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Abstract

This master thesis proves orthogonality of self-distributivity in the sense of having a
residual system. Considering orthogonality in an advanced manner generalizing the
purely syntactic definition was already done by Melliès [16] and by Terese [23, Chapter
8.7]. We pick up their approaches and first survey constructions of residual systems for
left-linear and non-ambiguous term rewriting, for associativity and for braids. We then
transfer established findings to self-distributivity. Furthermore, we generalize a statement
about scopic relations from Melliès [17] as it is too restrictive for our purposes.
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1 Introduction

Orthogonality describes left-linearity paired with non-ambiguity and provides a simple
and syntactic notion ensuring the in general undecidable property of confluence. However,
the concept is very restrictive. Nevertheless, a number of authors relax the conditions and
allow special cases of ambiguity without jeopardizing confluence and consider orthogonality
from a semantic point of view. Among others this is done by Melliès in an axiomatic
approach [16] and in Terese via residual systems [23, Chapter 8.7], both allowing a notion
of least common reduct. Van Oostrom showed that the former is an instance of the
latter [25]. We pick up van Oostrom’s findings and show in this master thesis that
self-distributivity is orthogonal in the advanced, semantic sense.

Self-distributivity states that a binary operation ú distributes over itself and is for
example described by the following equation1

(x ú y) ú z = (x ú z) ú (y ú z). (RD)

Self-distributive structures can be found in various fields. Three of the simplest structures
are the logical operations of ·, ‚ and the geometrical interpretation of middle. In topology
shelves, racks and quandles are defined via self-distributivity, which gained increasing
interest since the early 2000s for example examined by Carter et al. [5, 6, 7] and Inoue
& Kabaya [13]. Furthermore, Dehornoy showed in his monograph a close proximity to
braids and studies the equational theory of RD [8]. Since the Substitution Lemma [23,
Lemma 10.1.10] can be interpreted as an instance of RD, self-distributivity plays a key
role to Tait and Martin-Löf’s parallel —-step, which was refined by Takahashi and proves
confluence of —-reducitons in ⁄-calculus [22].

Turning the RD-equation into a rewrite step orienting it in length increasing direction
we obtain a term rewrite system consisting of a single rule. Undoubtedly, this system is
ambiguous. This can already be seen from the term ((wúx)úy)úz as we can apply the rule
either to the whole term or to the sub-term (w ú x) ú y. Hence, self-distributivity certainly
does not fall under the syntactic notion of orthogonality. To still prove orthogonality
under the semantic consideration we wish to proceed analogously to the Parallel Moves
Lemma [23, Lemma 4.3.3], namely skolemising the diamond property of many-steps under
a notion of least. Finding such a witnessing function of the skolemisation is in many
cases non-trivial. A framework is given by Terese’s residual systems in a way that a
skolem function satisfying their residual identities is ensured to be a least upper bound.

We approach the problem of finding a suitable residual system by approximating it via
three di�erent constructions each on their own essentially easier, but still similar to self-
distributivity: First, the S-combinator of combinatory logic also comprising duplication,

1
The naming RD originates from right self-distributivity. However, with x ú (y ú z) = (x ú y) ú (x ú z) a

symmetric left version exists.
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1 Introduction

second, associativity consisting of the same self-overlap, and third, braids showing a
close proximity to self-distributivity. The former represents an orthogonal system in the
syntactic as well as in the semantic interpretation. The latter two on the other hand are
only orthogonal from the semantic perspective.

One common building block of the former two mentioned methods are proof terms
providing convenient representations of reduction sequences allowing a compact, inductive
perspective. Another important role and a common denominator between braids and self-
distributivity play Melliès’ scopic relations formalizing a dual concept to transitivity [17].

Related Work

Confluence of self-distributivity is already proven by van Oostrom [27]. Contrary to the
approach in the present thesis, this is done via a least upper bound for all, instead of for
only two single steps having the same source. This procedure goes back to Dehornoy
established in his monograph on self-distributivity [8]. This monograph also explains the
connection between self-distributivity and braids.

Further studies of braids are done by Endrullis & Klop [10]. The foundation to the
modern understanding of braids made Artin discretizing their continuous notion [1].

Proof terms formalize Meseguers rewriting logic [18] and were used by van Oostrom
and de Vrijer in Terese to show equivalences of reductions [23, Chapter 8], which can
also be found in excerpts in a corresponding research article [28].

The terminology of a scopic relation emerged from Melliès [17], however, the character-
ization in general goes back to Guilbaud & Rosenstiehl studying combinatorial properties
of permutations [20].

Basics of rewriting are covered by Baader & Nipkow [2], and in Terese [23]. The latter
also provides most of the basis to this thesis. Some more advanced topics are dealt with
by Ohlebusch [19].

An introduction to ⁄-calculus can be found in Terese [23, Chapter 10] and a thorough
survey is given by Barendregt [3].

Fundamentals of order theory provides, e.g., the textbook by Hein also explaining
skolemisation [11]. Least upper bounds and the strongly connected (semi)-lattices are,
among many others studied by Burris & Sankappanavar, where also the connection from
the order theoretical to the universal algebraic approach are demonstrated [4].

Structure of Present Text

The second chapter provides a collection of preliminaries necessary to understand this
thesis. It mainly recapitulates required concepts or gives references to them, introduces
notation and proves some lesser known but important statements for later findings. It
is divided into three parts, where the first is concerned with discrete mathematics and,
where the second and the third are dedicated to rewriting including the syntax and
semantics of terms. Readers familiar with either of the topics may only scan through the
respective section or even skip it completely and only come back to it when needed.

2



The subsequent chapter considers a dual of transitivity called scopicness. For the
most part it generalizes a result stated by Melliès [17], as the theory established by
him is developed under assumptions too strong for our purposes becoming important in
Chapter 6.

Chapter 4 is meant to introduce residual systems. Firstly, proof terms are defined and
it is shown that they indeed equal reductions. Furthermore, overlaps are investigated and
the syntactic notion of orthogonality is defined. Additionally, tracing and trace algebras
are established, which we will use later as models for the diamonds. Lastly, residual
systems are presented and the connection to the diamond property is demonstrated.

Chapter 5 puts residuation to action and collects some comprehensive examples
suggesting that the witness function is not always obvious to find. Moreover, we collect
certain insights we will be taking to the next section.

Chapter 6 applies the preceding findings to self-distributivity. The initial section
explains the setting used and shows local-confluence of the established system followed by
a section showing the system’s completeness. At last, we provide a witnessing function
skolemising the diamond property and prove its residual attributes.

We end with a conclusion and an outlook on future work to an inductive approach of
self-distributivity.

In the following git-repository a code base on orthogonality of self-distributivity can
be found, which can be used to generate examples and calculate residuals:

https://git.uibk.ac.at/csav8467/orthogonality_of_self-distributivity
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2 Preliminaries

The following chapter is meant to set the basis from where succeeding chapters will
start and ensure that the reader and the author have the same understanding of the
fundamental concepts necessary for this thesis. Many notions are not elaborated in detail
but only referenced. The first section is related to concepts from discrete mathematics,
whereas the second section focuses on abstract rewriting and the third section on term
rewriting.

2.1 Sets, Relations and Orders

The fundamentals of this thesis are provided by discrete mathematics. If not stated
otherwise we adopt definitions and notations concerning sets, relations and orders from
Hein as in [11]. Throughout this thesis we will, moreover, consider binary endorelations,
i.e., by a relation R we always mean a binary relation on X ◊ X for some set X.
Furthermore, we will use the following notation.
Notation 2.1.1. For a relation R over X ◊ X we denote by R≠1 the converse relation, i.e.
R≠1 = {(a, b) | (b, a) œ R}. In addition, we define

(a R) := {b | a R b}
(S R) :=

€

aœS

(a R)

for an element a œ X and a set S ™ X.
In the context of braids we will encounter a binary operation on relations representing

a step. Melliès called this operation an addition and we will adopt his terminology [17].
It replaces elements of the first relation by the corresponding elements of the second’s
converse relation.

Definition 2.1.2. The addition of two binary relations R, S on the same set X is defined
as

R + S := (R ≠ S) fi S≠1.

However, note that the addition on relations is neither commutative nor associative.
Furthermore, the addition is not left neutral.

Often we will consider paths in binary relations. This will be done according to Hein
interpreting a binary relation as a directed graph [11]. Then, a path is a sequence of
edges, also determining its length, that we can denote by a sequence of vertices, allowing
the notion of distances between elements of a binary relation.

4



2.1 Sets, Relations and Orders

Definition 2.1.3. The distance of two elements a, c œ X in a relation R over X ◊ X is
defined as the distance in the corresponding directed graph G, where the distance of two
distinct vertices v, w is defined as the minimal length over all paths starting in v and
ending in w, if no such path exists in G the distance is defined to be Œ, the distance of
v to v is defined as 0.

The distance of two elements in a relation becomes important when proving properties
of a dual notion to transitive relations in Chapter 3. Actually, transitivity will be a
concept accompanying the reader throughout the whole course of this thesis. Especially,
for a binary relation R we will be interested in the smallest transitive relation that
contains R. This matches exactly the definition of transitive closure from Hein [11], which
we will be denoting by R+. As it is often convenient to argue with the closure properties
of R+, we show in the following that the transitive closure is a closure operator defined
in the sense of Burris & Sankappanavar [4].

Definition 2.1.4. A mapping C : 2X æ 2X is called a closure operator on X, if for
R, S ™ X it satisfies:

• R ™ C(R) (extensive)

• C(C(R)) = C(R) (idempotence)

• S ™ R implies C(S) ™ C(R) (monotone, isotone or increasing),

where 2X denotes the power set of X.

Remark 2.1.5. To see that the transitive closure is a closure operator in the sense of
Definition 2.1.4, note that extensiveness and idempotence are obvious. To see monotonic-
ity, assume that S ™ R and S+ ”™ R+, then as transitivity is closed under intersection
there exists a transitive proper subset T µ S+ fl R+ with S ™ T , which contradicts the
definition of S+ being the smallest transitive set containing S.

For a construction of the transitive closure we refer again to Hein [11]. Furthermore,
we will take advantage of the transitive reduct of a transitive relation, which is the
corresponding binary relation to the graph also known as the Hasse diagram. From the
transitive reduct we can construct the irreflexive part of the initial transitive relation by
the transitive closure. A partial order can be reconstructed by the reflexive–transitive
closure of its transitive reduct.

Definition 2.1.6. Let R be a transitive relation. Define the transitive reduct of R as
the relation

r(R) := {(a, b) | a is an immediate predecessor of b},

where a is an immediate predecessor of b, if { c œ X | a R c R b } = ÿ and a ”= b.

An essential part of our to be established characterization of Chapter 6 relies on the
concept of prefix orders, that intuitively speaking generalize the idea of trees and have
the convenient property of uniqueness of paths in their transitive reduct.

5



2 Preliminaries

Definition 2.1.7. A prefix order is a reflexive, transitive and anti-symmetric relation ı,
i.e., a partial order, such that a ı b · c ı b implies a ı c ‚ c ı a. A strict prefix order
@ is the irreflexive part of a prefix order ı.

Lemma 2.1.8. Paths in the transitive reduct of a prefix order are unique.

Proof. Let ı be a prefix order and assume there exist two distinct paths P, Q from a
to b in X in the transitive reduct of ı. Let x œ X be the first element, where P and Q
divert. Hence, there exist y, z œ X, such that x is an immediate predecessor of y and of
z according to ı, and moreover, without loss of generality, x ı y is an edge in P but not
in Q and, vice versa, x ı z is an edge in Q but not in P . However, z ı b · y ı b, which
implies by ı being a prefix order y ı z ‚ z ı y. Assume the former, i.e., x ı y ı z,
contradicting x being an immediate predecessor of z. Proceed symmetrically for the
latter.

We now turn our attention back to the transitive closure and related observations.
Firstly, we state an easy consequence resulting from the closure properties, which is
however an important insight for what is about to follow.

Lemma 2.1.9. Let R be a transitive relation and S ™ R, then S+ ™ R.

Proof. From S ™ R it follows that S+ ™ R+ by + being a closure operator. Since R is
transitive R = R+ and, hence, S+ ™ R.

The problems arising concerning the comprehensive example of braids in the end boil
down to two set theoretic properties related to the transitive closure. The proof to the
first one goes back to Klop et al. [15, Proposition 32]. For the sake of completeness we
recapitulate it here.

Lemma 2.1.10. Let S, T, U ™ R be transitive relations with R ≠ U œ S fl T , then
(U fl (S fi T ))+ = U fl (S fi T )+.

Proof. Since transitive relations are closed under intersection, obviously U+ fl (S fi T )+

is transitive, hence, from U fl (S fi T ) ™ U+ fl (S fi T )+ follows (U fl (S fi T ))+ ™
U+ fl (S fi T )+ = U fl (S fi T )+ by Lemma 2.1.9 and transitivity of U .

To prove U fl (S fi T )+ ™ (U fl (S fi T ))+ we show by induction that for each m œ N it
holds that a U b and a (S fi T )m b implies a (U fl (S fi T ))+ b. Choose m to be minimal.
For m = 1 the claim trivially holds. Let m > 1 and a (S fi T )m1 c · c (S fi T )m2 b for
some c and 1 Æ m1, m2 < m. Furthermore, assume a (R ≠ U) c, hence, by condition of the
statement to be proven a (S fl T ) c and by S, T being transitive it follows a (S fi T )m2 b.
Thus, contradicting m being minimal it holds that a U c · a (S fi T )m1 c. Similarly, it
holds that c U b · c (S fi T )m2 b. Consequently, a (U fl (S fi T ))+ b.

The second of the afore-mentioned set theoretic properties is the equality of (S fi (T fi
U)+)+ = (S fi T fi U)+ for relations S, T, U ™ R, which is an instance of the next lemma.

Lemma 2.1.11. Let S, T ™ R be relations, then (S fi T +)+ = (S fi T )+.

6



2.2 Abstract Rewriting

a b c d

e f g

„1 „2 „3

„4
„5 „6

„7 „8

Figure 2.1: Example of an ARS.

Proof. The inclusion (S fi T )+ ™ (S fi T +)+ holds by monotonicity of closure operators,
since T ™ T +. To see that the reverse inclusion also holds, note that by definition of
closure operator S ™ S+ ™ (S fi T )+ and, similarly, T + ™ (S fi T )+, since S, T ™ S fi T .
Consequently, S fi T + ™ (S fi T )+. Once more by definition of closure operator it follows
that (S fi T +)+ ™ ((S fi T )+)+ = (S fi T )+.

2.2 Abstract Rewriting

For most rewriting purposes it su�ces to be able to express whether or not two objects
are related by a step. For this reason an abstract rewriting system is often defined as
a relation (e.g., see [23, Definition 1.1.1]). However, in the theory of residuation it is
desirable to express what step relates two objects to another, as the objects of interest
are residuals of steps, thus, steps having an identity is useful. Henceforth, we define an
abstract rewrite system via steps.

Definition 2.2.1. An abstract rewrite system (ARS) is a quadruple ÈA, �, src, tgtÍ with
A a set of objects, � a set of steps and src, tgt : � æ A the source and target function,
i.e., for a step „ there exists a, b œ A such that a

srcΩ „
tgtæ b.

Two steps „, Â are called co-initial, if src(„) = src(Â). They are called composable, if
tgt(„) = src(Â). They are called co-final, if tgt(„) = tgt(Â).

Remark 2.2.2. In Definition 2.2.1 steps are first class citizens of the ARS serving the
purpose to distinguish what rule relates source and target. In what follows we may
use various arrow-like symbols, such as æ,⇢, Ø, . . . to denote an ARS and often write
„ : a æ b, where the step „ with src-, and tgt-function resulting in a and b of the ARS
æ is meant, respectively. However, we will not limit ourself to this notation and also use
mixed versions such as „ œ R or „ : a æ b œ R for steps in an ARS R. In figures we will
also use a

„≠æ b.

Example 2.2.3. Let A = {a, b, c, d, e, f} be a set of objects and � = {„1, . . . , „8} a set
of steps, such that „1 : a æ b, „2 : c æ b, „3 : c æ d, „4 : a æ e, „5 : b æ e, „6 : f æ
c, „7 : e æ f and „8 : f æ g define the src- and tgt-function, see Figure 2.1. Then,
æ := ÈA, �, src, tgtÍ defines an ARS.

7



2 Preliminaries

Remark 2.2.4. The afore-mentioned relational view usually defines an ARS as a tuple
(A, æ) consisting of a set A and a binary relation æ on A. This can easily be expressed
in terms of the Definition 2.2.1 by (A, {æ„ | „ œ �}), where æ„ relates the source and
the target of the step „.

On the other hand, for a given relation æ on A we can index the elements in æ
by an index set I, such that each element (a, b) œ æ has a unique index i œ I and
denote this by (a, b)i. Then ÈA, {(a, b)i | i œ I, a, b œ A}, src, tgtÍ with src((a, b)i) = a
and tgt((a, b)i) = b defines an ARS in the sense of Definition 2.2.1.

The above remark shows the equivalence of the relational view on ARS to that
considering steps as first class citizens. Therefore, we can easily switch between views
by translating accordingly. However, this thesis develops the theory corresponding to
Definition 2.2.1 and for the remainder of this section the most important concepts used
in later sections are introduced. The reader familiar with term rewriting can safely skip
to Chapter 3 without missing established content.

An important property throughout this work is the diamond property expressing the
existence of two co-final steps for two co-initial steps.

Definition 2.2.5. Two co-initial steps „ : s æ t1, Â : s æ t2 fulfil the diamond property,
if there exist two co-final steps „Õ : t1 æ t, ÂÕ : t2 æ t. An ARS admits the diamond
property, if for all pairs of co-initial steps the diamond property holds.

As we are interested in the diamond property of many-steps, we suitably supplement
ARS’s by the notion of composition.

Definition 2.2.6. An abstract rewrite system with composition is a triple Èæ, 1, · Í,
where æ is an ARS, 1 a function from objects to steps, and · a function from composable
steps to steps, such that:

• For every object a, its trivial step 1a : a æ a exists.

• For every pair of composable steps „ : a æ b, Â : b æ c, their composition
„ · Â : a æ c exists.

Furthermore, we want to be able to consider an equivalent to what in the relational
point of view is done via the reflexive-transitive closure, namely, a reduction sequence of
length 0 or more.

Definition 2.2.7. The reflexive-transitive closure æú of an ARS æ := ÈA, �, src, tgtÍ is
the ARS with composition defined by:

• A is the set of objects.

• the steps together with their source and target are defined by the following inference
rules:

a œ A

1a : a æú a

„ : a æ b œ �
„ : a æú b

„ : a æú b Â : b æú c

(„ · Â) : a æú c

8



2.2 Abstract Rewriting

• The trivial step for an object a is 1a : a æú a.

• The composition of „ : a æú b and Â : b æú c is („ · Â) : a æú c.

