) and then maps this regular expression to an element of the Kleene
algebra using the isomorphism. For a concrete Kleene algebra, this results in evaluating
the regular expression using the function F . This enables us to argue about what the
produced result expresses in the environment of a given Kleene algebra.

Algorithm 5: General Algorithm

1 n← |N |
2 for k ← 0 . . . (n− 1) do
3 B ← A
4 for i← 0 . . . (n− 1) do
5 for j ← 0 . . . (n− 1) do
6 B[i,j] ← A[i,j] +A[i,k](A[k,k])*A[k,j] // Operations of K

7 A← B

17

4.3 Proof

In this section we prove that after the general algorithm completed, A[i,j] = F (r) where r
denotes the corresponding regular expression for the pair (ni, nj) computed as suggested
in the previous section 4.2.

First we present an example to motivate the proof. Take the graph G in Figure 3.9.
Let G′ be the corresponding automaton where the transitions are labeled with the val-
ues of the edges. For the pair of nodes (n0, n2) Kleene’s algorithm returns the regular
expression 2 ·3* ·2. Mapping this expression to the Kleene algebra for Floyd’s algorithm
using F we get: F (2 · 3* · 2) = 2 + 0 + 7 = 9. In the next section we will show, that this
results is equivalent to the result computed by Floyd’s algorithm itself.

0 1 2
2 7

3

Figure 3.9

Note that this mapping could be performed at any point in the algorithm. One can
think of the regular expressions as placeholders, which can at any time be replaced with
its corresponding values. So we could compute a part of the algorithm using regular
expressions, map them to another Kleene algebra and finish the algorithm with the op-
erations of that algebra.

Now we provide the corresponding proof. We write Ak[i,j] for the element A[i,j] after
the k-th iteration of the algorithm. Equivalently we write Bk[i,j] for the corresponding
value computed by Kleene’s algorithm for the constructed automaton. It’s sufficient to
prove that the invariant Ak[i,j] = F (Bk[i,j]) holds before and after each of the k itera-
tions. We prove this by performing induction on k.

Base case k = 0:

Let ni and nj be two arbitrary nodes of G. By the construction of B it is clear that
B0[i,j] = s(A0[i,j]). It follows that F (B0[i,j]) = s−1(B0[i,j]) = A0[i,j] since s is a bijection
by its construction and B0[i,j] ∈ Σ.

Step case k − 1→ k:

Let ni and nj be two arbitrary nodes of G. Then

Bk[i,j] = Bk−1[i,j] +R Bk−1[i,k] ·R (Bk−1[k,k])*
R ·R Bk−1[k,j]

18

Evaluating F (Bk[i,j]) by using the definition of F and the I.H. we get:

F (Bk[i,j]) = F (Bk−1[i,j] +R Bk−1[i,k] ·R (Bk−1[k,k])*
R ·R Bk−1[k,j])

= F (Bk−1[i,j]) +K F (Bk−1[i,k]) ·K (F (Bk−1[k,k]))*
K ·K F (Bk−1[k,j])

I.H.
= Ak−1[i,j] +K Ak−1[i,k] ·K (Ak−1[k,k])*

K ·K Ak−1[k,j]

Since F (Bk[i,j]) is equivalent to the expression that is assigned to Ak[i,j] we are done.

We state another property for regular expression and their corresponding languages,
which helps us to prove corollaries in the next section.

Lemma 1: Let x be a regular expression and w = (w0, . . . , wn) be some word. Then
w ∈ L(x) ⇐⇒ (w0 · . . . · wn) + x ≡ x.

Proof: Clearly L(w0 · . . . · wn) = {w}. Hence (w0 · . . . · wn) + x ≡ x ⇐⇒ L((w0 ·
. . . ·wn) + x) = L(x) ⇐⇒ L(w0 · . . . ·wn)∪L(x) = L(x) ⇐⇒ {w} ∪L(x) = L(x) ⇐⇒
w ∈ L(x).

We can now apply F and hence state that w ∈ L(x) ⇐⇒ F (w) + F (x) = F (x) ⇐⇒
F (w) ≤ F (x) (partial order of Kleene algebra). Note that for two elements of the Floyd
algebra x ≤K y (order of Kleene algebra) ⇐⇒ x ≥R y (order of real numbers) since
then min(x, y) = y.

4.4 Corollaries

We already proved that the algorithm basically computes a regular expression and evalu-
ates it using the given operations (i.e. the operations of the Kleene algebra the algorithm
was called with). It remains to show, that evaluating this regular expression / algebraic
term returns the same result as the corresponding algorithm. E.g. evaluating the ex-
pression using the Kleene algebra for Floyd’s algorithm results in the same matrix as
Floyd’s algorithm would have computed by itself.

Corollary 1: The general algorithm called with the Kleene algebra for Warshall’s
algorithm 2.3 is equivalent to Warshall’s algorithm.

Proof: Take an arbitrary entry A[i,j] of the result computed by the general algorithm
and it’s corresponding regular expression x for which F (x) = A[i,j] holds. If nj is not
reachable starting from ni in G, x = ∅ must hold by the construction of G′. Hence
F (x) = 0. If nj is reachable starting from ni by the path p, then there must be a
corresponding word w = (w0, . . . , wn) in L(x). Trivially s−1(w0) = . . . = s−1(wn) = 1
since every edge in the graph has value 1. Hence evaluating with the operations of the
Kleene algebra for Warshall’s algorithm we get: F (x) = F ((w0 ·R . . . ·R wn) + x) =

19

(s−1(w0) ∧ . . . ∧ s−1(wn)) ∨ F (x) = 1 ∨ F (x) = 1. Since the algorithm computes 1
whenever a node is reachable and 0 whenever it isn’t, it clearly computes the same
result as Warshall’s algorithm. Another way to prove this is to insert the concrete
operations of the Kleene algebra for Warshall’s algorithm in line 6 of the algorithm:
A[i,j] +K A[i,k] ·K (A[k,k])*

K ·K A[k,j] = A[i,j] ∨ (A[i,k] ∧ A[k,j]). This trivially computes
the same result as the if A[i,k] = 1 and A[k,j] then B[i,j] ← 1 else B[i,j] ← A[i,j] of
Warshall’s algorithm.

Corollary 2: The general algorithm called with the Kleene algebra for Floyd’s al-
gorithm 2.3 is equivalent to Floyd’s algorithm.

Proof: Take an arbitrary entry A[i,j] of the result computed by the general algorithm
and it’s corresponding regular expression x for which F (x) = A[i,j] holds. If there
is no path from ni to nj in G, x = ∅ must hold by the construction of G′. Hence
F (x) = ∞. Otherwise there are some paths from ni to nj in G′, and there is a cor-
responding word w = (w0, . . . , wn) in G′ for the shortest of these paths (and also for
all the others). Let’s take an arbitrary word v ∈ L(x). As F (v) denotes the length
of the path that the word v represents it can only be greater than or equal to F (w),
the length of the shortest path. Since there must be one word u where F (u) = F (x),
trivially u = w must hold. Stated differently: F (x) = F ((w0 ·R . . . ·R wn) + x) =
min(s−1(w0) + . . . + s−1(wn), F (x)) = s−1(w0) + . . . + s−1(wn) which is the length of
the shortest path. Since the algorithm computes ∞ if there is no path and the length
of the shortest path otherwise, it computes the same result as Floyd’s algorithm. We
can also show this by inserting the corresponding operations in line 6 of the algorithm:
A[i,j] +K A[i,k] ·K (A[k,k])*

K ·K A[k,j] = min(A[i,j], (A[i,k] + A[k, j])) which is equivalent
to the operation performed by Floyd’s algorithm.

Corollary 3: The general algorithm called with the Kleene algebra for Kleene’s al-
gorithm 2.3 is equivalent to Kleene’s algorithm.

Proof: Take an arbitrary entry A[i,j] of the result computed by the general algorithm
and it’s corresponding regular expression x for which F (x) = A[i,j] holds. Trivially F
reverts the renaming introduced by the construction of G′. It follows directly that F (x)
i.e. replacing the unique renamed symbols by their original ones in the computed regular
expression returns the regular expression that Kleene’s algorithm would compute for the
nodes ni and nj in G.

4.5 Complexity

Let n = |N | and e = |E|. The matrix construction trivially runs in O(n2 + e). The
algorithm itself runs in O(n3). When seeing both procedures as one algorithm, this adds
up to O(n3 + e). Note that this runtime is still the same as presented in section 1.4,
the only difference is that here we also take the matrix construction into consideration.
In most cases e ≤ n3 will hold (i.e. for Warshall’s algorithm it always does), but since

20

multigraphs and multiple transitions from one state to another are allowed, it’s been
added here for completeness. For the space complexity we have Ω(n2). That’s not worse
compared to the space complexity of the three single algorithms, it’s just stated in a
more general way. When running the algorithm with Kleene algebras for Floyd’s and
Warshall’s algorithm, the space complexity remains O(n2).