Steps of the form 1a will be called empty steps and we will often just write a or 1 to
denote 1a. Steps of the form („ · Â) will be called composite steps.

However, this still does not quite do the job as, e.g., the composition („ · Â) · ‰ is
di�erent from „ · (Â · ‰) as well as „ · 1 is di�erent from „. To cope with that we
simply quotient the monoid identities and associativity out. This is what we then call a
reduction.

Definition 2.2.8. Let æ be an ARS. The ARS ⇣ is the ARS resulting from æú modulo
the monoid identities „ · 1 ¥ „, 1 · „ ¥ „ and („ · Â) · ‰ ¥ „ · (Â · ‰). A step „ : s ⇣ t is
also called a reduction.

Hence, due to associativity we may omit parenthesis in compositions, when we consider
reductions.

By the nature of rewriting it is always favourable to consider complete systems, as
their canonical structure makes life easier and, which is what we will consequently strive
for in Chapter 5 and 6. Next the meaning of complete rewrite system and the essentially
related notions confluence and normalization are repeated. Furthermore, we present
increasing ARS’s, which play an important role on the path to the main theorem of
Chapter 6. Example 2.2.10 and 2.2.14 illustrate these properties.

Definition 2.2.9. Let æ := ÈA, �, src, tgtÍ be an ARS. An element s œ A is called

• locally confluent, if for any steps „, Â œ � with „ : s æ t1 and Â : s æ t2, there
exist reductions „Õ, ÂÕ of æ such that „Õ : t1 ⇣ t and ÂÕ : t2 ⇣ t for some t œ A.

• confluent, if for any two reductions „, Â of æ with „ : s ⇣ t1, Â : s ⇣ t2,
there exist co-final reductions „Õ, ÂÕ, i.e., there exists an object t œ A such that
„Õ : t1 ⇣ t, ÂÕ : t2 ⇣ t.

• a normal form, if for all a œ A there exists no step „ œ �, such that „ : s æ a.

• weakly normalizing, if there exists a normal form n and a reduction „ of æ, such
that „ : s ⇣ n.

• strongly normalizing or terminating, if there are no infinite rewrite sequences
starting in s, i.e., if there exists no infinite family {„n | n œ N} of steps starting
with „0 and „n composable with „n+1, such that src(„0) = s.

We call an ARS locally confluent (confluent, weakly normalizing, strongly normalizing or
terminating), if all elements in A are locally confluent (confluent, weakly normalizing,
strongly normalizing or terminating).

In addition, an ARS is complete, if it is confluent and terminating. An ARS æ is
increasing, if there exists a function | . | : A æ N, such that for all „ : s æ t œ � it holds
that |s| < |t|.

9



2 Preliminaries

Example 2.2.10. Consider the ARS æ of Example 2.2.3. The normal forms of æ are
d and g. The ARS æ is locally confluent as for any co-initial steps there exist co-final
reductions. However, since from every object there exist reductions to both normal forms,
no element is confluent except for the normal forms themselves. For the same reason
the ARS is weakly normalizing. However, it is not terminating as we can infinitely often
compose „2 · „5 · „7 · „6 : c æ c.

In various sections we will be only interested in parts of an ARS and with the following
definition this is formalized.

Definition 2.2.11. Let æi := ÈAi, �i, srci, tgtiÍ be an ARS for i œ {1, 2}. We say æ1
is a sub-abstract-rewriting-system (sub-ARS) of æ2, denoted by æ1 ™ æ2, if A1 ™ A2,
�1 ™ �2, and src1, tgt1 are the restrictions of src2, tgt2 to �1.

An important application of sub-ARS makes use of the diamond property to show
confluence by tiling the plane, which is expressed in the following proposition.

Proposition 2.2.12. Let æ,⇢ be ARSs, such that æ ™ ⇢ ™ æú. If ⇢ has the
diamond property, then æ is confluent.

Proof. An easy induction shows that for „1 · . . . · „n : s ⇢ú t1 and Â1 · . . . · Âm : s ⇢ú t2
we find „Õ

1 · . . . · „Õ
m : t1 ⇢ú t and ÂÕ

1 · . . . · ÂÕ
n : t2 ⇢ú t for m, n Ø 0 due to the diamond

property. Replacing all steps of ⇢ by the corresponding compositions of æ proves the
claim.

Another important use of sub-ARS are strategies. Intuitively, a strategy for an ARS
narrows the options of possibilities down to a selection of steps, while the objects and
normal forms stay untouched. Ideally this selection then has nicer properties from
which we can draw conclusions on the initial ARS. This will be the approach on proving
orthogonality in the semantic sense of self-distributivity. Thusly, strategies are defined
and an example strategy is given afterwards.

Definition 2.2.13. A strategy for an ARS æ is a sub-ARS æÕ ™ æ having the same
set of objects and the same set of normal forms.

Example 2.2.14. Consider æ of Example 2.2.3. Let �Õ = {„1, „3, „4, „5, „7, „8} and
srcÕ, tgtÕ the restrictions of src respectively tgt on �Õ. Then æÕ := ÈA, �Õ, srcÕ, tgtÕÍ is a
sub-ARS of æ, see Figure 2.2. And, since æÕ consists of the same set of objects and has
the same set of normal forms as æ the sub-ARS æÕ also is a strategy for æ. Furthermore,
the strategy æÕ is complete, as it is confluent and terminating.

In Chapter 6 the di�culty lies in proving termination of that chapter’s rewrite system
of interest. As already hinted above, this problem is approached by defining a terminating
strategy. In consequence this means that the underlying ARS is weakly normalizing,
and as it will also be shown to be locally confluent and increasing the following theorem
ensures termination. Hence, what is about to come is one of the key ingredients to the
main statement of Chapter 6. For the sake of importance and completeness the theorem

10
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a b c d

e f g

„1 „3

„5

„7

„4

„8

Figure 2.2: A corresponding strategy to the ARS of Example 2.2.3.

is proven here, but it may be mentioned that the proof is closely oriented on [23, Theorem
1.2.3 (iii)]. The reader unfamiliar with Newman’s Lemma, stating that a terminating
ARS is confluent if it is locally confluent, is referred to almost any relevant reference
book on term rewriting, e.g., Baader & Nipkow [2, Lemma 2.7.2] or Terese [23, Theorem
1.2.1], as we will use it here without proof.

Theorem 2.2.15. Let æ be an ARS. If æ is locally confluent, weakly normalizing and
increasing, then æ is also terminating.

Proof. We prove the claim by contradiction. Let æ := ÈA, �, src, tgtÍ be locally confluent,
weakly normalizing and increasing. Moreover, let a1 œ A be non-terminating. Nonetheless,
by weak normalization there exists an an œ A and a composition „1 · . . . · „n : a1 ⇣ an

with „i : ai æ ai+1 œ � for 1 Æ i Æ n ≠ 1 such that an is a normal form. Obviously, an

is terminating. Let ak be non-terminating, such that ak+1, . . . , an are terminating, i.e.,
ak is the first non-terminating object starting from an backwards along the reduction
defined by the composition „k · . . . · „n. It follows that there exists an infinite family
of successively composable steps Â1 · Â2 · . . . sourced at ak, as ak is not terminating.
However, since æ is locally confluent there exist co-final reductions „Õ, ÂÕ of the form
„Õ : ak+1 ⇣ c, ÂÕ : b1 ⇣ c, where b1 = tgt(Â1). The sub-ARS consisting of the set Ak+1
of all reachable elements from ak+1 together with the set of steps having a source in Ak+1
(and the corresponding restrictions of the src- and tgt-function) is terminating, as ak+1 is
terminating. With local confluence and Newman’s Lemma the sub-ARS is also confluent,
hence, there exist co-final reductions having c and an as source. As an is a normal form
these reduction are of the form ‰ : c ⇣ an and 1an : an ⇣ an. As æ is increasing the
inequality |a1| Æ |ak| < |b1| holds. Inductively repeating the process for b1 and an we find
an unbounded sequence |a1| Æ |ak| < |b1| Æ |bk| < . . . contradicting the fact, that |an|
constitutes an upper bound. Consequently, æ must be terminating (see Figure 2.3).

2.3 Term Rewriting

For most parts of this thesis we are interested in term rewriting systems. As the name
already suggests we are thus concerned with rewrites of terms. Due to the importance
of a term we repeat its syntax here, but note that it is the standard notion also used
by Baader & Nipkow [2, Definition 3.1.2] and Terese [23, Definition 2.1.2] under their
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a1 ak ak+1 an

b1 c...

...

„k

Â1

ÂÕ

„Õ
‰

Â2

Figure 2.3: Proving termination of a locally confluent, weakly normalizing and increasing
ARS by deriving a contradiction blowing up the path from a1 to an.

usual definition of signature. Furthermore, we adopt the convention that a, b, c, . . . denote
function symbols of arity zero (constants), f, g, h, . . . denote function symbols of higher
arity and z, y, x, . . . denote variables.

Definition 2.3.1. For a signature � and an infinite set of variables V distinct from �
we define the set T (�, V) as the smallest set such that V ™ T (�, V) and f(t1, . . . , tn) œ
T (�, V) if the arity of f is n and t1, . . . , tn œ T (�, V). If t œ T (�, V) we call t a term.

Terms not containing a variable are called ground terms. Terms in which no variable
occurs more than once are called linear. The set V(t) denotes the set of variables in the
term t.

A term can be represented as a tree via its internal structure by the following definition.

Definition 2.3.2. Let t be a term. The term tree of t is inductively defined as the tree
consisting of a single node labelled by t, if t is a constant or variable, and as the tree
having the symbol f as label and the trees representing t1, . . . , tn from left to right as
immediate sub-trees, if t = f(t1, . . . , tn).

If not stated otherwise, we adopt definitions and notation from Terese [23] concerning
term rewriting, especially regarding sub-term, substitution, position and context. For the
convenience of the reader we repeat (and slightly extend) the most important notations
here.
Notation 2.3.3. We denote by Pos the set of positions, by Pos(t) the set of all positions
in the term t, for P ™ Pos(t) we call P connected, if P is connected in the term tree of t
and we say two positions p1, p2 are parallel if neither is a prefix of the other and write
p1 Î p2. The set Pos�(t) defines the non-variable positions in the term t and t|p defines
the sub-term of the term t at position p.

In addition, C[t1, . . . , tn] determines the result of replacing the holes in the context
C from left to right by the terms t1, . . . , tn. A one-hole context is denoted by C[ ] and
if t = C[s] for a context C and t, s œ T (�, V) the term s is called a sub-term of t. If

12
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t = D[C[t1, . . . , tn]] for some context D and some terms t1, . . . , tn the context C is a
subcontext or slice of t. If t = C[s] for some terms t, s, the context C[ ] is also called a
prefix of t.

Concerning positions we will often be interested in ordering them according to their
prefix relation. Hence, from now on ı defines the standard prefix order on positions,
i.e., we will consider positions as the partially ordered set ÈPos, ıÍ. By @ we denote the
irreflexive part of ı.

Describing orthogonality of steps we fall back on function symbol occurrences, denoting
a pair consisting of a function symbol and the context it appears in.

Definition 2.3.4. The ordered pair Ès | C[ ]Í determines the unique occurrence of s in
a term t = C[s]. The pair Èf | C[ ]Í determines the unique occurrence of the function
symbol f in the term C[f(t1, . . . , tn)] for some terms t1, . . . , tn, i.e., the head-symbol of
f(t1, . . . , tn).

Concerning associativity and self-distributivity we will not only be interested in
syntactic properties but also give semantics to terms. This is done by means of a
�-algebra.

Definition 2.3.5. Let � be a signature. A �-algebra A is a tuple (A, {fA}fœ�), where
A is a set and fA : An æ A an operation for the n-ary function symbol f œ �. The set
A is called the carrier of the �-algebra and fA the interpretation of f œ �.

Moreover, we can evaluate a term, which we call an interpretation. For our purposes it
su�ces to only define this interpretation over ground terms. However, we note that this
is a very brief introduction and refer for further details to relevant textbooks.

Definition 2.3.6. Let A be an �-algebra. We inductively define the evaluation of ground
terms by the function

[f(t1, . . . , tn)]A = fA([t1]A, . . . , [tn]A),

where the interpretation of a constant t is defined as [t]A = tA.

An omnipresent example represents the set of natural numbers together with a signature
consisting of a nullary, unary and a binary function symbol.

Example 2.3.7. Consider the signature � = {0, s(·), +(·, ·)}. The interpretations
0A = 0, sA as the successor function and +A as addition on the carrier of the natural
numbers N constitutes a �-algebra A.

Furthermore, the term s(s(0) + s(s((0))) is a ground term over the signature � and is
interpreted as sA (sA (0A) +A sA (sA (0A))) = ((0 + 1) + ((0 + 1) + 1)) + 1 = 4.

After a short digression on the semantics of terms we finally define a term rewriting
system, which di�ers from the relational point of view in as much as rules carrying names.
The benefit of naming rules becomes evident in Section 4.1 introducing proof terms.

13
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Definition 2.3.8. A term rewriting system (TRS) is a tuple (�, æ), such that � is a
signature and æ is an ARS having terms in T (�, V) as objects and rules as steps, where
a step fl : ¸ æ r is a rule, when ¸ ”œ V and V(r) ™ V(¸). The source of a rule is called its
left-hand side (lhs) and the target is called its right-hand side (rhs), respectively. A TRS
is called left linear, if for each rule fl : ¸ æ r the term ¸ is linear.

Note that for each TRS we associate an ARS. Steps of the associated ARS are defined
via term rewriting. The act of term rewriting itself is as usual done by means of context
and substitution, which we do not elaborate any further but only refer to the standard
term rewriting literature as, e.g., Baader & Nipkow [2] or Terese [23]. Properties such as
confluence, termination, et cetera are always obtained via the associated ARS. Also, we
will often denote a TRS only by its rules. As an example of a left-linear TRS consider
the following.

Example 2.3.9. Let (�, æ) be a TRS with the rules fl : f(f(x)) æ x and Î : g(f(x), y) æ
g(x, f(y)). Then (�, æ) is left-linear, as the left-hand sides are linear.

With the last theorem of this section we point out that confluence of a TRS is not an
easy property.

Theorem 2.3.10. The following problem is undecidable:
Instance: A TRS T .
Question: Is T confluent?

As undecidability of confluence is only motivational for this work, but not necessary
to understand the rest of this thesis we do not prove it here. The interested reader
is however referred to Ohlebusch [19, Chapter 4]. He shows that the contrary to the
above theorem would imply Post’s correspondence problem (PCP) to be decidable, which
stands in contradiction to the well-known fact of PCP’s undecidability.
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Duality is a concept that precedes our study of braids as well as our study of self-
distributivity and occurs in many fields of computer science and mathematics. However,
it may be noticed that we will not find a consistent definition of duality through all the
fields. For example, linear programming considers the dual problem, projective geometry
the dual plane, and functional analysis the dual space. Nonetheless, all these concepts
show a common ground in as much as examining the objects of interest through the
principle of duality to induce corresponding properties from the primal to the dual. This
chapter introduces duality with respect to transitive relations and is not connected to
term rewriting per se.

3.1 Scopic Relations

This section introduces scopic relations via a notion of duality and establishes related
properties. Scopic relations were introduced by Guilbaud & Rosenstiehl [20] and the
terminology emerged from Melliès [17]. The dual of a function on relations is considered
under the following concept.

Definition 3.1.1. The dual fú with respect to a relation R of an n-ary function f on
relations is defined by fú(U1, . . . , Un) = R ≠ (f(R ≠ U1, . . . , R ≠ Un)).

Under this definition of duality the dual U≠ with respect to a relation R of the transitive
closure U+ of a relation U is given by

U≠ = R ≠ (R ≠ U)+.

We call U≠ the scopic interior. Similar to the characterization of a transitive relation
as a relation, for which the transitive closure equals the relation itself we call a relation
scopic if it equals its scopic interior.

Definition 3.1.2. Let R be a binary relation. U ™ R is scopic with respect to R if
U≠ = U .

Example 3.1.3. Let X = {a, b, c, d} and consider R+, the transitive closure of the
relation R defined by a R b R c R d. Then, U1 = {(a, b), (b, c), (a, c)}, U2 = {(a, b), (b, c)},
U3 = {(a, b)} and U4 = ÿ all are scopic with respect to R+, as U≠

i = Ui for i œ {1, 2, 3, 4}.

If R of Definition 3.1.2 is clear from the context we may simply say U is scopic. In the
upcoming section we will see equivalent characterizations under the assumption that R is
transitive, which will be of great importance to us in Section 5.3 and Chapter 6. There,
scopic relations with respect to transitive ones turn out as useful tools in proving the
corresponding residual identities.
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3.2 Scopicness in Company of Transitivity

After defining scopicness we now sharpen the reader’s intuition of scopic relations by first
showing a necessary condition of scopic relations. This condition will even be proven
su�cient in Lemma 3.2.2 if the superrelation is transitive. The remainder of this section
generalizes a result from Melliès, as he showed a corresponding statement to Theorem
3.2.6 with respect to a transitive and total relation [17, Theorem 28]. However, as it
is shown here the assumption of totality is too strong and it su�ces that there exists
at most one path between each pair of elements in the transitive reduct. This will be
beneficial for us in Chapter 6.

Lemma 3.2.1. Let R be a binary relation. If U ™ R is scopic with respect to R then

a R b R c · a U c =∆ a U b ‚ b U c.

Proof. Let a R b R c and assume ¬ (a U b) · ¬ (b U c), i.e., a (R ≠ U) b · b (R ≠ U) c.
Hence, a (R ≠ U)+ c, which implies ¬ (a (R ≠ (R ≠ U)+) c). Since U is scopic we have
¬ (a U c), which proves the claim.

Intuitively speaking, any element between two elements of a scopic relation stands in
some way in relation to either element. We will now give two equivalent characterizations
of a relation being scopic under the assumption of the superrelation being transitive. And,
as we will consider scopicness only in the presence of transitivity, these characterizations
not only help us improve our understanding of a scopic relation but also open up the
opportunity to choose the most convenient one in the right situation.

Lemma 3.2.2. Let R be a binary, transitive relation and U ™ R. Then the following
conditions are equivalent

1. U is scopic with respect to R

2. a U c =∆ a U b ‚ b U c for all a R b R c

3. R ≠ U is transitive

Proof. (1) =∆ (2): by Lemma 3.2.1. (2) =∆ (3): Let a (R ≠ U) b (R ≠ U) c, then
¬ (a U b) · ¬ (b U c) and a R b R c, so by the contrapositive of (2) it holds that
¬ (a U c). Since R is transitive a R c, hence a (R ≠ U) c. (3) =∆ (1): because of
transitivity (R ≠ U)+ = R ≠ U , hence R ≠ (R ≠ U)+ = R ≠ (R ≠ U) = R fl U = U , which
proves the claim.