4.6 Simplification

As mentioned in section 1.4 and section 4.5 the length of regular expressions grows
exponentially. Hence we aim to replace regular expressions with shorter ones of the
same equivalence class, i.e. we try to find a shorter regular expression defining the same
language. When running the algorithm with the automaton in Figure 3.5 the entry A[0,1]

containing the final solution would hold the following regular expression:

∅ + b+ (ε+ a)(ε+ a)*(∅ + b) + (∅ + b+ (ε+ a)(ε+ a)*(∅ + b))

(ε+ b+ (∅ + a)(ε+ a)*(∅ + b))*(ε+ b+ (∅ + a)(ε+ a)*(∅ + b))

This regular expression can be simplified to just a*b(a*b)*. One can imagine how this
can lead to several problems when using an automaton with more than two states and
four transitions.

Using the algorithm proposed in section 4.2, this exponential growth mainly happens
when using the algebra for regular expressions. For both Floyd’s and Warshall’s algo-
rithm we have the special case that x* = 1 for all x and hence the expressions do not
grow in the same way. For Warshall we always stay in O(n2), since we only need one bit
for each element. For Floyd’s algorithm the longest (not∞) possible path can’t be longer
than the sum of all edge weights of the graph which are not∞. So we can assume that no
element takes up more space than this one, hence we remain in O(n2). Since one might
use the algorithm with other Kleene algebras that have similar growing elements, one
might modify the algorithm as follows: Firstly the algorithm only computes algebraic
expressions using variables, +, · and * and only after all the final expressions have been
produced, they are being evaluated with the respective elements and operations. With
this approach, the simplification of the terms can be done directly and generally for all
Kleene algebras. The downside is that algorithms, which in most cases have elements of
constant size (as Floyd’s and Warshall’s algorithm), would still take up space in O(n2)
(worst case exponentially if one cannot simplify properly). Additionally the runtime
would increase, since optimal simplification cannot be done in constant time. In any
case, the simplification of Kleene algebras and regular expressions is equivalent. Hence
only regular expressions are being simplified as part of this thesis and the algorithm
proposed in 4.2 is being used.

The most intuitive approach would be a case analysis on the given Kleene algebra and
checks whether it matches certain patterns. The axioms 2.1 and the equivalences 2.2 of
Kleene algebras immediately provide some easy to implement and fast simplifications.

21

The removal of the neutral elements whenever possible using (1) and (4) or evaluating
to 0 whenever the anihilation by 0 using (6) is possible would be such simplification. In
addition to the axioms (1), (4) and (6) 2.1 all the equivalences of section 2.2 have been
implemented into our tool.

This might seem like a valid approach, but it fastly reaches it’s limits. Already im-
plementing the idempotency of +, namely the simplification a + a = a, proves to be
quite complex. One cannot fastly decide whether two kleene algebras are equivalent,
since they might be of a different structure e.g. a + (b + c) and c + (b + a). More in-
formation on this topic can be found in the paper Testing the Equivalence of Regular
Languages [1] Another problem is that a case analysis expands rapidly, since for each
case commutativity, assiociativity etc. have to be added manually. An example would be
(ε+a)* = (a+ε)* = a*. There are not that many simplifications that can be performed,
without checking conditions like equality = or the partial order >=. Just missing a few
cases again results in huge equations, all the simplifications just shift everything one or
two iterations to the back. Nevertheless this approach is being used in our application
since a more efficient approach would be out of the scope of this project.

22

4 — Web application

23

1 Functionality

The web application presented here has been developed as a part of this bachelor thesis
project. On the one hand it shows that all the algorithms can be replaced with the
general algorithm proposed in section 4.2. On the other hand it visualizes step by
step how the algorithm works on a given input. Therefore the application can be used
while teaching in several different courses e.g. algorithms and datastructures, discrete
mathematics, formal languages, automata theory,

Graph and automaton construction:

The graph and automaton creation is quite intuitive. One can select between the differ-
ent algorithms which changes the construction: For Warshall’s algorithm edge weights
are being disabled, for Floyd’s algorithm the allowed values for edges differ from the
ones for Kleene’s algorithm. Additionally when Kleene’s algorithm has been selected,
one can also set a node to be a starting or an accepting state. Edges and nodes can
obviously be added, dragged, selected and deleted. While constructing the graph, a
matrix representation of it will be generated automatically. It stores all values that have
been assigned to the different edges. Instead of drawing multiple edges from a node ni
to another node nj , only one edge which can hold multiple values is being drawn. The
figures 4.1 and 4.2 demonstrate this process.

Figure 4.1: Graph construction Figure 4.2: Construction matrix

24

Step by step solution:

After constructing a graph, one can switch from the editing mode to the algorithm mode
using the respective toggle. There are multiple ways to step through the algorithm.
One can perform a big step, which completes the computation of the current matrix Ak

by completing the inner two loops. For the case that all inner iterations have already
been stepped through, the next matrix Ak+1 is being computed. Smaller steps are also
possible, which correspond to computing the next value of the current matrix (the value
for the next pair of nodes). Of course small and big steps can be performed in both
directions.

Figure 4.3: Algorithm mode controls

When stepping through the iterations the progress of the algorithm is being visualized
in two different places: In the graph and in a step by step matrix representation.

All the edges of the graph become less visible and four additional edges will be drawn.
Let’s assume we are in the iteration k, i, j. Then the following additional edges will be
drawn:

• A red edge from ni to nk labeled with the value Ak−1[i,k].

• A red loop at the node nk labeled with the value Ak−1[k,k].

• A red edge from ni to nk labeled with the value Ak−1[k,j].

• A purple edge from ni to nj labeled with the value Ak−1[i,j].

• A blue edge from ni to nj labeled with the value Ak[i,j].

This way one can clearly see how the new element Ak[i,j] is being formed. It’s being
formed by introducing an alternative (+ operation) between a newly computed value
going through node nk and the old value. The new value is being computed by se-
quencing (· operation) the elements of the three red edges, where the * operation is
additionally being called on the element Ak−1[k,k].

The step by step solution with matrices shows the initial input matrix created dur-
ing construction, the matrix that has been constructed by the preprocessing or matrix
creation steps and all the matrices A0, A1, . . . that have been computed up to now. For
the iteration k, i, j the same elements as mentioned above are being highlighted in the
matrices Ak and Ak−1.

in Figure 4.4 and 4.5 the element∞ of A1[0,4] is being replaced by the element∞+8(0)*1
which evaluates to 9 using the Kleene algebra proposed in section 2.3.

25

Figure 4.4: Graph step by step solution

Figure 4.5: Matrix step by step solution

2 Implementation

In this section we firstly give a general overview of the programming languages and
libraries that have been used to create the tool. Secondly we give insights into the
concrete implementation of the general algorithm. As the core piece of the tool is
presented as part of this thesis (with both pseudocode and an implementation) we hardly
documented the code of the tool.

2.1 Used technologies

The tool created for this thesis is a webtool implemented using HTML, CSS and Javascript.
We decided to build a web-based application, to make the tool portable and easily ac-
cessible for everyone. This also implied the usage of HTML, CSS and Javascript. In
order to make the tool stable and resistant to any third party code changes, the third
party libraries have been directly imported into the project. The following Javascript
libraries have been integrated to provide additional functionality:

• D3.js version 5.16.0 [2]: ”D3.js is a JavaScript library for manipulating doc-
uments based on data. D3 helps you bring data to life using HTML, SVG, and
CSS.” [2] D3.js has been used to create the main svg of the application. It’s re-

26

sponsible for rendering all graphs and automatas, processing the user’s input, the
graph creation and partly the visualisation of the step by step solution. Allthough
there are multiple libraries providing similar functionality, we chose D3.js because
of its comprehensive documentation and intuitive usage.

• MathJax version 3 [3]: ”Beautiful and accessible math in all browsers: A
JavaScript display engine for mathematics that works in all browsers.” [3]. The
web application uses MathJax to render all mathemathical expressions. It’s mainly
been used to draw all the matrices of the application, especially the ones of the
step by step solution. As we wanted the representation of the matrices to be both
dynamic and similar to the Latex design, MathJax was the only but still perfectly
fitting option.

• FontAwesome version 4.7.0 [8]: FontAwesome provides free to use icons, which
have been used to improve the user interface.

The implementation basically works as follows: D3.js is being used to create the input
data, then the data is being passed on to the algorithm in combination with the picked
Kleene algebra. The algorithm computes the resulting two dimensional arrays (it’s a
slight variation of the algorithm where one can specify how many iterations should
be computed). These results are being passed to the graph in order to progress of
the algorithm. Additionally they’re being passed to a converter which creates MathJax
expressions from the given arrays. These expressions are converted to the matrices which
again show the process of the algorithm. Here we only give insight into the algorithmic
part of the implementation, since it is the most relevant one.