Hence, for local arguments of a scopic relation such as showing that a certain element
is part of the relation, mostly item 2 is the characterization of choice. Proving global
properties concerning a scopic relation like the following corollary, it is often convenient
to establish corresponding findings in its transitive complement, i.e., item 3 predominates
the intuition.

Corollary 3.2.3. Scopic relations are closed under union.
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Proof. This is an easy consequence of Lemma 3.2.2 (3) and the fact that transitive
relations are closed under intersection, using R ≠ (U fi V ) = (R ≠ U) fl (R ≠ V ).

The constructions of residual systems for braids and self-distributivity rely on the
fact that the closure of the union of scopic relations stays scopic. This is the case if the
superrelation is transitive. To prove this we introduce a preparatory lemma.

Lemma 3.2.4. Let R be a transitive relation on X such that for every u, v œ X there
exists at most one path from u to v in the transitive reduct of R. Furthermore, let U ™ R
be scopic with respect to R. Then U+ is also scopic with respect to R.

Proof. Assume U+ is not scopic. Then,

÷a, b, c œ X with a R b R c and a U+ c such that ¬ (a U+ b) and ¬ (b U+ c). (3.1)

Out of all a, b, c fulfilling (3.1) choose a triple with the minimal distance of a and c with
respect to R. It holds that ¬ (a U c), since U is scopic and because of U ™ U+ there
exists bÕ œ X di�erent from b with a U+ bÕ U+ c. Due to Lemma 2.1.9 it holds that
U+ ™ R and by the existence of unique paths in the transitive reduct of R we have
a R bÕ R b R c or a R b R bÕ R c. Without loss of generality assume the latter. Since we
chose a and c of minimal distance fulfilling (3.1) it must hold that b U+ bÕ. However,
U+ is obviously transitive and with bÕ U+ c we get the contradiction b U+ c. Hence, U+

must be scopic with respect to R.

Note that Lemma 3.2.4 does not hold for arbitrary relations as the following example
illustrates.

Example 3.2.5. Let R = {(a, b), (a, c), (a, d), (b, c), (d, c)} and U = {(a, b), (b, c)}. Then
U is scopic, since there exists no x with a R x R b or with b R x R d. However,
U+ = {(a, b), (b, c), (a, c)}, which is not scopic since a R d R c and a U+ c but neither
a U+ d nor d U+ c. See Figure 3.1 and note that two paths from a to c exist, one via b
and one via d.

a

b

c

d

Figure 3.1: The transitive reduct of R = {(a, b), (a, c), (a, d), (b, c), (d, c)}.

Nonetheless, in our setting of braids and self-distributivity we consider scopic relations
in the setting of total orders and prefix orders, respectively. Uniqueness of paths for the
former follows, since any totally ordered set is a chain. For the latter one this is ensured
as Lemma 2.1.8 shows.

Lastly, we only have to put the collected findings together and prove the main theorem
of this chapter generalizing Melliès [17, Theorem 28].
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Theorem 3.2.6. Let R be a transitive relation on X such that for every u, v œ X there
exists at most one path from u to v in the transitive reduct of R. Furthermore, let
U, V ™ R be scopic. Then (U fi V )+ is scopic as well.

Proof. By Corollary 3.2.3 the union U fi V is scopic. Then, using Lemma 3.2.4, the
transitive closure (U fi V )+ is also scopic.
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The overall goal of this chapter is the introduction of residual systems, which can be
seen as skolem functions to the diamond property of many-steps, providing least upper
bounds. In other words, the focus lies on the question of what is left to reduce in one
step of another co-initial step. Generally, the chapter is a large extract from Terese [23,
Chapter 8]. A selection of that chapter is given by van Oostrom and de Vrijer showing
four equivalent equivalences of reductions [28]. However, we will not focus on these
equivalences but make use of the established findings. Still, the content is introduced so
that the motivation behind it becomes comprehensible. The first section introduces proof
terms, followed by a section on overlaps of previously introduced proof terms. The third
section introduces the concept of tracing, which is later used as model for the diamonds.
The last section is finally concerned with residual systems.

4.1 Proof Terms

Before defining proof terms we motivate their introduction by the following example,
revealing possible syntactic accidents in the relational view of TRS’s.

Example 4.1.1. Let T = (�, R) be a TRS consisting of the single rule fl : f(x) æ x.
Furthermore, let æ be the corresponding relation of the ARS R according to Remark
2.2.4. For a constant a the term f(f(a)) relates to exactly one term, namely,

f(f(a)) æ f(a).

However, substitutions at context ⇤ and at f(⇤) both witness the above, which is also
called a syntactic accident.

The preceding example shows that it is not always evident how we arrived at a term’s
reduct considering ARS’s as rewrite relations. However, since we are interested in reducing
the remainder of what is left of one step in another step, it seems to be appropriate to
be able to distinguish the two witnesses above. Proof terms provide one way of doing so.

In equational logic we have inference rules for reflexivity, symmetry, transitivity and
congruence. Meseguer’s rewriting logic is equational logic without symmetry [18]. Proof
terms capture this idea and pose term representations for reduction sequences of an
associated TRS by means of rewriting logic instead of equational logic, i.e., there exists
no proof term corresponding to an inference rule for symmetry. To simplify the theory
even further we also do not employ a proof term corresponding to the inference rule of
reflexivity, as is done in Terese and the corresponding article by van Oostrom & de Vrijer
[23, 28]. We justify this after we have given a formal definition of proof terms.
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Definition 4.1.2. Let T = (�, R) be a TRS. The disjoint union of �, R and a binary
composition symbol {·} is called the proof term signature of T , where each rule fl in R,
also denoted by fl, is associated with the number of free variables in the left-hand side as
its arity. In case fl : ¸ æ r is a rule with n free variables in ¸ we denote by ¸(s1, . . . , sn)
and r(s1, . . . , sn) the terms obtained by substituting si in ¸ and r for the ith variable in
fl, respectively, assuming the variables are sequenced in an arbitrary but fixed order.

Hence, the proof term signature supplements the signature of a TRS by its rule symbols
and a composition symbol. On the basis of that signature an underlying ARS is defined.

Definition 4.1.3. Let T = (�, R) be a TRS. The underlying abstract rewrite system
ØT is defined as follows:

• The objects are terms over �.

• The steps are a subset of the terms over the proof term signature of T . They are
inductively defined by the following inference system:

„1 : s1 ØT t1 . . . „n : sn ØT tn

f(„1, . . . , „n) : f(s1, . . . , sn) ØT f(t1, . . . , tn)
(Rep)

„1 : s1 ØT t1 . . . „n : sn ØT tn

fl(„1, . . . , „n) : ¸(s1, . . . , sn) ØT r(t1, . . . , tn)
(Rule)

„ : s ØT t Â : t ØT u

(„ · Â) : s ØT u
(Transitivity)

The above inference system also defines the src- and tgt-functions.

Remark 4.1.4. (REP) is an abbreviation for Replacement. If T is clear from the context
we may write Ø instead of ØT .

By the underlying ARS ØT of a TRS T we defined term representations of reduction
sequences or, as they are also called, of proofs, which finally define proof terms. Hence,
proof terms are proof of reachability, i.e., if „ : s ØT t the proof term „ proves that t is
reachable from s using the rules replacement, rule, and transitivity.

Definition 4.1.5. Let T = (�, R) be a TRS. A proof term (or just proof ) is a step of
the underlying ARS ØT .

Remark 4.1.6. As mentioned in the introduction to this section no proof term correspond-
ing to the inference rule of reflexivity is defined. It might seem unavoidable to have an
inference rule à la

1s : s ØT s
(Reflexivity)

for rewriting logic. However, as stated by van Oostrom & de Vrijer, constants and
variables behave in like manner with respect to permutation equivalence, which they show
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equivalent to projection equivalence [28]. And since we are interested in proof terms with
respect to residual systems defining a projection equivalence, we can safely assume proof
terms to be ground. Furthermore, the replacement-rule applied to constants provides
us with a way to derive s : s ØT s for any ground term s. Hence, a rule for reflexivity
would be redundant for our purposes.

The next theorem shows that proof terms indeed represent what we intended them to
represent.

Theorem 4.1.7. Let T = (�, R) be a TRS. Then, æú
T = ØT .

Proof. Given an inference step of æú, we can naturally find a proof term representation.
1a translates to a, a T -step translates to ‘itself’ and composition translates to composition.
Vice versa, by an easy induction on the proof terms a characterization in æú is shown.

Note that in the proof above we implicitly handled x æú x for x a variable as mentioned
in Remark 4.1.6. With Theorem 4.1.7 in mind we now can suitably restrict the underlying
ARS and obtain equivalents to multi-step, parallel step and single-step rewriting.

Definition 4.1.8. Let ≠æ¶ T := ÈA, �0, src0, tgt0Í, ≠æ= := ÈA, �1, src1, tgt1Í and æT :=
ÈA, �2, src2, tgt2Í be defined as the sub-abstract-rewrite-systems of ØT := ÈA, �, src, tgtÍ,
such that

• �0 ™ � is the set defined by the proof terms consisting only of function and rule
symbols over the proof term signature of T ,

• �1 ™ �0 is the set defined by the proof terms consisting furthermore of no nested
rule symbols,

• �2 ™ �1 is the set defined by the proof terms consisting of exactly one rule symbol,

and srci, tgti the restriction of �i for i œ {0, 1, 2}. Steps in ≠æ¶ T are called multi-steps
of T , steps in ≠æ= T are called parallel steps of T and steps in æT are called (single-)
steps of T . If T is clear from the context we may omit the subscript and write ≠æ¶ , ≠æ=

or æ instead.

Remark 4.1.9. The inference steps as, e.g., in [23, Definitions 4.7.1, 4.7.3, 4.7.11] each
correspond to an inference step for proof terms, vice versa, by an easy induction on
the respectively defined subsets of the proof terms a relational characterization can be
derived. For this reason above defined notions of single-step, parallel step and multi-step
indeed coincide with the respective concepts of relational rewriting.

Example 4.1.10. Consider the TRS T defined by {fl : f(f(x)) æ x, Î : g(f(x), y) æ
g(x, f(y))}. The proof term Î(a, fl(b)) : g(f(a), f(f(b))) ≠æ¶ T g(a, f(b)) defines a multi-
step, g(fl(a), fl(b)) : g(f(f(a)), f(f(b))) ≠æ= T g(a, b) a parallel-step and g(fl(a), b) :
g(f(f(a)), b) æT g(a, b) a single-step.

The next corollary is a simple conclusion from Definition 4.1.8 and confirms the
understanding the reader might already have from the relational point of view.
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4 Equivalences of Reductions

Corollary 4.1.11. æT ™ ≠æ= T ™ ≠æ¶ T ™ ØT .

Coming back to Example 4.1.1 we now have a simple way of distinguishing each witness,
which is illustrated below.

Example 4.1.12. Let T be the TRS from Example 4.1.1. The two single-step derivations

a : a ØT a
(Rep)

f(a) : f(a) ØT f(a)
(Rep)

fl(f(a)) : f(f(a)) ØT f(a)
(Rule)

a : a ØT a
(Rep)

fl(a) : f(a) ØT a
(Rule)

f(fl(a)) : f(f(a)) ØT f(a)
(Rep)

are both witnesses to f(f(a)) æ f(a).

4.2 Overlaps

In the previous section we saw proof terms as an appropriate representation of reductions.
Now, we will focus on the interaction of two co-initial proof terms and give a definition of
orthogonality. We consider orthogonality as a property between two steps, rather than as
a property of rewrite systems. We further show that orthogonal steps can equivalently be
described as having no overlap. The study of orthogonal systems is motivated by the fact
that, as we will see later, theses systems ensure confluence. Furthermore, constructing a
residual system for orthogonal TRS’s provide first and valuable insights for our overall goal
of a construction of a residual system for self-distributivity. Hence, they will accompany
us throughout this thesis and serve as an initial example.

In the following section we will use contexts in combination with proof terms. So, from
here on we supplement the proof term signature with the constant ⇤ implicitly when
needed, and begin this section by defining overlaps.

Definition 4.2.1. Let T = (�, R) be a TRS.

• s is a fl-redex, if there exists a substitution ‡ such that s = src(fl(x‡
1 , . . . , x‡

n)) for
fl œ R.

• The fl-pattern of a rule fl : l æ r œ R is defined as the proof term fl(⇤, . . . ,⇤) for
fl œ R.

• The pattern of a single-step „ : s æT t is a proof term resulting from replacing the
sub-term with fl œ R as head symbol by its corresponding fl-pattern in „.

• A function symbol occurrence Èf | C[ ]Í in s is rule-based with respect to a single-
step „ : s æT t, if it is not a function symbol occurrence in „ and the source of the
pattern of „ is not a prefix of C[ ]. In that case, we also call Èf | C[ ]Í rule-based
in „.

• Two co-initial single-steps „, Â overlap, if there exists Èf | C[ ]Í, which is a rule-based
function symbol occurrence in „ and Â. The overlap is trivial, if „ = Â.
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g

bf

f

a

Figure 4.1: Visualizing overlap of two co-initial single-steps „ = g(fl(a), b) and Â =
Î(f(a), b) with fl : f(f(x)) æ x (dashed) and Î : g(f(x), y) æ g(x, f(y))
(dotted) at function symbol occurrence Èf | g(⇤, b)Í.

• Two rules fl, Î œ R overlap, if there exist two distinct co-initial single-steps „ : s æT
t1, Â : s æT t2, such that „ and Â overlap, due to fl in „ and due to a Î in Â.

• T is called overlapping or ambiguous, if for any pair fl, Î œ R of rules fl and Î do
not overlap. Otherwise T is called non-overlapping or non-ambiguous.

Remark 4.2.2. Note, that an overlap of two single-steps is solely determined by their
sources.

Hence, two co-initial single-steps overlap, if they share a function symbol occurrence
in their source, which is rule-based in both steps. The condition on the pattern of „
not being a prefix of C[ ] defining rule-based, especially excludes an ‘overlap’ at a rule’s
variable position.

Example 4.2.3. Let (�, æ) be a TRS consisting of the rules fl : f(f(x)) æ x and
Î : g(f(x), y) æ g(x, f(y)). The two steps „ = g(fl(a), b) : g(f(f(a)), b) æ g(a, b) and
Â = Î(f(a), b) : g(f(f(a)), b) æ g(f(a), f(b)) are then co-initial. There exist five function
symbol occurrences in g(f(f(a)), b), namely, Èg | ⇤Í, Èf | g(⇤, b)Í, Èf | g(f(⇤), b)Í,
Èa | g(f(f(⇤)), b)Í and Èb | g(f(f(a)),⇤)Í, where the first is only rule-based in Â, the
second is rule-based in „ as well as in Â and, where the third is only rule-based in „. The
latter two function symbol occurrences are neither rule-based in „ nor in Â. Hence, „, Â
overlap due to the second function symbol occurrence and so do fl, Î (see Figure 4.1).

Now, two co-initial single-steps are defined as orthogonal, if we can join them into one
proof term, without composition, i.e., if they do not overlap. We distinguish two types of
orthogonality. First, horizontal orthogonality denoting the rule symbols being in parallel
sub-terms and vertical orthogonality denoting the rule symbols being above each other.

Definition 4.2.4. Let „ : s æT t1, Â : s æT t2 be distinct, co-initial single-steps in a
left-linear TRS T = (�, R), such that „ = C[fl(x‡

1 , . . . , x‡
n)], Â = D[Î(x·

1 , . . . , x·
m)] with

fl, Î œR and ‡, · substitutions. If neither C[ ] is a prefix of D[ ] nor vice versa, „ and Â
are horizontally orthogonal. If C[ ] is a prefix of D[ ] and there exists no function symbol
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4 Equivalences of Reductions

occurrence in s, which is a rule-based function symbol occurrence of „ and Â, the steps
are vertically orthogonal. The steps „, Â are called orthogonal if they are either vertically
or horizontally orthogonal and we write „ ‹ Â.

Next, we show that orthogonality of two co-initial single-steps is equivalent to the
absence of overlaps. It may be noted that orthogonality of steps is defined for left-linear
TRS’s only. Hence, assuming two steps to be orthogonal implies them to be left-linear.

Theorem 4.2.5. Let „ : s æT t1 and Â : s æT t2 be co-initial single-steps. „ and Â are
horizontally or vertically orthogonal, if and only if they do not overlap.

Proof. (If-direction) Let „, Â be horizontally orthogonal. Then there exist contexts
C[ ], D[ ] and substitutions ‡, · with „ = C[fl(x‡

1 , . . . , x‡
n)], Â = D[Î(x·

1 , . . . , x·
m)], such

that neither D[ ] is a prefix of C[ ] nor vice versa. Hence, rule-based function symbol
occurrences in „ will not coincide with rule-based function symbol occurrences in Â.

Let „, Â be vertically orthogonal. The claim is a direct consequence of the definition
of vertical orthogonality, which excludes overlaps.

(Only-if direction) We show the equivalent statement, that if „ and Â are neither
horizontally nor vertically orthogonal they overlap. Let „ = C[fl(x‡

1 , . . . , x‡
n)], Â =

D[Î(x·
1 , . . . , x·

m)] with ‡, · substitutions for the contexts C[ ], D[ ]. If „ and Â are not
horizontally orthogonal one of the contexts is a prefix of the other. Without loss of
generality assume C[ ] to be a prefix of D[ ]. Since „ and Â are not vertically orthogonal,
there exists either no function symbol occurrence in s at all, or there exists a function
symbol occurrence, which is a rule based function symbol occurrence in „ and Â. The
former case implies s to be a single variable, which is impossible due to the definition of
TRS. Hence, „ and Â overlap.

On the basis of orthogonal steps we define orthogonal term rewriting systems, such
that no pair of rules overlap.

Definition 4.2.6. A TRS T = (�, R) is orthogonal if T is left-linear and for all pairs
fl, Î œ R it holds that fl, Î do not overlap.

Remark 4.2.7. Note, that in Definition 4.2.6 we do not exclude overlaps of the same rule,
but we only exclude trivial overlaps as steps have to be distinct in Definition 4.2.1.

Justifying the naming of an orthogonal TRS, we show that, as one would expect, steps
in such a system are indeed orthogonal.

Corollary 4.2.8. Two distinct co-initial single-steps in an orthogonal TRS are orthogo-
nal.

Proof. Direct consequence from the definition of orthogonal TRS and rule overlap.

We extend the definition of orthogonality to parallel steps and multi-steps by thinking
of them as a collection of single-steps. If all single-steps are mutually orthogonal between
the two collections we consider the collections orthogonal. Below this idea is formalized.
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4.3 Tracing

Definition 4.2.9. Let „, Â be co-initial multi-steps.

• We define „Õ œ „ if „Õ is obtained by replacing all but one rule symbol by their
left-hand side, i.e., „ rewrites to „Õ by rewrite rules fl(x1, . . . , xn) æ ¸(x1, . . . , xn)
for fl : ¸ æ r œ R.