2.2 The algorithm

Since the tool is a web application, we’ve created an object oriented implementation
of the algorithm using Javascript. As other programming languages provide a cleaner
and simpler syntax for object oriented programming, code samples providing the same
functionality using the programming language Dart are being used here.

All Kleene algebras have to extend the same abstract class, which demands all oper-
ations as well as the identity elements to be defined:

1 abstract class KleeneAlgebra <T> {

2 T zero();

3 T one();

4 T op1(T a, T b);

5 T op2(T a, T b);

6 T star(T a);

7 }

Note that each algebra demands a certain type, which refers to the type of its elements.
In our implementation we use integers for Floyd’s algorithm and booleans for Warshall’s

27

algorithm. For Kleene’s algorithm a manually defined class for regular expressions is
being used. The following example shows the algebra for Floyd’s algorithm, where null
is internally being used to represent ∞:

1 class FloydAlgebra extends KleeneAlgebra <int > {

2

3 int zero() => null;

4

5 int one() => 0;

6

7 int op1(int a, int b) {

8 if (b == null) return a;

9 if (a == null) return b;

10 return math.min(a, b);

11 }

12

13 int op2(int a, int b) {

14 if (a == null || b == null) return null;

15 return a + b;

16 }

17

18 int star(int a) => 0;

19 }

The algorithm itself takes a Kleene algebra and a two dimensional array containing
elements of the algebra as an input. It then computes the solution as described in
section 4.2.

1 void algorithm(List <List > inputMatrix , KleeneAlgebra alg) {

2 int n = inputMatrix.length;

3 List <List > A = clone(inputMatrix);

4

5 for (int k = 0; k < n; k++) {

6 List <List > B = clone(A);

7 for (int i = 0; i < n; i++) {

8 for (int j = 0; j < n; j++) {

9 B[i][j] = alg.op1(

10 A[i][j],

11 alg.op2(

12 alg.op2(

13 A[i][k],

14 alg.star(A[k][k])),

15 A[k][j]

16));

17 }

18 }

19 A = B;

20 }

21 }

28

Note that no simplification on the algorithmic side is being done here, since everything
is directly being evaluated. Nevertheless simplification is definitely necessary for certain
Kleene algebras, as e.g. the algebra for regular expressions to avoid algebraic terms
taking up exponential space. With this implementation the simplification is directly
shifted to the implementation of the operation. See section 4.6 for more details.

29

5 — Summary, conclusion and
outlook

1 Summary

It has been shown that all three algorithms follow the exact same pattern. They generate
all possible paths between every pair of nodes of a graph, evaluate a path by the se-
quence of its edges and afterwards choose between all the evaluations. A Kleene algebra
(A,+, ·, 0, 1,*) has been provided for each of the algorithms in section 2.3, where the +
function refers to the ”choice” between values of the algebra, the · function corresponds
to ”sequencing” elements of the algebra and the * operation refers to the ”iteration”
of an element. A general algorithm then for each pair of nodes (ni, nj) computes one
element A[i,j] of the same structure as a regular expression which can intuitively be in-
terpreted as follows: For every path from ni to nj it produces an element by applying
the · operation on the weights of its edges, then it combines all this elements by using
the + operation. Evaluating this term with the given interpretation for +, · and * we
get the same result with the general algorithm as with the corresponding algorithm for
this problem.

2 Conclusion and outlook

Not only is it useful to have one algorithm computing the solution for several different
problems, but it also gives insights into their nature and their similarities. Seeing all three
algorithms as variations of one and the same, simplifies understanding them and can
hence be used when teaching them in all the different courses. Additionally generalizing
the algorithm and the concepts opens up the door for finding, reinterpreting and adding
similar problems to this collection. However there are also drawbacks when using such
an approach: Possible optimizations, space complexity and simple modifications to the
algorithms might be affected and complicated by the fact of a generalization. There are
still many things that can be improved and many open questions, we only list a few
here:

• Is it possible to introduce a simplification system that does not increase the time
complexity by much?

30

• Can one use a different Kleene algebra for Floyd’s algorithm, such that it keeps
track of the nodes that a computed shortest path passed through? is made out of?

• Multiple algorithms or variations can be added to the provided scheme as comput-
ing the reflexive transitive closure, longest path, negative cycles detection, . . .