• A function symbol occurrence o is rule-based for a multi-step „ : s ≠æ¶ T t if there
exists a single-step „Õ œ „ such that o is a rule-based function symbol occurrence in
„Õ.

• Two distinct multi-steps „, Â are orthogonal if for all distinct pairs „Õ œ „, ÂÕ œ Â
the single-steps „Õ, ÂÕ are orthogonal.

• „, Â overlap if there exist „Õ œ „, ÂÕ œ Â such that „Õ, ÂÕ overlap. We call the
overlap trivial, if „ = Â.

As first examples for residual systems we will see systems for multi-steps and parallel-
steps, respectively. For multi-steps a similar equivalence holds, as it does for single-steps.

Corollary 4.2.10. Let „, Â be co-initial multi-steps. If „, Â are orthogonal they do not
overlap. If „, Â are not orthogonal they overlap.

Proof. Direct consequence of Theorem 4.2.5.

As parallel-steps are a sub-ARS of multi-steps the same result obviously holds for
parallel-steps as well.

We end this section addressing the necessary condition of left-linearity for orthogonal
systems. In general, orthogonality implies confluence, which will be proven later in the
context of residual systems, however, non-ambiguity alone is not enough as Klop showed
[14, Chapter 3]. The following summarizes Klop’s counter example.

Example 4.2.11. Let T be a TRS, consisting of the rewrite rules {fl : g(x, x) æ b, Î :
f(x) æ g(x, f(x)), Ë : a æ f(a)}. Due to fl the system is not left-linear. Moreover, it is
non-ambiguous, as each left-hand side consists of a single function symbol and no pair of
left-hand sides contain the same symbol, i.e., no two co-initial single-steps can share a
function symbol occurrence.

To see that T is not confluent, note that there exist co-initial reductions „ : a ⇣ b and
Â : a ⇣ f(b) of æ. However, b is a normal form and the only reductions of æ having
f(b) as source have g(b, g(b, g(. . . , g(b, f(b)) . . .))) as target. As a consequence the system
is not confluent.

4.3 Tracing

After we saw how to determine an overlap between proof terms in the last section we
now introduce tracing, which provides a way to follow the behaviour of sub-terms along
reductions. This is done by relating positions in the source to positions in the target of
rules and then naturally extend the procedure to proof terms by means of an algebra. In
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4 Equivalences of Reductions

this way properties are traced from the source through to the target of a reduction. This
is particularly useful for us regarding associativity, since we will see that proof terms
on both paths of a diamond induce the same relation. For this reason each sub-term in
the source behaves equally no matter what path we take. Obviously this also applies to
redex-patterns being the key to its residual system. We will transfer this method from
associativity to self-distributivity and apply it similarly.

Generally, �-algebras provide a semantic interpretation of terms. Concerning associa-
tivity and self-distributivity, we are going to consider the �-algebra, where � is the proof
term signature of the respective TRS T , having relations between positions as carrier.
We call this algebra hereafter the proof term algebra A of the TRS T . Before specifying
the interpretation of proof terms, we are going to introduce rule tracings, on which the
interpretations will depend.

Definition 4.3.1. Let T = (�, R) be a TRS. A rule tracing of fl : ¸ æ r œ R is a relation
[flÍ ™ Pos(¸) ◊ Pos(r), such that ‘ relates to one or more non-variable positions in r,
other non-variable positions in ¸ relate to zero or more non-variable positions in r and
variables relate to themselves, i.e. p [flÍ q, if ¸|p = x = r|q for variable x. The case, where
r is merely a single variable is an exception allowing non-variable positions in ¸ to relate
to the variable position ‘ in r, especially (‘, ‘) œ [flÍ.

Hence, by above definition we trace the positions of the left-hand sides to the right-hand
sides of a rule. Positions of variables in the left-hand side relate to all positions of the
same variable of the right-hand side. Non-variable positions of the left-hand side may
but don’t need to relate to non-variable positions of the right-hand side, except the case
where r is exactly one variable, where we allow non-variable positions to relate to the
single variable. Furthermore, the position of the head symbol of the left-hand side always
relates to a position of the right-hand side. We exemplary illustrate this at the TRS we
already saw in Section 4.2.

Example 4.3.2. Consider the TRS of Example 4.2.3, consisting of the rules fl :
f(f(x)) æ x and Î : g(f(x), y) æ g(x, f(y)). Then, [flÍ = {(‘, ‘), (0, ‘), (00, ‘)} and
[ÎÍ = {(‘, ‘), (0, 1), (00, 0), (1, 10)} define corresponding rule tracings.

The relation {(00, ‘)} does not represent a rule tracing for fl as the head symbol of the
left-hand side leaves no trace in the right-hand side. The relation {(‘, 1), (0, 0), (00, 0),
(1, 10)} does not represent a rule tracing for Î as the non-variable position 0 in the
left-hand side relates to the variable position 0 in the right-hand side.

To define the interpretation of a proof term algebra we adhere to the following notation
concerning functions of relations.

Notation 4.3.3. Let T = (�, R) be a TRS with a given rule tracing [flÍ for each fl œ R
and let R1, . . . , Rn be relations on positions.

• For f œ � the expression f(R1, . . . , Rn) is notation for the relation, which relates ‘
to ‘ and i · p to i · q if p Ri q.
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4.4 Residual Systems

• For fl œ R with fl : ¸ æ r the expression fl(R1, . . . Rn) is notation for the relation,
which relates p to q if p [flÍ q as well as p · pÕ to q · qÕ if p is a variable position at xi

in ¸ with p [flÍ q and pÕ Ri qÕ.

Now, a trace relation of a proof term „ is an interpretation in the corresponding proof
term algebra defined by a given set of rule tracings.

Definition 4.3.4. Let T = (�, R) be a TRS with a given set of rule tracings P =
{[flÍ | fl œ R} (by P we denote the capital fl). The interpretation of „ : s ØT t in the
proof term algebra of T is inductively defined as a relation [[„ÍÍP ™ Pos(s) ◊ Pos(t) by

[[„ÍÍP :=

Y
__]

__[

f([[„1ÍÍP , . . . , [[„nÍÍP ) if „ = f(„1, . . . , „n) with f œ �
fl([[„1ÍÍP , . . . , [[„nÍÍP ) if „ = fl(„1, . . . , „n) with fl œ R

[[„1ÍÍP · [[„2ÍÍP if „ = „1 · „2

under Notation 4.3.3. The relation [[„ÍÍP is called the trace relation of „. If P is clear
from the context we write [[„ÍÍ instead of [[„ÍÍP .

So, proof terms are interpreted as relations according to a given set of rule tracings
and proof term composition is interpreted as relation composition. As a unit proof term
relates its source to itself we interpret it as the identity relation. Intuitively, the trace
relation can be seen as a natural extension from the rule tracings to proof terms. Next, we
carry this extension out and derive a trace relation of the proof terms from the previous
section’s example.

Example 4.3.5. Consider the TRS and the corresponding set of rule tracings P from Ex-
ample 4.3.2. The trace relations of the proof terms from Example 4.2.3, i.e., „ = g(fl(a), b)
and Â = Î(f(a), b), are then given by [[„ÍÍP = {(‘, ‘), (0, ‘), (00, ‘), (000, ‘), (1, 1)}, and
[[ÂÍÍP = {(‘, ‘), (0, 1), (00, 0), (000, 00), (1, 10)}, respectively.

For the rewrite system of associativity in Section 5.2 and of self-distributivity in
Section 6.4, we will show that the established trace relations of the left and right side of
a diamond are equal. This result ensures that tracing a redex-pattern along either side
results in the same pattern, and, as we will furthermore define steps via redex-patterns,
this gives us sort of an associative property.

4.4 Residual Systems

In preceding sections proof terms were introduced, their overlaps discussed and orthogonal
systems defined. Afterwards, proof term algebras were presented. Next, residual systems
are established providing confluence.

Comparing the confluence property (Definition 2.2.9) with the diamond property
(Definition 2.2.5) it becomes apparent that confluence is nothing more than the diamond
property for reductions. Eliminating existential quantifiers of the diamond property
results for the skolem function f, g in the following: For all „ : s æ t1, Â : s æ t2 it holds
that f(„, Â) : t1 æ t, g(„, Â) : t2 æ t. By symmetry and the axiom of choice we can
assume f(„, Â) = g(Â, „). Hence,
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For all „ : s æ t1, Â : s æ t2 it holds that g(Â, „) : t1 æ t, g(„, Â) : t2 æ t.

A witness to the function g is called a residuation and is denoted by /. If the residuation
fulfils certain axioms for an ARS together with a unit the triple defines what is called
in Terese a residual system [23, Section 8.7]. As for many rewrite systems the diamond
property does not hold we will enrich the system in a minimal way when possible by
the compositions of steps necessary for the diamond property to hold, which is called
faceting by van Oostrom [26], hence, we consider reductions. To form the intuition on
the implications of the axioms for a residuation in a residual system consider the next
exemplary illustration.

When we think of a reduction as a collection of tasks, we can quasi-order co-initial
steps by considering, whether or not there are tasks left in a collection after we have
done all tasks of another collection. As an example, let the tasks be to gather groceries,
i.e., the collection of tasks are shopping lists. The mini-market you are at has the items
1 to 10. Shopping list A consists of the items 3,4,5 and shopping list B comprises the
items 2,4,6. The two lists are incomparable, as doing A first leaves still 2 and 6 to collect
in B. Doing B first leaves 3 and 5 to collect in A. Now confluence is the property that a
list incorporating the tasks of A and B can always be found. One easy way would be to
follow a list C collecting all items 1 to 10 of the mini-market, as there would no tasks of
neither list be left. Hence, both A and B are smaller than C. Residual systems provide
us with the list consisting exactly of the items 2 to 6, i.e., a list which is an upper bound
to both but also smaller than any other upper bound. Di�erently said, no tasks are left
to do but also no superfluous work has been done.

Not surprisingly this intuition is overly simplified and rather fits orthogonal systems
as tasks are independent of each other, i.e., have no overlap. However, we could face the
situation that, e.g., doing 2 changes 3 to 7 or other dependencies such as 3 and 2 together
also require 1, which will be the case in Chapter 5 and 6. Formalizing the intuition above
we first define residuation.

Definition 4.4.1. Let æ := ÈA, �, src, tgtÍ be an ARS. Furthermore, let D ™ � ◊ �
denote the set of co-initial steps in � and let / : D æ � be a function from co-initial
steps to steps. If tgt(„) = src(/(Â, „)) and tgt(/(„, Â)) = tgt(/(Â, „)) the function /
is called a residuation for æ. We may sometimes refer to a residuation as a residual
function and we may write / in infix notation, i.e., Â/„ for /(Â, „).

Then, a residual system is a triple consisting of an ARS, a unit and a residuation
fulfilling certain axioms.

Definition 4.4.2. A residual system is a triple Èæ, 1, /Í, that satisfies the residual
identities:

(„/Â)/(‰/Â) ¥ („/‰)/(Â/‰) (R1)
„/„ ¥ 1 (R2)
„/1 ¥ „ (R3)
1/„ ¥ 1 (R4)

28



4.4 Residual Systems

•

•

•

•

•

• •

•
„

‰

Â

„/Â

„/‰

Â/‰

‰/Â

(„/Â)/(‰/Â)
¥

(„/‰)/(Â/‰)

•

• •

•

„ „

1 1

•

• •

•

1 „

„/1 1/„

Figure 4.2: Visualization of the residual identities R1–R4.

where / is a residuation for the ARS æ = ÈA, �, src, tgtÍ with the unit 1 and „, Â, ‰ œ �.

Remark 4.4.3. We pronounce „/Â as „ after Â. R1 is also referred to as the cube identity.
R2–R4 are also referred to as the unit identities (see Figure 4.2).

The cube identity expresses that performing the step „ after either path of the bottom
face of the cube in Figure 4.2 results in the same step. As an intuition for the unit
identities we can call the unit 1 a loop. R2 then reads as a step after itself is a loop, R3
as a step after a loop is the step again and R4 as a loop after a step is again a loop.

The first examples of residual systems are given by parallel step and multi-step
rewriting for orthogonal systems. According to the intuition of the entry example to this
section tasks correspond to pairwise orthogonal single-steps collected in parallel steps
and multi-steps, respectively. We first define a corresponding residuation.

Lemma 4.4.4. The function / defined by

„/Â :=

Y
_____]

_____[

f(„1/Â1, . . . , „n/Ân) if „ = f(„1, . . . , „n), Â = f(Â1, . . . , Ân)
fl(„1/Â1, . . . , „n/Ân) if „ = fl(„1, . . . , „n), Â = ¸(Â1, . . . , Ân), fl : ¸ æ r

r(„1/Â1, . . . , „n/Ân) if „ = ¸(„1, . . . , „n), Â = fl(Â1, . . . , Ân), fl : ¸ æ r

r(„1/Â1, . . . , „n/Ân) if „ = fl(„1, . . . , „n), Â = fl(Â1, . . . , Ân), fl : ¸ æ r

is a residuation for ≠æ= T and ≠æ¶ T with „ ‹ Â.

Proof. First, we show that / is well-defined. Consider the function symbol occurrence
Èf | ⇤Í in s and consider two co-initial multi-steps „ : s ≠æ¶ T t1, Â : s ≠æ¶ T t2. We have
three cases to distinguish:

(a) Èf | ⇤Í is not a rule-based function symbol occurrence in either „ or Â, hence f is
a function symbol of „ and Â and „i, Âi are co-initial again, since „ and Â are.

(b) Èf | ⇤Í is a rule-based function symbol occurrence in either „ or Â. Assume f is
the head symbol of the left-hand side of fl and without loss of generality Èf | ⇤Í is
rule-based in „, i.e. „ = fl(„1, . . . , „n) and since „, Â are co-initial it follows that
Â = ¸(Â1, . . . , Ân) and that „i, Âi are co-initial again.
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„ Â ‰
1 f(„1, . . . , „m) f(Â1, . . . , Âm) f(‰1, . . . , ‰m)
2 fl(„1, . . . , „n) ¸(Â1, . . . , Ân) ¸(‰1, . . . , ‰n)
3 ¸(„1, . . . , „n) fl(Â1, . . . , Ân) ¸(‰1, . . . , ‰n)
4 fl(„1, . . . , „n) fl(Â1, . . . , Ân) ¸(‰1, . . . , ‰n)
5 ¸(„1, . . . , „n) ¸(Â1, . . . , Ân) fl(‰1, . . . , ‰n)
6 fl(„1, . . . , „n) ¸(Â1, . . . , Ân) fl(‰1, . . . , ‰n)
7 ¸(„1, . . . , „n) fl(Â1, . . . , Ân) fl(‰1, . . . , ‰n)
8 fl(„1, . . . , „n) fl(Â1, . . . , Ân) fl(‰1, . . . , ‰n)

Table 4.1: Comparing the possible proof term structures of three co-initial multi-steps
„, Â and ‰ with T = (�, R) orthogonal and fl : ¸ æ r œ R.

(c) Èf | ⇤Í is a rule-based function symbol occurrence in both „ and Â. Since „ ‹ Â
the single-steps „Õ œ „ and ÂÕ œ Â where the rule-based function symbol occurrence
originate from (see Definition 4.2.9) must coincide, hence, „ = fl(„1, . . . , „n) and
Â = fl(Â1, . . . , Ân). In that case „i, Âi are obviously co-initial.

Since the inductive structure of / is defined on proof terms the case in (b) and (c) where
f is not a head symbol in s does not occur. It follows that for any pair of co-initial
multi-steps exactly one clause defining / applies, hence / is total on co-initial, orthogonal
multi-steps and, thus, total on orthogonal parallel steps as well.

By induction on the clauses of / it follows that „/Â is a multi-step again for „, Â
multi-steps and a parallel step for „, Â parallel steps.

By another induction on the clauses of / it is easy to prove that tgt(„) = src(Â/„) and
tgt(Â/„) = tgt(„/Â) holds.

By induction we show that parallel steps and multi-steps also constitute residual
systems for orthogonal rewriting.

Lemma 4.4.5. Let T be an orthogonal TRS. È≠æ= T , 1, /Í as well as È≠æ¶ T , 1, /Í both
constitute a residual system for the residuation / defined in Lemma 4.4.4.

Proof. The claim is shown by structural induction on proof terms. To do so and since T
is orthogonal, we have to distinguish 8 di�erent cases to show R1, see Table 4.1. Note
that ¸(„1, . . . , „n)/¸(Â1, . . . , Ân) = ¸(„1/Â1, . . . , „n/Ân), since it is a possibly repeated
application of the first clause of /. R2–R4 easily follow by definition of the unit 1s : s æ s,
which is a proof term without rule (or composition) symbol.

Corollary 4.4.6. Orthogonal rewrite systems are confluent.

Proof. By Lemma 4.4.4 the ARS ≠æ= was shown to posses the diamond property for
orthogonal steps, where the function / posed a witness. Now, let æ be an orthogonal
rewrite system. By Corollary 4.1.11 æ ™ ≠æ= ™ ØT = æú, where the last equality
follows from Theorem 4.1.7. Confluence then is a direct consequence of Proposition
2.2.12.
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4.4 Residual Systems

From Corollary 4.4.6 above we see that confluence of orthogonal rewrite systems
already follows from Lemma 4.4.4. That the residuation of a residual system indeed only
performed the steps (or tasks) necessary follows from Lemma 4.4.5, but has not been
made explicit yet. Hence, to understand that we have to go into greater detail.

Van Oostrom and de Vrijer introduced residual systems in the context of projection
equivalence [23, 28]. Intuitively, it describes the equivalence when the collection of tasks
is contained in another collection and vice versa.

Definition 4.4.7. Let Èæ, 1, /Í be a residual system. The projection order . and the
corresponding projection equivalence ƒ are defined by

„ . Â if „/Â = 1
„ ƒ Â if „ . Â and Â . „

for co-initial steps „, Â.

For the projection order transitivity and reflexivity follow from R1 and R2, respectively.
Hence, it defines a quasi-order.

Lemma 4.4.8. The projection order . defined by a residual system Èæ, 1, /Í is reflexive
and transitive.

Proof. By R2 it holds that „/„ = 1 implying „ . „, i.e., . is reflexive. Furthermore, if
„ . Â and Â . ‰ it holds that „/Â = 1 as well as Â/‰ = 1. Thus,

„/‰ = („/‰)/1 = („/‰)/(Â/‰) = („/Â)/(‰/Â) = 1/(‰/Â) = 1,

where the first equality follows from R3, the third from R1 and the last from R4.

Nonetheless, the following example shows that the projection order is not a partial
order, as it is in general not anti-symmetric.

Example 4.4.9. Consider the TRS defined by {fl : f(x) æ c, Î : a æ b}. The system is
orthogonal as it is left-linear and rules consist of single and pairwise distinct function
symbols. Moreover, consider the co-initial and co-final multi-steps fl(a) : f(a) æ c and
fl(Î) : f(a) æ c. Then, fl(a)/fl(Î) = 1 and fl(Î)/fl(a) = 1 implying fl(a) . fl(Î) and
fl(Î) . fl(a) for the residuation defined in Lemma 4.4.4 despite the two proof terms being
distinct.

However, for every quasi-order . there exists a partial order by identifying x with y,
if x . y · y . x. And as the projection equivalence is an equivalence relation, which
easily follows by Lemma 4.4.8, we obtain a partial order identifying projection equivalent
proof terms. We will not go into further details here but refer to [23, Section 8.7.2]. More
important to us is the following definition of join, using the projection order.

Definition 4.4.10. The join is a step „ Û Â such that

• „ . „ Û Â and Â . „ Û Â, i.e., the join is an upper bound of „, Â,
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4 Equivalences of Reductions

• „ Û Â . ‰ for all upper bounds ‰ of „, Â, i.e., it is the least upper bound.
for two steps „, Â.

Nevertheless, for a residual system joins need not exist as the following example shows.
Example 4.4.11. The TRS defined by {fl : f(x) æ g(x, x), Î : a æ b} is orthogonal
for the same reason as the TRS from Example 4.4.9 is. The two parallel steps fl(a) :
f(a) ≠æ= g(a, a) and f(Î) : f(a) ≠æ= f(b) are co-initial. We can complete the diamond
by the two co-final steps g(Î, Î) : g(a, a) ≠æ= g(b, b) and fl(b) : f(b) ≠æ= g(b, b) but no
step from f(a) to g(b, b) exists.

Note that for above example the join exists, if we consider multi-step rewriting. The
proof term given by fl(Î) : f(a) ≠æ¶ g(b, b) is a witness to the join. But we can turn every
residual system into a residual system, such that joins exist.
Definition 4.4.12. A residual system with composition is a quadruple Èæ, 1, /, ·Í such
that Èæ, 1, /Í is a residual system and · is a binary operation on composable steps
satisfying the composition identities:

1 · 1 ¥ 1 (C1)
‰/(Â · „) ¥ (‰/Â)/„ (C2)
(‰ · Â)/„ ¥ (‰/„) · (Â/(„/‰)) (C3)

The designated join „ Û Â is defined as „ · (Â/„).
Theorem 4.4.13. For a residual system with composition Èæ, 1, /, ·Í joins exist and are
projection equivalent to the designated join.
Proof. Obviously, „ . „ · (Â/„) as

„/(„ · (Â/„)) = („/„)/(Â/„)
= 1/(Â/„)
= 1

due to C2 for the first equality and R2 and R4 for the second and third equality,
respectively. Similarly, Â . „ · (Â/„) as

Â/(„ · (Â/„)) = (Â/„) · (Â/„)
= 1

due to C1 and R2. Hence, the designated join is an upper bound for „ and Â. Let ‰ be
a further upper bound, then „/‰ = 1 and Â/‰ = 1. We show that the designated join is
at least as small as ‰.

(„ · (Â/„))/‰ = („/‰) · ((Â/„)/(‰/„))
= 1 · ((Â/„)/(‰/„))
= 1 · ((Â/‰)/(„/‰))
= 1 · (1 · 1)
= 1
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4.4 Residual Systems

where C3, R1 and C1 was applied to the first, third and fifth equation, respectively. The
remaining equalities are consequences of ‰ being an upper bound to „ and Â. Thus, the
designated join is a least upper bound and if ‰ is least as well it is projection equivalent
to the designated join.

Hence, coming back to the example of orthogonal systems Theorem 4.4.13 proved that
the residuation defined in Lemma 4.4.4 indeed defines a least skolem function, which
was shown in Lemma 4.4.5 as it defines a residual system. Intuitively, the residuation
provided only as many tasks as necessary.

From the cube law, the unit identities, and from the composition identities we can
infer many properties for residual systems.

Corollary 4.4.14. For a residual system the following holds:

‰/(„ Û Â) = (‰/„)/(Â/„)
‰/(„ Û Â) = ‰/(Â Û „)
(„ Û Â)/‰ = („/‰) Û (Â/‰)

with „, Â, ‰ co-initial.

Proof. Follows by the definition of designated join as well as C2 and R1.

Remark 4.4.15. We call the identities of Corollary 4.4.14 the residual cube laws.
Summarizing residuation provides upper bounds, residual systems provide a least upper

bound and for any residual system the extension on composable steps exists and has
joins.
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5 Comprehensive Examples of Residual

Systems

The following chapter discusses comprehensive examples of residual systems showing
similarities to self-distributivity. It provides the opportunity to abstract from these
similarities and derive a residual system for self-distributivity. The examples comprise
three rewrite systems: The S-combinator of combinatory logic, associativity and braids.
These examples are relevant for our purposes, since the S-combinator bears a syntactic
resemblance in the target to self-distributivity, and since associativity has a syntactic corre-
spondence in the source. Furthermore, braids have a close proximity to self-distributivity
as Dehornoy extensively examines in his monograph [8]. With the last example we will
see that residual systems extend beyond term rewriting as we will formulate braiding via
an abstract rewrite system.

5.1 The S-Combinator

An omnipresent example of an orthogonal TRS is Combinatory Logic (CL) invented by
Moses Schönfinkel [21]. The signature of CL consists of a binary symbol ú and three
constants S, K, I together with the rules

ú(I, x) æ x

ú(ú(K, x), y) æ y

ú(ú(ú(S, x), y), z) æ ú(ú(x, z), ú(y, z))

For simplicity we use the binary symbol in an implicit infix notation and associate to the
left, e.g., we write Sxyz for ú(ú(ú(S, x), y), z). Due to the similarity to self-distributivity
on the right-hand side the last rule is of particular interest. Thus, for the remainder of
this section we will consider the TRS TS containing the signature �S := {ú, S} and the
single rule

fl : Sxyz æ xz(yz).

That this system is not terminating is well-known, as for example is shown by Wald-
mann [29]. Left-linearity is obvious. We do not prove orthogonality but we show only
that the function / defined in Lemma 4.4.4 is well-defined for multi-steps ≠æ¶ TS . Let
src(„) = s = src(Â) and assume „ = fl(„1, „2, „3). There exist four rule based func-
tion symbol occurrences of „ in s. These are o1 = Èú | ⇤Í, o2 = Èú | ú (⇤, src(„3))Í,
o3 = Èú | ú (ú(⇤, src(„2)), src(„3))Í and o4 = ÈS | ú (ú(ú(⇤, src(„1)), src(„2)), src(„3))Í.
If the occurrence o1 is also rule-based according to Â the last case applies as Â =
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5.1 The S-Combinator

Suv(Sxyz)

Suv(xz(yz)) u(Sxyz)(v(Sxyz))

u(xz(yz))(v(xz(yz)))

Â „

„/Â

=

Â/„

Suv(Sxyz)

u(Sxyz)(v(Sxyz))

u(xz(yz))(v(xz(yz)))

„

¶„ Û Â

=

Â/„

Figure 5.1: The two co-initial single-steps „ = fl(u, v, Sxyz) as well as Â = Suvfl(x, y, z))
with their corresponding residuals „/Â = fl(u, v, xz(yz)) as well as Â/„ =
ufl(x, y, z)(vfl(x, y, z)) in È≠æ= TS , 1, /Í and È≠æ¶ TS , 1, /Í, respectively (left).
Triangulation via the join of multi-steps displayed at an example of „, Â
(right).

fl(Â1, Â2, Â3). If the occurrence o2 is rule-based according to Â but not o1 it holds that
Â = ú(fl(Â1, Â2, Â3), „3). Nonetheless, ú(ú(ú(ú(S, x· ), y· ), z· ), z‡) ”= ú(ú(ú(S, x‡), y‡), z‡)
for any substitutions ‡, · as the term structures are di�erent. But the left side of the
equation is the source of „ for some substitution ‡ and the right side is the source of
Â for some · . Similarly for o3, o4, i.e., either none or all of o1, . . . , o4 are rule-based
in Â. If neither of o1, . . . , o4 are rule-based Â is of the form Â = ¸(Â1, Â2, Â3) as Â is
co-initial to „. Hence, the second case applies. If „ = ú(„1, „2) either Â = ú(Â1, Â2) or
Â = fl(Â1, Â2, Â3). In the former the first case applies and the latter case is symmetric to
the explanation above. As a consequence / is well-defined for multi-steps of TS . However,
it is not obvious that / also defines a residuation. The next example gives a first hint
that this is still the case.

Example 5.1.1. Consider the following co-initial proof terms

„ = fl(u, v, Sxyz) : Suv(Sxyz) æTS u(Sxyz)(v(Sxyz))
Â = Suvfl(x, y, z) : Suv(Sxyz) æTS Suv(xz(yz)).

The function / from Lemma 4.4.4 provides us with the residuals

Â/„ = ufl(x, y, z)(vfl(x, y, z)) : u(Sxyz)(v(Sxyz)) ≠æ= TS u(xz(yz))(v(xz(yz)))
„/Â = fl(u, v, xz(yz)) : Suv(xz(yz)) æTS u(xz(yz))(v(xz(yz)))

(see Figure 5.1 left).

For showing that the function / defined in Lemma 4.4.4 is indeed a residuation we do
make use of Lemma 4.4.4, but present a di�erent proof here. Namely, instead of showing
that the residuation builds a diamond we can triangulate by defining a commutative
upper bound, which we call join. Then, we show that the target of the residuation is
the target of the join. By commutativity the diamond property follows. However, with
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5 Comprehensive Examples of Residual Systems

Example 5.1.4 we will see that this approach only works for multi-steps. We could have
presented this method in Section 4.4, since it holds for orthogonal multi-steps in general,
but nonetheless we only present it here to support it with examples of the S-combinator
illustrating the bit we will abstract from in Chapter 6. Note that we show the following
for orthogonal steps in general. For the case of TS we have not shown orthogonality. But
preceding proofs apply also for TS as they depend on the clauses of /, which we have
shown to be well-defined for TS .

Definition 5.1.2. For co-initial and orthogonal multi-steps „, Â the join is defined as

„ Û Â :=

Y
_____]

_____[

f(„1 Û Â1, . . . , „n Û Ân) if „ = f(„1, . . . , „n), Â = f(Â1, . . . , Ân)
fl(„1 Û Â1, . . . , „n Û Ân) if „ = fl(„1, . . . , „n), Â = ¸(Â1, . . . , Ân)
fl(„1 Û Â1, . . . , „n Û Ân) if „ = ¸(„1, . . . , „n), Â = fl(Â1, . . . , Ân)
fl(„1 Û Â1, . . . , „n Û Ân) if „ = fl(„1, . . . , „n), Â = fl(Â1, . . . , Ân)

The notion of join is well-defined, since „, Â do not share a rule-based function symbol
occurrence as „ and Â are orthogonal. By symmetry in the definition the join is
commutative.

Lemma 5.1.3. For co-initial, orthogonal multi-steps „, Â the join „ Û Â is a multi-step
and the following holds:

src(„) = src(„ Û Â)
tgt(Â/„) = tgt(„ Û Â).

Proof. That the join is again a multi-step is proven by a structural induction on the clauses
of the definition of Û. The equalities follow by another structural induction and the defi-
nition of / in Lemma 4.4.4 combined with the easy observation that src(fl(„1, . . . , „n)) =
src(¸(„1, . . . , „n)) as well as tgt(fl(„1, . . . , „n)) = tgt(r(„1, . . . , „n)).

That multi-steps fulfil the diamond property is a direct consequence of Lemma 5.1.3
and the join being commutative. Therefore, / is a residuation for multi-steps, which to
show was the goal of this detour. Note, as the following example illustrates that the join
of two parallel steps is in general not a parallel step.

Example 5.1.4. Let „, Â be as of Example 5.1.1. The join is then given by „ Û Â =
fl(u, v, fl(x, y, z)) : Suv(Sxyz) ≠æ¶ TS u(xz(yz))(v(xz(yz))) (see Figure 5.1 right). Since
„, Â are single-steps, they also are parallel steps and multi-steps. However, the join is no
parallel step as it contains nested rule symbols.

With the clauses defining / being well-defined for ≠æ¶ TS the triple È≠æ¶ TS , 1, /Í can be
proven to fulfil R1–R4 in the same way as was done in the proof of Lemma 4.4.5. Hence,
it defines a residual system and / provides the least co-final multi-steps. Confluence of
the S-combinator follows accordingly to the proof of Corollary 4.4.6 exchanging ≠æ= with
≠æ¶ .
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5.2 Associativity

5.2 Associativity

Consider the term rewriting system over the signature �A consisting of a single binary
function symbol ú with the ARS RA containing the only rule

fl : ú(ú(x, y), z) æ ú(x, ú(y, z)).

We define the TRS by TA and refer to it as associativity. We adopt notation from
Section 5.1 and may use implicit infix notation for ú. Furthermore, we assume that ú
associates to the left, to improve readability. Moreover, we infer the arity of fl, i.e.,

fl(x, y, z) : ¸(x, y, z) æ r(x, y, z)

with ¸(x, y, z) = xyz and r(x, y, z) = x(yz). Similar to the S-combinator associativity is
left-linear. However, a significant di�erence to the S-combinator is that associativity is
not orthogonal. Two proof terms witnessing non-orthogonality are the following,

fl(ú(w, x), y, z) : wxyz æTA wx(yz)
ú(fl(w, x, y), z) : wxyz æTA w(xy)z

representing co-initial single-steps, since they have exactly one occurrence of a rule symbol
and the same source. Nonetheless, their patterns result in

fl(⇤,⇤,⇤) : ⇤⇤⇤ æTA ⇤(⇤⇤)
ú(fl(⇤,⇤,⇤), z) : ⇤⇤⇤z æTA ⇤(⇤⇤)z

and the function symbol occurrence Èú | ú(⇤, z)Í is rule-based in both, since it (implicitly)
appears in the sources but in neither proof term itself and, furthermore, the sources of
the patterns aren’t prefixes of ⇤z, i.e., neither ⇤⇤⇤ nor ⇤⇤⇤z is a prefix of ⇤z. Hence,
we do not have a residual system given by Lemma 4.4.5.

In the remainder of this section we will derive two residual systems for associativity.
The di�erence between the two being that the first one will not and the second one will
have joins. Both constructions go back to van Oostrom [26]. Similarities can be drawn
to an approach by Melliès [16].

Note that TA does not posses the diamond property as Figure 5.2 shows. Hence, we
have to enrich the system by further steps. Only adding the step from w(xy)z to w(x(yz))
to form a diamond in Figure 5.2 is not enough, as new diagrams not forming a diamond
arise. Making these new diagram into diamonds as well is called faceting in terminology
of van Oostrom. This describes the process quite well as we merge multiple edges of a
polygon into a single facet to form a diamond. In the case of associativity this process
does not stop, but still the new rules generated adhere to a regular pattern, resulting in
the following TRS having infinitely many rules.

Definition 5.2.1. Define by T Õ
A = (�A, RÕ

A) where RÕ
A consists for each n œ N \ {0} of

a rule
fln : ¸n æ rn

with ¸n = x1(x2(. . . (xny) . . . ))z and rn = x1(x2(. . . (xn(yz)) . . . )).
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wxyz

wx(yz) w(xy)z

w(xyz)

w(x(yz)))

‘ 0

‘

‘

1

Figure 5.2: Joining two co-initial, overlapping single-steps of the associativity rule. Arrows
indicating the position where fl was applied.

Remark 5.2.2. See Figure 5.3 for a visualization of fln. On the one hand, fl1 : ¸1 æ r1 œ RÕ
A

corresponds to fl : ¸ æ r œ RA, since ¸1 © ¸ and r1 © r. On the other hand, we can
simulate fln : ¸n æ rn œ RÕ

A by a proof term „ : s ØTA t, namely by

fl(x1, ú(x2, ú(x3, ú(. . . , ú(xn, y) . . .))), z) · ú(x1, fl(x2, ú(x3, ú(. . . , ú(xn, y) . . .)), z))
· . . . · ú(x1, ú(x2, ú(· · · ú (xn≠1, fl(xn, y, z)))))

such that ¸n = s and rn = t, i.e., fln can be seen as an n-times repeated application of fl.
Notation 5.2.3. To match the variable naming of Definition 5.2.1 we will use x1, . . . , xn, y, z
for the n + 2 variables in fln : ¸n æ rn œ RÕ

A. Furthermore, to avoid notational clutter
we introduce x̄‡

n as abbreviation for x‡
1 , . . . , x‡

n and x̄‡
i,j as abbreviation for the interval

x‡
i , . . . , x‡

j , where ‡ is a substitution.

Lemma 5.2.4. æT Õ
A

together with a trivial step 1 has the diamond property.

Proof. Let „ : s æT Õ
A

t1, Â : s æT Õ
A

t2 be co-inital single-steps overlapping due to fln in
„ and due to flm in Â. Note, that by the definition of fln there exist n + 1 rule-based
function symbol occurrences of „ in s. Denote by Èú | C0[ ]Í the outermost rule-based
function symbol occurrence of „, i.e., for all other rule-based function symbol occurrences
Èú | Ci[ ]Í of „, 0 < i Æ n, the context C0[ ] is a prefix of Ci[ ]. The context C0[ ] is
well-defined, since the fln-redex is a sub-term of s. Furthermore, let

C1[ ] = C0[ú(⇤, z‡)]
Ci+1[ ] = Ci[ú(x‡

i≠1,⇤)] for 1 Æ i Æ n ≠ 1

for a substitution ‡. Similarly, there exist m+1 rule-based function symbol occurrences in
s of Â, which we denote in the same pattern as for the C Õ

is by Èú | Di[ ]Í, with 0 Æ i Æ m,
for a substitution · . Since „ and Â overlap, there exist 0 Æ k Æ n, such that Ck[ ] = D0[ ].
For readability but without loss of generality assume C0[ ] = ⇤ and do a case distinction
on k (see Figure 5.4).
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ú

ú

x1 ú

x2 ú

xn y

z æ
ú

úx1

úx2

úxn

y z

Figure 5.3: Source and target of a rule fln in T Õ
A as term trees and the corresponding rule

tracing [flnÍ indicated by dotted lines.

• Case k = 0. Without loss of generality let n < m, then „ = fln(x̄·
n, ú(x·

n+1, ú(· · · ú
(x·

m, y· ) · · · )), z· ) and Â = flm(x̄·
m, y· , z· ). The diamond is completed by

„Õ = ú(x·
1 , ú(· · · ú (x·

n, flm≠n(x̄·
n+1,m, y· , z· )) · · · ))

and the trivial step ÂÕ = 1. Note that x‡
i = x·

i for 0 Æ i Æ n and z‡ = z· .