• Clearly undirected graphs do also work with the general algorithm if one converts
them into an equivalent directed graph. before running the algorithm. Since the
results for the pair (ni, nj) and the pair (nj , ni) are clearly equivalent, it could be an
option to adapt the algorithm to this special case to avoid redundant computations.

• How does the algorithm for State Elimination fit into this collection? How much
effort would it take to integrate it and can it give further insights into the general
problem itself?

• Kleene’s algorithm as well as our implementation of the general algorithm could
be extended, such that all kind of regular expressions are allowed as edge weights,
instead of only symbols.

31

Bibliography

[1] Marco Almeida, Nelma Moreira, and Rogério Reis. Testing the equivalence of regu-
lar languages. Electronic Proceedings in Theoretical Computer Science, pages 47–57,
07 2009. doi:10.4204/EPTCS.3.4.

[2] Mike Bostock. D3.js - data-driven documents, 2020 (accessed July 29, 2020). https:
//d3js.org/.

[3] MathJax Consortium. Mathjax, 2020 (accessed August 11, 2020). https://www.

mathjax.org/.

[4] Andrew Goldberg and Tomasz Radzik. A heuristic improvement of the Bellman-
Ford algorithm. 1993.

[5] H. Gruber and M. Holzer. Finite automata, digraph connectivity, and regular
expression size. ICALP, 2008.

[6] Hermann Gruber and Stefan Gulan. Simplifying regular expressions a quantitative
perspective. 09 2009. doi:10.1007/978-3-642-13089-2_24.

[7] Hermann Gruber and Markus Holzer. From finite automata to regular expressions
and back–a summary on descriptional complexity. Electronic Proceedings in Theo-
retical Computer Science, 151, 05 2014. doi:10.4204/EPTCS.151.2.

[8] Fonticons Inc. Fontawesome, 2020 (accessed August 14, 2020). https://

fontawesome.com/.

[9] S. C. Kleene. Representation of events in nerve nets and finite automata. Automata
Studies. (AM-34), Volume 34, 1951.

[10] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. In [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer
Science, pages 214–225, 1991.

[11] Nelma Moreira, Davide Nabais, and Rogério Reis. State elimination ordering strate-
gies: Some experimental results. Electronic Proceedings in Theoretical Computer
Science, pages 139–148, 2010. doi:10.4204/EPTCS.31.16.

32

http://dx.doi.org/10.4204/EPTCS.3.4
https://d3js.org/
https://d3js.org/
https://www.mathjax.org/
https://www.mathjax.org/
http://dx.doi.org/10.1007/978-3-642-13089-2_24
http://dx.doi.org/10.4204/EPTCS.151.2
https://fontawesome.com/
https://fontawesome.com/
http://dx.doi.org/10.4204/EPTCS.31.16

[12] Georg Moser. Ein Skriptum zur Vorlesung - Diskrete Mathematik. 2018. http:

//cl-informatik.uibk.ac.at/teaching/ss18/dm/material/studia.pdf.

[13] Christos Papadimitriou and Martha Sideri. On the Floyd-Warshall algorithm for
logic programs. The Journal of Logic Programming, Volume 41, pages 129 – 137,
1999. doi:https://doi.org/10.1016/S0743-1066(99)00013-8.

[14] L. Pitt and M. K. Warmuth. The minimum consistent dfa problem cannot be
approximated within any polynomial. [1989] Proceedings. Structure in Complexity
Theory Fourth Annual Conference, pages 230–, 1989.

33

http://cl-informatik.uibk.ac.at/teaching/ss18/dm/material/studia.pdf
http://cl-informatik.uibk.ac.at/teaching/ss18/dm/material/studia.pdf
http://dx.doi.org/https://doi.org/10.1016/S0743-1066(99)00013-8

	Introduction
	Related work
	Generalization of the algorithms
	The three Algorithms
	Floyd's Algorithm
	Warshall's Algorithm
	Kleene's Algorithm
	Proof

	Similarities and differences
	Code and structure
	Complexity
	Graph interpretation of the algorithms

	Kleene Algebra
	Definition
	Interpretation and further information
	The three Kleene algebras
	Kleene algebra for Warshall's algorithm
	Kleene algebra for Floyds's algorithm
	Kleene algebra for Kleene's algorithm

	Homomorphims
	A general algorithm
	Matrix creation
	Algorithm
	Proof
	Corollaries
	Complexity
	Simplification

	Web application
	Functionality
	Graph and automaton construction:
	Step by step solution:

	Implementation
	Used technologies
	The algorithm

	Summary, conclusion and outlook
	Summary
	Conclusion and outlook