• Case 0 < k Æ n. Then „ = fln(x̄‡
k≠1, ú(x·

1 , ú(· · · ú (x·
m, y· ) · · · ), x̄‡

k+1,n, y‡, z‡) and
Â = ú(ú(x‡

1 , ú(· · · ú (x‡
k≠1, flm(x̄·

m, y· , ú(x‡
k+1, ú(· · · ú (x‡

n, y‡) · · · )))) · · · )), z‡). The
diamond is completed by

„Õ = ú(x‡
1 , ú(· · · ú (x‡

k≠1, flm(x̄·
m, y· , ú(x‡

k+1, ú(· · · ú (x‡
n, ú(y‡, z‡)) · · · ))) · · · ))

and ÂÕ = fln+m(x̄‡
k≠1, x̄·

m, y· , x̄k+1,n, y‡, z‡).

In the case where „, Â do not overlap, Lemma 4.4.4 provides us with „Õ = Â/„ and
„Õ = „/Â completing the diamonds, since „, Â are single-steps and consequently also
multi-steps.

To show that not only the diamond property but also the cube property holds, we
interpret associativity in its trace algebra. Define for fln : ¸n æ rn the rule tracing
[flnÍ = {(‘, 1n), (01k, 1k), (01k0, 1k0), (01n, 1n0), (1, 1n+1) | 0 Æ k < n} (see Figure 5.3).
Hence, for a single-step „ : s æT Õ

A
t and P = {[flnÍ | fln œ RA} the interpretation [[„ÍÍP

defines its trace relation. Now, note that a single-step „ = C[fln(x̄‡
n, y‡, z‡)] is determined

by the pair (p, p01n), where p denotes the position of the hole in the context C[ ] and
n corresponds to the number of xi-variables in the corresponding rule fln. Then p01n

defines the position of the y-variable. Subsequently, we will use this characterization for
steps.
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ú

z‡ú

x‡
1 ú

x‡
2 ú

x‡
n ú

x·
n+1 ú

x·
m y·

y‡

ú

z‡ú

x‡
1 ú

x‡
2 ú

x‡
k≠1 ú

ú

x·
1 ú

x·
2 ú

x·
m y·

ú

x‡
k+1 ú

x‡
n y‡

z·

x‡
k

Figure 5.4: Comparing the cases of overlap in T Õ
A together with a trivial step 1 for

the single-steps consisting of fln(x̄‡
n, y‡, z‡) and flm(x̄·

m, y· , z· ), respectively.
Here, the left term tree resembles the case k = 0, i.e., the overlap at the
function symbol occurrence Èú | ⇤Í and the right term tree resembles the case
0 < k Æ n, i.e., the overlap at the function symbol occurrence Èú | Ck[ ]Í (see
Proof of Lemma 5.2.4 for the definition of Ck[ ]).
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Example 5.2.5. Let „ correspond to the pair (‘, 011). The trace relation of „ is given
by

[[‘, 011ÍÍ = {(‘, 11), (0, ‘), (01, 1), (00q, 0q), (010q, 10q), (011, 110), (1q, 111q) | q œ Pos}.

Let Â correspond to the pair (p, p01n) with p œ Pos. The set of tuples

[[p, p01nÍÍ = {(p, p1n), (p01k, p1k), (p01k0q, p1k0q), (p01nq, p1n10q), (p1q, p1n+1q), (r, r) |
q, r œ Pos, p ”ı r, 0 Æ k < n}.

defines the trace relation of Â.

With the knowledge we gained from proving the diamond property for T Õ
A we define a

residuation. Afterwards we show in the first theorem of this section that this residuation
also defines a residual system for æT Õ

A
together with a trivial step. See Notation 2.1.1

denoting elements in the codomain of a relation.

Lemma 5.2.6. Let „ correspond to the pair (p, p01n) and Â correspond to (q, q01m).
The function /A defined by

Â /A „ := (q [[p, p01nÍÍ, q01m [[p, p01nÍÍ),

where we define the right-hand side as 1, if it is not of the required shape for a step, is a
residuation for æT Õ

A
.

Proof. If p = q the steps „, Â overlap and, thus, the residual is given by Â /A „ =
(p1n, p1n01m ·≠n).1 This reflects the case k = 0 in the proof of Lemma 5.2.4. Note that in
case n Ø m the residual is not of required shape, hence, the residual denotes the trivial
step. If q = p01k the residual is given by (p01k, p01k01m) /A (p, p01n) = (p1k, p1k01m)
corresponding to the overlap case 0 < k Æ n of Lemma 5.2.4 and to the residual given
by Lemma 4.4.4 if k > n. If p = q01k we have to distinguish between 0 < k Æ m,
where (q, q01m) /A (q01k, q01k01n) = (p, p01n+m) reflecting the respective overlapping
case, in Lemma 5.2.4 and between k > m, where (q, q01m) /A (q01k, q01k01n) = (q, q01m)
corresponds to the residual in Lemma 4.4.4. If neither p ı q nor q ı p the steps „ and Â
are horizontally orthogonal and we get Â /A „ = (q, q01m), which reflects Lemma 4.4.4.
Hence, tgt(„) = src(Â /A „) and tgt(„ /A Â) = tgt(Â /A „), which shows the claim.

Theorem 5.2.7. ÈæT Õ
A

, 1, /AÍ constitutes a residual system for the residuation /A defined
in Lemma 5.2.6.

Proof. The laws R2–R4 from the residual identities are trivial. To see that the cube
identity R1 also holds note that we defined for each fln a rule tracing and showed in
Lemma 5.2.6 that the corresponding proof term algebra A is a model for the diamonds,
i.e., Â · (‰/Â) =A ‰ · (Â/‰) with Â, ‰ co-initial in æT Õ

A
. Take „ co-initial to Â, ‰ and

trace its position pair (p1, p2) along the right and left path of a diamond. Obviously,
pi [[ÂÍÍ · [[‰/ÂÍÍ pÕ

i and pi [[‰ÍÍ · [[Â/‰ÍÍ pÕ
i for i œ {1, 2}. Hence, contracting „ after either

path results in the same relation, i.e., („/Â)/(‰/Â) =A („/‰)/(Â/‰) (compare Figure
5.5).
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Â

‰

Â/‰
„/‰

„/Â

‰/Â

(„/Â)/(‰/Â)

(„/‰)/(Â/‰)

Figure 5.5: Tracing the position pair of „’s redex-pattern in T Õ
A results in the same

position pair along the left and right path of the diamond representing a
redex-pattern again. Hence, contracting the residual of „ after either path
results in the same step, i.e., the dotted lines must coincide.

Concluding we may note that the residual system ÈæT Õ
A

, 1, /Í does not have diagonals,
i.e., the designated join of the corresponding residual system with composition is not a
single-step. This is witnessed by the following example.

Example 5.2.8. Let „ = fl1(ú(x1, x2), y, z) : x1x2yz æT Õ
A

x1x2(yz), as well as Â =
fl1(x1, x2, ú(y, z)) : x1x2yz æT Õ

A
x1(x2y)z, which correspond to the representation (‘, 01)

and (0, 001) respectively. The residuals are computed by

„/Â = (‘, 01)/(0, 001) = (‘[[0, 001ÍÍ, 01[[0, 001ÍÍ) = (‘, 011),
Â/„ = (0, 001)/(‘, 01) = (0[[‘, 01ÍÍ, 001[[‘, 01ÍÍ) = (‘, 01),

hence, „/Â = fl2(x1, x2, y, z) : x1(x2y)z æT Õ
A

x1(x2(yz)) and Â/„ = fl1(x1, x2, ú(y, z)) :
x1x2(yz) æT Õ

A
x1(x2(yz)). Then, the designated join „ Û Â is co-initial with „, Â

and co-final with „/Â, Â/„ and is given by „ Û Â = „ · (Â/„) = fl1(ú(x1, x2), y, z) ·
fl1(x1, x2, ú(y, z)) : x1x2yz ØT Õ

A
x1(x2(yz)). Note that there exists no co-initial single-

step distinct from „ and Â in æT Õ
A

, as for fli, i Ø 2, the source does not match.

Here, it may be noted that we experience a similar situation in the case of orthogonal
TRS’s. The triple È≠æ= , 1, /Í constitutes a residual system without diagonals. However,
enriching the ARS ≠æ= by the diagonals results in the ARS ≠æ¶ and the triple È≠æ¶ , 1, /Í
still constitutes a residual system. Likewise we will proceed with associativity. Hence,
to follow suit we will from now on use ≠æ= A for æT Õ

A
. In the following we will then

enrich ≠æ= A by its diagonals of the diamonds. The result we will denote by ≠æ¶ A. Doing
so we will make use of the findings by Nao Hirokawa et al. defining linear terms (see
Definition 2.3.1) as patterns and who show that patterns are characterized by non-empty,
convex2 sets of positions [12]. We overload the terminology and adopt this definition
for pattern. To avoid confusion with patterns of Definition 4.2.1 we may sometimes call
them positional patterns. A connection between the two is given by the next definition.

1
By ·≠ we denote the cut-o� subtraction, also known as monus, i.e., 2 ·≠ 1 = 1 but 1 ·≠ 2 = 0.

2
A set of positions is defined as convex, if for each pair p, q of positions the shortest path from p to q in

the corresponding term tree is entirely contained in the set as well.
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5.2 Associativity

Definition 5.2.9. Let „ : s æT t be a single-step with T left-linear, such that „ =
C[fl(x1, . . . , xn)] for a context C[ ] and a rule fl : ¸ æ r. The redex-pattern RPos(„) of „
is a subset of Pos(s) consisting of all vertex positions p · q, such that p is the position of
the hole in C[ ] and q is a non-variable position in l.

Hence, the redex-pattern of a single rule is a set of positions containing exactly all
rule-based function symbol occurrences, i.e., the redex-pattern of a single-step can be
interpreted as the positional pattern of a sub-term defining its redexes pattern in the
sense of Definition 4.2.1. Thus, both notions are connected but one describes a term over
the proof term signature extended by ⇤ and the other a set of positions. A multipattern
is respectively defined as a set of pairwise disjoint positional patterns.

Definition 5.2.10. A development of a multipattern ÷ in a term s is co-inductively
defined as either the empty step 1 from s or a single fl-step „ : s æ t, such that
RPos(„) ™ P with P œ ÷, composed with a development of (÷ [[„ÍÍ) in t. Here, (÷ [[„ÍÍ)
denotes pointwise tracing of each set in ÷ by [[„ÍÍ. A development is complete if there
exists no fl-step „ such that RPos(„) ™ P œ ÷.

Remark 5.2.11. A development is well-defined, since [[„ÍÍ is a relation on Pos(s) ◊ Pos(t)
for „ : s æ t ensuring that steps are composable and since [[„ÍÍ is a bijection securing
that patterns stay disjoint. Note that defining developments co-inductively allows infinite
developments. Hence, termination of developments needs to be proven.

The next example illustrates the di�erence of a multipattern consisting of a single
pattern and a multipattern comprised of two patterns that unify to the single pattern.

Example 5.2.12. Consider the TRS defined by {fl : f(x) æ g(x), Î : a æ c, fi : f(a) æ
d} and the term t = f(a). Then Pos(t) = {‘, 0}. Completely developing {{‘}, {0}}
results in g(c). Completely developing {{‘, 0}} results in either g(c) or d.

However, as we are concerned with the sole rule of associativity we only come across
multipatterns consisting of a single pattern.

Lemma 5.2.13. Let „, Â be proof terms of TA, such that „, Â are two complete develop-
ments of ÷ in a term s, then tgt(„) = tgt(Â).

Proof. The system TA is complete. Confluence follows from Theorem 5.2.7 and termi-
nation can easily be shown, e.g., by the algebra interpreting ú(x, y) = 2x + y + 1. And,
since completely developing a multipattern coincides to computing for each pattern the
(unique) normal form of the corresponding pattern over the extended proof term signature
the claim follows.

Definition 5.2.14. Define by ≠æ¶ A ™ ØTA the rewrite system consisting of steps defined
by multipatterns, where the source and the target of a multipattern ÷ in s are the source
and the target of any complete development of ÷. We write ÷ : s ≠æ¶ A t and define a
multipattern with patterns comprising of no fl-step as the empty step.
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Remark 5.2.15. The target of a multipattern is well-defined by Lemma 5.2.13. By
Theorem 5.2.7 every complete development of a disjoint multipattern ÷ constitutes the
same trace relation denoted by [÷].

Example 5.2.16. Let ÷ = {{0, 00, 001}} and t = x(yz)wx, then ÷ ™ Pos(t). A complete
development of ÷ in t is given by

ú(fl(x, ú(y, z), w), x) · ú(ú(x, fl(y, z, w)), x) : x(yz)wx ØT x(y(zw))x

with intermediate multipattern {{0, 01, 010}} and resulting multipattern {{0, 01, 011}}.
The development is complete since the latter multipattern does not contain a fl-redex-
pattern.

Definition 5.2.17. Let ÷, ’ be multipatterns.

• The relation G ™ ÷ ◊ ÷ is defined by P G Q if and only if P fl Q ”= ÿ for P, Q œ ÷.

• PG := (P G+), i.e. the sets connected to P œ ÷ in the transitive closure of G.

• The join of ÷, ’ is defined by ÷ Û ’ := {
t

PG | P œ ÷ fi ’}.

In the last item it holds that G ™ (÷ fi ’) ◊ (÷ fi ’).

Intuitively, the set PG comprises of all sets connected to P by successive overlap and
the join unifies all those successively connected sets in ÷ and ’.

Example 5.2.18. Let ÷ = {{‘, 0, 00}, {1, 10}} and ’ = {{0, 01}, {1, 11}, {10, 100, 101}}.
The join is then given by ÷ Û ’ = {{‘, 0, 00, 01}, {1, 10, 100, 101, 11}}.

Lemma 5.2.19. Let ÷, ’ be multipatterns. The function /AÕ defined by ’ /AÕ ÷ := (÷Û’)[÷]
is a residuation for ≠æ¶ A, where [÷] is lifted pointwise to sets of positions.

Proof. First, observe for each pattern in P œ ÷ fi ’ that P is a sub-term of s, and by the
definition of the join there exists a pattern Q œ ÷ Û ’ such that P ™ Q. Hence, a complete
development of ÷ is a (not necessarily complete) development of ÷ Û ’, which implies
tgt(÷) = src((÷ Û ’)[÷]). Second, observe that ÷ Û ’ = ’ Û ÷ holds by commutativity of set
union and by co-finality of complete developments. Consequently, completely developing
(÷ Û ’)[÷] and (’ Û ÷)[’] result in steps having the same target, namely tgt(÷ Û ’).

Remark 5.2.20. Since the join ÷ Û ’ contains the patterns of ÷, ’ such that those patterns
having successive overlap are merged into one we see that the diagonals of the diamonds
are part of ≠æ¶ A.

Example 5.2.21. The step (p, p12n) of the system ≠æ= A corresponds to the multipattern
{{p, p1, p12, . . . , p12n ·≠1}} of ≠æ¶ A. Hence, mapping the one to the other commutes with
the respective residuation.

The next theorem is the main statement of this section showing that the above defined
residuation indeed satisfies the residual identities.
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1 · 2 · 1 · 2 · 4 · 3

Figure 5.6: A braid with only positive crossings and its corresponding braid word 1 · 2 ·
1 · 2 · 4 · 3.

Theorem 5.2.22. È≠æ¶ A, 1, /AÕÍ constitutes a residual system for the residuation /AÕ

defined in 5.2.19.

Proof. We will proceed similar to the proof of Theorem 5.2.7. R2–R4 are trivial. To see
that R1 also holds recall from Remark 5.2.15, that each multipattern induces a trace
relation and that the corresponding proof term algebra is by Lemma 5.2.19 a model for
the diamonds. Meaning, the residuals of a multipattern along either path of a diamond
are equal.

5.3 Braids

In the preceding sections we saw a residual system for the S-combinator and for asso-
ciativity. The former represents a syntactic orthogonal system. The latter on the other
hand was shown to have overlap and is hence not orthogonal in the syntactic sense but
semantic sense. In the upcoming section we will investigate a residual system for braids.
Meaning the interpretation of orthogonality via residual systems can be extended beyond
term rewriting as braids do not have a term structure. This di�ers from Section 5.1 and
5.2, as the comprehensive examples discussed there are based on term rewrite systems.
Nonetheless, by Dehornoy braids have a close proximity to self-distributivity [8]. Exam-
ining their residual structures shows us in particular the importance of scopic relations,
which play an substantial role with respect to self-distributivity as well.

Braids as presented here were introduced by Artin [1]. For a general and more
contemporary presentation we refer the interested reader to the works of Dehornoy or
Endrullis & Klop [8, 10]. Here, we will only give an introductory overview.

Braids can be viewed as in the conventional way, namely as a set of strands, which cross
over each other (see Figure 5.6). The ropes are called strands. Two braids are considered
equal if we can continuously transform one braid into the other without intersecting
strands. Furthermore, the transformation of the strands is done between two imaginary
lines through the start and end points, while these points stay fixed. One can get an
easy intuition about this by imagining actual ropes spanned between two walls – one
setting for each braid. If we can make them look the same, without cutting ropes and
afterwards glueing them together again but only by dragging, we consider them as equal.

Artin discretized their continuous transformations characterizing braids as a string
rewrite system. A braid is then represented as a word indicating from left to right in
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5 Comprehensive Examples of Residual Systems

which gap a crossing is performed. A crossing is called positive if in gap i the i-th strand
crosses over the (i + 1)-st strand (in Figure 5.6 this is equivalent to ‘if the upper strand
crosses over the lower strand’). A crossing is called negative if the (i + 1)-fst crosses over
the i-th strand and is denoted by i≠1. Artin originally considered braids with positive
and negative crossings. This section considers braids with positive crossings, but we
note that positive braids can be used to generate general braids similar as the natural
numbers can be used to generate the integers.

Artin has shown that two simple equations considering braid words are enough to
characterize braid equivalences, known as the positive braid relations. The formal proof
of the characterization can be found in [8, Lemma 1.16]. These relations describe the
following.

The first equation addresses the fact, that it is not important in which order we perform
the crossings on independent pairs of strands, as can be seen below.
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Thus, for |i ≠ j| > 1 the equation i · j = j · i holds.
For adjacent gaps, so if |i ≠ j| = 1, crossings do not commute. But i · j · i = j · i · j holds,

which is shown and easily verified by comparing the following two braid diagrams:
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1 3
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Summarizing the above we get the following lemma on Artin’s positive braid relations [1].

Lemma 5.3.1. Two braids are topologically equivalent if and only if the two corresponding
braid words are equal modulo the following equations:

i · j = j · i |i ≠ j| > 1 (5.1)
i · j · i = j · i · j |i ≠ j| = 1 (5.2)

The confluence problem of braids is then the question whether we can extend two
given braids, such that they become equal. Deciding braid equivalence corresponds to
the word problem with respect to the identities 5.1 and 5.2 and is decidable, which is a
basic fact, since equations preserve length and, hence, the search space is finite.

Here, we approach the confluence problem for braids via residual systems. In order
to show that braids induce a residual system we view braids as reductions. For that
crossings are represented as transformations on states. States reflect the relative order
of the strands to some initial ordering. For convenience we fix the number of strands
in a braid by n. Approaching braids in the context of orthogonality arose from Melliès
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[16, 17]. These ideas were factored through the theory of residual system by Klop, van
Oostrom & de Vrijer [15]. This is also presented in Terese [23, Chapter 8.9]. The rest of
this section is closely oriented on their works.

Definition 5.3.2. The braid abstract rewrite system B is defined as follows:

• The objects are irreflexive, transitive, and total relations on {1, . . . , n} called states.

• The steps are relations, such that for any two states <, <Õ there exists a step „
defined as the relative complement < ≠ <Õ. The src- and tgt-function is then
defined by src(„) := < and tgt(„) := <Õ.

We call the steps braid multi-steps.

Intuitively speaking a state represents the order of the strands and a multi-step
describes the most e�cient way to transform one state into another with the least number
of crossings. Thus, braid multi-steps represent crossing multiple strands at the same time
similar to term rewriting, contracting a number of redex-patterns at the same time. Note
that, in particular, no two strands cross twice in a multi-step. Braids are then defined as
sequences of multi-steps.
Remark 5.3.3. Since a state < is an irreflexive, transitive, and total relation on {1, . . . , n}
it imposes a connected strict order, which allows us to abbreviate < by its longest
ascending chain in its transitive reduct. For example for < = {(1, 2), (1, 3), (2, 3)} it holds
that 1 < 2 < 3 and we hence may abbreviate it by 123. Note that a multi-step is not
necessarily total, which is why this abbreviation does not apply.

Example 5.3.4. For „, Â of Figure 5.7a define their source and target as src(„) := <,
tgt(„) := <Õ, and src(Â) := π, tgt(Â) := πÕ. By Remark 5.3.3 we abbreviate < = π =
123456. Furthermore, <Õ = 152346, πÕ = 315264 and „ = < ≠ <Õ = {(2, 5), (3, 5), (4, 5)},
Â = π ≠ πÕ = {(1, 3), (2, 3), (2, 5), (4, 5), (4, 6)}.

Note the equivalences established in Lemma 3.2.2, which we will use from now on
without further reference. The following lemma characterizes braid multi-steps as a
scopic and transitive relation.

Lemma 5.3.5. Let „ ™ < for a state <. Then, „ is a braid multi-step if and only if „
is scopic and transitive.

Proof. (Only-if direction) Let „ = < ≠ π. Assume „ is not scopic. Then there exists
a < b < c with a „ c such that ¬ (a „ b) and ¬ (b „ c). Hence, a π b π c, which
contradicts transitivity of π since (a, c) œ „ = < ≠ π. Assume „ is not transitive,
then there exists a „ b „ c such that ¬ (a „ c), hence, a (< ≠ „) c by transitivity of <,
meaning a (< ≠ (< ≠ π)) c, which is equal to a (< fl π) c. By totality of π it follows
that ¬ (c π a) contradicting transitivity of π, since c π b π a, which follows again by
totality of π and a „ b „ c.

(If direction) Let „ be scopic and define π := (< ≠ „) fi „≠1 = < + „. Obviously,
π is irreflexive and total as well. By Lemma 3.2.2 the relation < ≠ „ is transitive and
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(a) Two co-initial braid multi-steps „, Â defined by „ = {(4, 5), (3, 5), (2, 5)} as well as Â =
{(1, 3), (2, 3), (2, 5), (4, 5), (4, 6)} representing two di�erent transformations of the same state
123456.
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(b) The residuals Â/„ and „/Â as well as the join „ Û Â for the co-initial steps „, Â of Figure 5.7a.

Figure 5.7: Braid multi-steps with their residuals and join.
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since „ is transitive, too, thus so is „≠1. Hence, it remains to show that (< ≠ „) · „≠1

respectively „≠1 · (< ≠ „) are contained in π. Therefore, assume a (< ≠ „) b „≠1 c.
Since < is irreflexive, transitive and total either a < c or c < a.

• a < c. Suppose ¬ (a (< ≠ „) c), then a „ c and since c „ b with „ transitive it
follows a „ b, contradicting the assumption a (< ≠ „) b. Consequently a π c.

• c < a. Suppose ¬ (a „≠1 c), then also ¬ (c „ a), contradicting the assumption c < a.
Consequently, a π c.

Proceed similarly to show „≠1 · (< ≠ „) ™ (< ≠ „) fi „≠1. Thus, we found a state π
such that „ = < ≠ π is a multi-step.

Remark 5.3.6. Note that specifying two components of a multi-step „ : < æ π uniquely
determines the third, namely, „ = < ≠ π, < = π + „≠1 and π = < + „, where
addition of sets is done according to Definition 2.1.2. The first characterization is by
definition of braid multi-step. For the last one we already saw in the proof of Lemma
5.3.5 that there exists a state π = < + „. Uniqueness follows by the fact that π must
be the disjoint union of < ≠ „ and a relation R with R fl „ = ÿ. Any such relation R
distinct from „≠1 would violate totality of π. The second characterization then follows
from the third.

We introduce the following definition to state the outcome of a multi-step „ on a state
<, as noted in Remark 5.3.6.

Definition 5.3.7. The e�ect of a multi-step „ on the state < is defined as [„] = < + „.

With the e�ect we can now easily check that dropping one of the two conditions on „
stated in Lemma 5.3.5 could result in the target of „ not being a state.

Example 5.3.8. Let < = 123 and U = {(1, 2), (2, 3)}. Note that U and < + U =
{(1, 3), (2, 1), (3, 2)} are not transitive. Hence, neither is U a multi-step nor is < + U a
state. Similarly, for V = {(1, 3)} the sum is given by < + V = {(1, 2), (2, 3), (3, 1)}, i.e.,
V is not scopic and < + V is not transitive.

Intuitively, we can interpret the example above on 123 as follows: On the one hand,
swapping 2 and 3 after 1 and 2 have been swapped only works if also 1 and 3 are swapped.
On the other hand, 1 and 3 can only cross if either 1 and 2 or 2 and 3 are crossing.

Now, with the fact of a braid multi-step being scopic and transitive in mind, it seems
natural to define the join of two multi-steps as the least scopic and transitive relation
containing both. This is expressed in the following definition (also see Example 5.3.13).
That this indeed defines another multi-step is shown in Lemma 5.3.10. Later we will see
that this turns out to be the designated join of the to be defined residual system.

Definition 5.3.9. Define for two co-initial steps „, Â the join „ Û Â as the transitive
closure of the union of the two steps, i.e.

„ Û Â := („ fi Â)+.
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Lemma 5.3.10. The join „ Û Â of two braid multi-steps „, Â is again a braid multi-step
with src(„ Û Â) = src(„).

Proof. Let „, Â ™ < be mutlisteps, i.e. „, Â are scopic. Since < is transitive and by
definition of the closure operator it follows that („ fi Â)+ ™ <. By Theorem 3.2.6 the
join is scopic, and therefore with Lemma 5.3.5 also a multi-step.

On the basis of the join we will define a residuation function for co-initial multi-steps
below. Also see Example 5.3.13.

Definition 5.3.11. The residual Â/„ of the co-initial steps „ and Â is defined as the
relative complement of „ with respect to the join „ Û Â. Meaning,

Â/„ := („ Û Â) ≠ „.

Lemma 5.3.12. The residual Â/„ of two co-initial braid multi-steps „, Â is again a
braid multi-step with src(Â/„) = [„] and tgt(Â/„) = [„ Û Â].

Proof. Let src(„) = < = src(Â). Since < is transitive and „, Â ™ < it holds that
„ Û Â ™ <, and therefore also („ Û Â) ≠ „ ™ < ≠ „. Thus, Â/„ ™ [„].

We show that Â/„ = [„] ≠ [„ Û Â]. Unfolding the e�ect we have

[„] ≠ [„ Û Â] = ((< ≠ „) fi „≠1) ≠ ((< ≠(„ Û Â)) fi („ Û Â)≠1).

Since C ≠ (A fi B) = (C ≠ A) fl (C ≠ B) the set di�erence can be rewritten into an
intersection

[„] ≠ [„ Û Â] = (((< ≠ „) fi „≠1) ≠ (< ≠ („ Û Â))) fl (((< ≠ „) fi „≠1) ≠ („ Û Â)≠1)

with the left part of the intersection equal to (((„ Û Â) ≠ „) fi „≠1), since „ ™ „ Û Â as
well as „≠1 ”™ „ Û Â, and with the right part equal to < ≠ „. Hence, the di�erence of the
e�ects simplifies to [„] ≠ [„ Û Â] = („ Û Â) ≠ „ proving that Â/„ is a step from [„] to
[„ Û Â].

Example 5.3.13. Consider „ and Â of Figure 5.7a. Then

„ Û Â = {(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5), (4, 6)}.

Hence, Â/„ = {(1, 3), (1, 5), (2, 3), (4, 6)}, „/Â = {(1, 5), (3, 5)}, compare Figure 5.7b.

Remark 5.3.14. Comparing Figure 5.7a and 5.7b we see that „ is composable with
Â/„ at state 152346 (similarly Â with „/Â) and indeed Â/„ and „/Â are co-final with
tgt(Â/„) = 531264 = tgt(„/Â), already suggesting what we will show in Theorem 5.3.16,
namely, that / actually is a residuation for a residual system for braids.
Remark 5.3.15. One may further notice, that tgt(„ Û Â) also equals 531264, i.e., „ Û Â is
co-final with Â/„ and „/Â (see Figure 5.7b). As we will see later this is no coincidence,
since the join Û will turn out to be the designated binary join of the residual system
mentioned in Remark 5.3.14.
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5.3 Braids

Theorem 5.3.16. ÈB, ÿ, /Í is a residual system.3

Proof. That / is a residuation for braid multi-steps was shown in Lemma 5.3.12. The laws
R2–R4 are obvious by transitivity of multi-steps. Only the cube law R1 is non-trivial.

Let „, Â, ‰ be braid multi-steps from <. By definition

(„/Â)/(‰/Â) = ((‰/Â) Û („/Â)) ≠ (‰/Â)
= (((Â Û ‰) ≠ Â) fi ((Â Û „) ≠ Â))+ ≠ (‰/Â)
= (((Â Û ‰) fi (Â Û „)) ≠ Â)+ ≠ (‰/Â)

Since Â ™ (Â Û ‰) fl (Â Û „) Lemma 2.1.10 applies and we can simplify accordingly.

(„/Â)/(‰/Â) = (((Â Û ‰) fi (Â Û „))+ ≠ Â) ≠ ((Â Û ‰) ≠ Â)
= (((Â Û ‰) fi (Â Û „))+ ≠ Â) ≠ (Â Û ‰)
= ((Â Û ‰) fi (Â Û „))+ ≠ (Â Û ‰)
= ((Â Û ‰) Û „) ≠ (Â Û ‰)
= „/(Â Û ‰)

where we made multiple use of Lemma 2.1.11 for the fourth equality. Concluding,
(„/Â)/(‰/Â) = „/(Â Û ‰) = „/(‰ Û Â) = („/‰)/(Â/‰) by commutativity of the join,
which proves the claim.

Lemma 5.3.17. The function Û for braid multi-steps is the designated join for the
residual system ÈB, ÿ, /Í.

Proof. From „ ·(Â/„) = „ ·((„ÛÂ)≠„) ™ „ÛÂ we can directly infer that („ ·(Â/„))/(„Û
Â) = ÿ holds. Hence, „ · (Â/„) . „ Û Â. That also „ Û Â . „ · (Â/„) follows from C2,
the fact that „ Û Â Û „ = „ Û Â, and R2.

That the braid abstract rewrite system is confluent follows immediately from the
residuation function. To see that braids are also confluent we simply develop a braid
multi-step into a series of crossings. This can be done by selecting a pair of crossing
strands from the multi-step and perform the crossing. Then, repeat on the residual of
the multi-step after the crossing. This procedure is terminating, since the size of the
multi-step strictly decreases with each crossing. With the residuation satisfying the
residual identities R1–R4 it yields the least direct continuation of two co-initial braids,
such that they become equal under Artin’s positive braid relations.

3ÿ denotes the empty relation acting as a unit for any state.
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6 Self-Distributivity

This chapter is solely dedicated to orthogonality of self-distributivity by constructing
a residual system. Its presentation shows resemblance to that of braids. One problem
deriving a skolem function for the diamond property of many-steps satisfying the residual
identities is rooted in the infinite behaviour caused by created redexes. We deal with these
created redexes by means of tracing and developments similar to the case of associativity.
Termination of these developments will be shown via a normalizing strategy, bearing
resemblance to the S-combinator considering an inductive definition as a normalizing,
innermost strategy.

A binary operation is self-distributive if either the equality (a ú b) ú c = (a ú c) ú (b ú c)
or the equality a ú (b ú c) = (a ú b) ú (a ú c) holds. In the former case it is called right
self-distributive and in the latter case left self-distributive. As the properties of both
equalities are symmetric we will investigate only the former. The first section provides
a collection of selected models of self-distributivity. In the second section we turn the
equational system into a rewrite system in the length increasing direction and enrich
the TRS by further steps defined via developments. With local confluence we also
show the first result on developments. The third section deals with the termination of
developments via an optimal strategy. The last section then derives a residual system for
self-distributivity.

6.1 Exemplifying Models for Self-Distributivity

Simple examples of self-distributive operations are the logical · and ‚, since they are
associative, commutative and idempotent, which verifies the following:

(x · y) · z = (x · z) · (y · z)
(x ‚ y) ‚ z = (x ‚ z) ‚ (y ‚ z)

The geometrical example of middle provides a quite illustrative model in any higher-
dimensional space.

Example 6.1.1. (Geometrical middle) Define for a, b œ Rn the operation ú as a binary
function over the n-dimensional space mapping a, b to the midpoint between a and b, i.e.,

a ú b := a + 1
2(b ≠ a).

Then the operation ú is self-distributive, see Figure 6.1, as

(a ú b) ú c = 1
4a + 1

4b + 1
2c = (a ú c) ú (b ú c).
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a

c

b

Figure 6.1: Geometric interpretation of middle in Rn. Orange corresponds to (a ú b) ú c
and blue to (a ú c) ú (b ú c).

In topology quandles are defined via self-distributivity. We will not recapitulate the
study of quandles here but only give an example representing quandles of a very specific
form to give an idea to the reader.

Example 6.1.2. (Conjugation quandle) Let G be a group. Define for a, b œ G the
operation ú by

a ú b := b≠1ab.

Then, as the operation ú is idempotent, it also is self-distributive, namely

(a ú b) ú c = c≠1b≠1abc = (a ú c) ú (b ú c).

The interested reader may study Dehornoy’s overview on the world of self-distributivity,
which o�ers a great collection of various other models from topology [9].

Another model involves braids of Section 5.3. It goes back to Dehornoy’s construction
of his Blueprint of a term [8] and shows similarities to the conjugation quandle. The
operation is defined on two braids with infinitely many strands.

Example 6.1.3. (Shifted braid conjugation with one added crossing) Let a, b be two
braid words of braids with positive and negative crossings on infinitely many strands.
Inductively define by sh(‘) = ‘, sh(i · a) = (i + 1) · sh(a) a shift of the whole braid by one
strand. Furthermore, define

a ú b := sh(b)≠1 · 1 · sh(a) · b.

Consequently, the following identity holds due to Artin’s first braid equivalence (5.1):

(a ú b) ú c = sh(c)≠1 · sh(sh(b))≠1 · 1 · 2 · sh(sh(a)) · sh(b) · c = (a ú c) ú (b ú c),

meaning ú is self-distributive. Here we made implicit use of the notational convention
of (ww)≠1 = w≠1w≠1 and ‘≠1 = ‘ for a word w, the empty word ‘ and an element w.
Obviously, a crossing followed by its inverse crossing is the empty crossing, i.e., i · i≠1 = ‘.
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6 Self-Distributivity

Our last interpretation concerns substitution of the well-known ⁄-calculus and requires
some more background, which will only be provided very briefly. The Substitution
Lemma, which the following example depends on, can be found in the comprehensive
monograph by Barendregt [3, Lemma 2.1.10] and in Terese [23, Lemma 10.1.10]. Both
works provide further details and facts on ⁄-calculus.

Example 6.1.4. (Substitution of ⁄-calculus) The ⁄-calculus considers the calculus of
⁄-terms defined by the grammar

t ::= x | (t t) | (⁄x.t) ,

where x is from an infinite set V of variables. The second clause is called application and
the third clause is called abstraction. Application associates to the left. Moreover, for
abstractions the scope is extended to the right as far as possible. An occurrence of x
in ⁄x.t is called bound, otherwise it is called free. By t © s it is denoted that t and s
are identical terms or t can be obtained from s by renaming bound variables without
variable capture, i.e., ⁄x.x z © ⁄y.y z ”© ⁄z.z z.

The substitution of the free occurrence of x in s by t, written as s[x := t] is then
inductively defined by

x[x := t] © t

y[x := t] © y

(s1 s2)[x := t] © (s1[x := t]) (s2[x := t])
(⁄y.s)[x := t] © ⁄y.(s[x := t]).

To avoid that free variables become bound after substitution in expressions like M [x := N ]
we assume that variables occurring free in N do not become bound after substitution in
the term M , and that the substitution variable x does not occur bound in M . One way
of achieving this is by suitable renaming of variables.

The following lemma is a well-known result and provides the claim of substitution
being self-distributive.

Substitution Lemma. Let s, t, u be ⁄-terms. It holds that

s[y := t][z := u] © s[z := u][y := t[z := u]],

if y is not a free variable in u and y ”© z.

A proof of the lemma uses structural induction over ⁄-terms and can be found in
referred literature. The substitution lemma is the key property in Tait and Martin-Löf’s
confluence proof of —-reductions via the diamond property of parallel —-reductions refined
by Takahashi [22].
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6.2 Treks and Developments

After a collection of self-distributive models we now take a rewriting perspective on
self-distributivity. The system obtained from the rule in length decreasing direction is
obviously terminating. However, as far as the author is aware all completion tools fail
on that system. Hence, we consider the system in length increasing direction, which is
not terminating. After its introduction we will enrich the system by further steps via
developments of to be defined treks. The naming goes back to Melliès [16]. Basically, a
trek can be seen as a development, where not all ‘elements’ are redexes yet, however, the
‘elements’ can be seen as virtual redexes as they develop into redexes along a development
of the trek. Showing that these developments indeed uniquely define steps, i.e., a complete
development results in a unique target is the goal of the next section. Here we will only
see a first step into that direction, namely that developments of treks are locally-confluent.

The term rewriting system of self-distributivity TSD consists of the signature �SD over a
single binary function symbol ú and a rule set RSD := {fl : (xúy)úz æ (xúz)ú(yúz)}. We
adopt notation from Chapter 5 and may use ú in implicit infix notation, while associating
to the left, thus we write

fl : xyz æ xz(yz).

A proof term defining a single-step over TSD will also be called an SD-step. That SD-steps
do not have the diamond property can easily be inferred from Figure 6.4 on page 61.

Note that the redex-pattern (see Definition 5.2.9) of a single SD-step „ consists of
a pair, i.e., RPos(„) = {–, –0} for some – œ Pos. Hence, for a given term t we can
characterize a single SD-step by an ordered pair of the form (–, –0) or even simply by –
and mean the proof term „ with the source t and fl œ RSD at position –. We will use all
three characterizations interchangeably, if they are evident from the context. Based on
that observation we define the SD-pairs of a parallel SD-step.

Definition 6.2.1. Let „ be a single SD-step. The redex pair RPair(„) of „ is the
ordered pair defined by

RPair(„) = (–, –0) such that {–, –0} = RPos(„).

Example 6.2.2. Let „ = fl(ú(w, x), y, z) : wxyz æSD wxz(yz) and Â = ú(fl(w, x, y), z) :
wxyz æSD wy(xy)z. Then, RPair(„) = (‘, 0) and RPair(Â) = (0, 00).

Hence, we can represent an SD-step from a given term by an ordered pair. The first
entry describes the position of the redex. The second element might seem superfluous,
but it will allow us to consider the transitive closure analogue to braid multi-steps.
Next we define the notion of a trek, which is a pair consisting of a term and a set of
ordered position pairs under certain restrictions. Note that in the following we interpret
a term as a strict prefix order (see Definition 2.1.7) of its non-variable positions, e.g.,
the term t = a ú (b ú c) ú d is interpreted as a set of position pairs defined as follows
{(‘, 0), (‘, 01), (0, 01)}.
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6 Self-Distributivity

Definition 6.2.3. A trek (t, U) consists of a term t (interpreted as the strict prefix order
of its non-variable positions) and a binary relation U satisfying

SD1 U ™ t

SD2 U is transitive

SD3 U is scopic in t

SD4 ’(–, —“) œ U : – = — =∆ 0 ı “

Intuitively, a trek can be interpreted as a collection of tasks U that are to be performed
in a term t. Each pair is one task. However, to be able to perform a task the pair needs to
have the form (–, –0) for some – œ Pos, which we then call a single SD-step –. Here we
can think of terms as states in the braid case, where positions additionally carry a history.
The history keeps track of the current element and which elements were originally greater
than the current element. The history of a position is carried in its right sub-term. The
left-most element of that right sub-term is the current element at that position, i.e., a
position is represented by the left-most variable of its right sub-term. This intuition
factors through the whole term tree inductively. Then, a task is to swap right sub-terms
at the two positions of a task’s pair, i.e., we want to swap elements including history. The
following example illustrates the procedure, which will be formalized with developments
later.

Example 6.2.4. Consider xyz. In the braid case we would read it as the state x < y < z,
in the SD case we read it as the term x ú y ú z. Call this term t and let U = {(‘, 0)},
then (t, U) defines a trek, since U satisfies SD1–SD4. Note that U≠1 also defines a braid
multi-step when interpreting it as {(y, z)}. Performing the corresponding step

x
x
yz

results in x < z < y in the braid case. We could read it as x is smaller z is smaller y.
According to self-distributivity the trek (t, U) should result in x ú z ú (y ú z). We could
read it as x is smaller z is smaller y, which was smaller z, i.e., a braid with memory.

So SD1–SD3 can be interpreted in the same way as for braid multi-steps. Additionally,
SD4 prevents that elements in the history are swapped with the original element. Note,
that we interpret t as the prefix order of its position, meaning we only swap from right
to left. Also we assumed that we started with a linear term. However, several problems
arise. First, it is not evident that each non-empty trek contains a pair of sub-terms that
can be swapped, i.e., a pair of adjacent positions. Second, performing a swap should
result in a trek again. Third, as histories may become duplicated one problem is the
question whether repeated swapping terminates.

Concerning the first problem we show as an intermediate result that between any two
positions of a pair contained in a trek there exists a step.

Lemma 6.2.5. Let (t, U) be a trek, such that (–, —) œ U then there exists (“, “0) œ U
with – ı “ @ “0 ı —.
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Proof. We show the claim by induction over the distance (see Definition 2.1.3) d from –
to —. Let n = 1. Due to SD4 — = –0, hence, there is nothing to show. If n > 1 there
exists ” œ Pos�(t) with – @ ” @ —. Since t is transitive and U is scopic with respect to t,
it follows by Lemma 3.2.2 that – U ” ‚ ” U —. By induction hypothesis the statement
holds on the former or the latter case.

Now, it is easy to derive the existence of a redex-pair in any trek (t, U) with U
non-empty.

Corollary 6.2.6. If (t, U) is a trek and U is non-empty, then (“, “0) œ U for some
“ œ Pos�(t).

Proof. Since U is non-empty, choose (–, —) œ U . Then, the corollary is a direct conse-
quence of Lemma 6.2.5.

Hence, by above corollary every non-empty trek contains a step. However, the question
whether swapping a pair, i.e., performing a step, results in a trek again and the question
whether swapping terminates haven’t been answered yet. We approach the former
problem by tracing, drawing a parallelism to associativity of Section 5.2. The latter
problem we approach similar to the S-rule in Section 5.1, where we were also facing a
termination issue, which was rooted in duplication. We handled this issue by defining
the residuation recursively. Considering a recursive definition as a normalizing strategy
for their evaluation, namely the innermost strategy, we will proceed analogue for self-
distributivity. However, for the self-distributive case we will not use a recursive definition,
but directly formulate a normalizing strategy.

Let us turn our attention to the first remaining question. For associativity we defined a
bijective rule tracing. This is not possible for self-distributivity, since the rule fl is length
increasing. Nonetheless, another quite natural rule tracing exists, which fits our intuition
that non-variable positions are represented by the left-most variable of its right sub-term.
According to this intuition the position 0 of the left-hand side xyz represents y and the
position ‘ of the right-hand side xz(yz) also represents y. Hence, it seems reasonable to
trace 0 to ‘. Proceeding similar for the position ‘ in the term xyz is a bit more complex
as it represents the variable z, which is represented by two positions in the right-hand
side, namely 0 and 1. But this simply suggests to trace ‘ to both 0 and 1. By definition
of rule tracing we trace variable positions to the corresponding variable positions in the
right-hand side. Thus, define the rule tracing of the rule fl by

[flÍ = {(‘, 0), (‘, 1), (0, ‘), (00, 00), (01, 10), (1, 01), (1, 11)}

(see Figure 6.2). However, we do not only want to trace terms along steps but we also
want to trace the position pairs U of a trek (t, U). These position pairs represent the
variables that we want to swap including their history. As we consider U as a subset of
the non-variable positions of t, i.e., U ™ t, we are only interested in those traced pairs
that belong to the traced term. This is done by first pointwise tracing analogously to
what we have done before. However, we then only consider those pairs that belong to
the strict prefix order.
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Figure 6.2: Source and target of a single SD-step fl as term trees and the corresponding
rule tracing [flÍ indicated by dotted lines.

Definition 6.2.7. For a proof term „ we define the strict prefix trace of a binary relation
U ™ Pos ◊ Pos by

U[[„ÍÍ := (U [[„ÍÍ) fl @ .

Strict prefix trace is abbreviated by sp-trace.

Formally defining the procedure of repeated swapping via treks requires that swapping
sub-terms in t according to a redex-pair in U results in a trek again, i.e., for a trek (t, U)
performing a single-step – contained in U as (–, –0) œ U results in a trek. This is proven
formally in the next lemma.

Lemma 6.2.8. Let (s, U) be a trek and let „ : s æSD t be a single SD-step with
RPair(„) œ U , then (t, U[[„ÍÍ) is a trek as well.

Proof. SD1: Let (–, —) œ U ™ Pos�(s), then by definition of the trace relation
(–[[„ÍÍ), (—[[„ÍÍ) ™ Pos�(t). Hence, (U [[„ÍÍ) ™ Pos�(t) ◊ Pos�(t). Intersecting both
sides of the inclusion with the strict prefix relation @ proves that U[[„ÍÍ ™ t.

SD2: First note that for each –Õ œ Pos(t) there exists exactly one – œ Pos(s), such
that – [[„ÍÍ –Õ. This is due to the inverse of the rule tracing [flÍ≠1 being a function
and due to the rule fl being left-linear. Similarly define for —Õ, “Õ œ Pos(t) the position
—, “ œ Pos(s), such that — [[„ÍÍ —Õ and “ [[„ÍÍ “Õ. Assume –Õ U[[„ÍÍ —Õ U[[„ÍÍ “Õ, then
– U — U “. By transitivity of U also – U “, hence, by transitivity of @ it follows that
–Õ U[[„ÍÍ “Õ.

SD3: As above, define for –Õ, —Õ, “Õ œ Pos(t) the unique elements in the domain of [[„ÍÍ
relating to them by –, —, “ œ Pos(s). Assume –Õ @ —Õ @ “Õ and –Õ U[[„ÍÍ “Õ. Then, by
definition of the trace relation [[„ÍÍ also – U “. If – @ — @ “ it follows by scopicness of
U that – U — ‚ — U “, which implies –Õ U[[„ÍÍ —Õ ‚ —Õ U[[„ÍÍ “Õ. If – @ — @ “ does not
hold, either — @ – @ “ or – @ “ @ —, since a single-step preserves the prefix relation
of position pairs except for RPair(„). Hence, in the former case RPair(„) = (—, –),
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i.e., — U – U “ and by transitivity of U it holds that — U “, which implies —Õ U[[„ÍÍ “Õ.
Correspondingly, the latter case implies –Õ U[[„ÍÍ —Õ. So, U[[„ÍÍ is scopic in t.

SD4: Assume –Õ U[[„ÍÍ –Õ“Õ, then by definition of [[„ÍÍ there exist unique –, ” œ Pos(s)
with – [[„ÍÍ –Õ and ” [[„ÍÍ –Õ“Õ such that – U ”. Since U ™ @ there exists “ œ Pos, such
that ” = –“. Since (s, U) is a trek, it holds that 0 ı “. Let C[ ] be a context, such that
„ = C[fl(x‡, y‡, z‡)] for some substitution ‡. We proceed by a case distinction on the
relative positions of –, “ with respect to the step „. If –, –“ are non-hole positions in
the context C[ ] it holds that –Õ = – and “Õ = “, hence, 0 ı “Õ. If only – is a non-hole
position in C[ ] either –“ is the position of the hole or –“ is a position in the fl-redex.
Either way, the position of the fl-redex is in the left sub-term of –, which also holds for
the target of „, thus, on the one hand –Õ = – and on the other hand 0 ı “ implies 0 ı “Õ.
If – is the position of the hole in C[ ], i.e., the position of the fl-redex, –“ is in either the
first or the second argument of fl. This is due to (s, U) being a trek, SD4 to be precise,
and the fact that “ ”= 0 by the definition of [flÍ. Hence, –Õ = –0 in the first-argument-case,
–Õ = –1 in the second-argument-case and 0 ı “Õ in both cases (see Figure 6.2). If – and
–“ are no positions in C[ ], the trace preserves “, i.e., “Õ = “, with the only exception
when – is the position of the sub-term x‡ ú y‡, where “Õ = 0“. Nonetheless, it holds that
0 ı “Õ.

With developments we now formalize the procedure of repeated swapping. Basically,
a development of a trek (s, U) takes a redex-pair from U , which was shown to exist,
and applies the corresponding step to s. The relation U is traced accordingly and the
procedure possibly repeated. If the procedure cannot be repeated any further, we call
the development complete.

Definition 6.2.9. A development of a trek (s, U) is co-inductively defined as either the
empty step 1 or a single SD-step „ : s æSD t, such that RPair(„) œ U , composed with
a development of (t, U[[„ÍÍ). A development is complete, if it cannot be extended any
further.

Remark 6.2.10. Like developments in the case of associativity, here, the definition of
development of a trek is also co-inductive, i.e., infinite sequences are not excluded. Well-
definedness follows by the fact that s [[„ÍÍ t for „ : s æ t. Lemma 6.2.8 ensures that the
trace of a trek (s, U) is a trek again, namely (t, U[[„ÍÍ). Corollary 6.2.6 ensures that there
always exists a step in U ”= ÿ. Hence a development is complete, if U = ÿ.

Example 6.2.11. There exist two complete developments of the following trek:

(wxyz, {(‘, 0), (‘, 00), (0, 00)}).

See Figure 6.4.

One of the greatest benefits arising from the definition of trek is that they do not
terminate before they are complete. Di�erently speaking, they do not get stuck. For that
reason all e�ort for the definition of trek went into making the above example work, i.e.,
making both developments terminate in (wz(yz)(xz(yz)), ÿ). Hence, in the same way
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Figure 6.3: Visualizing the condition of SD4. A vertebra (orange dot) on the spine
(orange edges) cannot be swapped with a position of its right sub-term (blue).

as scopic relations were needed to describe a transitive relation as a braid multi-step
here SD4 is needed to interpret a braid multi-step as a trek. To sharpen the intuition we
can think of the positions consisting only of zeros as the vertebrae on the spine of the
leftmost variable of the term t. In the analogy of swapping sub-terms SD4 prevents any
vertebra on the spine to be swapped with any position in its sub-term on the right (see
Figure 6.3).

With the next theorem we prove the first step into the direction of confluence and
termination of treks.

Theorem 6.2.12. Treks are locally confluent.

Proof. We show that for two single SD-steps „ : s æSD t1 and Â : s æSD t2 with
RPair(„), RPair(Â) œ U we find a common reduct for (t1, U[[„ÍÍ) and (t2, U[[ÂÍÍ).

Let „ = C[fl(x‡, y‡, z‡)], Â = D[fl(x· , y· , z· )] and let the hole in C[ ] be at position –
and the hole in D[ ] be at position —. Then RPair(„) = (–, –0) and RPair(Â) = (—, —0).
We distinguish between orthogonal and non-orthogonal steps as of Section 4.2, i.e.,
between „ ‹ Â and „ ”‹ Â.

Finding co-final proof terms in the former case is trivial, as we can simply trace the
redex-pair of the other, as „ and Â do not overlap, since the trace relation is based on
[flÍ in a parametric way, i.e., a redex-pair traces to redex-pairs again.

In the latter case there exist two rule-based function symbol occurrences in s with
respect to „, namely Èú | C[ ]Í and Èú | C[ú(⇤, sÕ)]Í for some term sÕ. Since [[„ÍÍ
is parametric we can assume without loss of generality that C[ ] = ⇤. Then the
second function symbol occurrence is also rule-based with respect to Â and we have
„ = {(‘, 0)}, Â = {(0, 00)}. By transitivity of U it follows that (‘, 00) œ U . Hence,
{(0, 00)} · {(‘, 0)} : t1 æ t and {(‘, 0)} · {(0, 00), (1, 10)} : t2 æ t (see Figure 6.4). The
equality (U [[{(‘, 0)} · {(0, 00)} · {(‘, 0)}ÍÍ) = (U [[{(0, 00)} · {(‘, 0)} · {(0, 00), (1, 10)}ÍÍ)
holds, since we trace position pairs of the term s along either co-final composition path.
Consequently U[[{(‘,0)}·{(0,00)}·{(‘,0)}ÍÍ = U[[{(0,00)}·{(‘,0)}·{(0,00),(1,10)}ÍÍ and (s, U) is locally
confluent.
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(wxyz, {(‘, 0), (‘, 00), (0, 00)})

(wxz(yz), {(0, 00), (‘, 00)})(wy(xy)z, {(‘, 00), (‘, 01), (‘, 0)})

(wyz(xyz), {(0, 00), (1, 10)})

(wz(yz)(xz(yz)), ÿ)

(wz(xz)(yz), {(‘, 0)})

‘0

‘ 0

‘=0, 1

Figure 6.4: Two complete developments of the trek (wxyz, {(‘, 0), (‘, 00), (0, 00)}).

6.3 Completeness of Developments

After we saw that treks are locally confluent we now aim to show termination of treks to
be able to apply Newman’s Lemma. To do so, we define a well-order on trees and derive
a terminating strategy according to that order for developing treks.

Definition 6.3.1. Define <rev as the reversed in-order tree traversal, i.e., as the relation
on positions of a term t = C[t0 · t1], such that p1p1 <rev p <rev p0p0, where p is the
position of the hole in C[ ] and p0 œ Pos(t0), p1 œ Pos(t1).

Lemma 6.3.2. The relation <rev is a well-order.

Proof. Since the in-order tree traversal visits each node of a tree exactly once, and since
we recursively order the positions by the visit of the corresponding node, <rev is transitive,
anti-symmetric, and total.

Definition 6.3.3. Let ærev be the strategy, that for a trek (t, U) applies the smallest
step (–, –0) œ U according to reversed in-order tree traversal.

Remark 6.3.4. The ARS ærev is indeed a strategy for developing treks, since the objects
of ærev are also treks and the normal forms of ærev are exactly the treks of the form
(t, ÿ), i.e., equal to the normal forms of developments. Furthermore, the strategy ærev is
deterministic, since ærev is a well-order.

Next, we will state some observations we will be using later. The first observation is,
that whenever we apply a step (“, “0) œ U according to ærev there exists no position
pair in U with a second component above “.

Lemma 6.3.5. Let (t, U) be a trek and let (“, “0) œ U be minimal according to <rev
among all possible steps in U . Then, for all (–, —) œ U it holds, that “ ı — or – Î “.
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6 Self-Distributivity

Proof. Assume there exists a pair (–, —) œ U , such that “ ı — ‚ – Î “ does not hold.
Since – @ — this implies — , “, i.e., — @ “. By Lemma 6.2.5 there exists (”, ”0) œ U with
– ı ” @ ”0 ı — contradicting minimality of “ according to <rev.

We can even narrow the previous lemma down to a stronger statement about the
second components of position pairs. Namely, there furthermore exists no position pair
with a second component in the right sub-term of “.

Lemma 6.3.6. Let (t, U) be a trek and let (“, “0) œ U be minimal according to <rev
among all possible steps in U . Then, for all (–, —) œ U it holds, that “0 ı — or – Î “.

Proof. Assume “0 ”@ — · – , “. By Lemma 6.3.5 it holds that “ @ — or – Î “. Again,
since – Î “ implies — Î “, it must hold that “1 ı —. Distinguishing the relative position
of – to “ there are three possibilities:

1. – @ “ @ —: By SD3 the relation U is scopic in t, meaning, from (–, —) œ U it
follows that – U “ or “ U —. The latter results in a contradiction to SD4 and the
former implies by Lemma 6.2.5 a smaller step contradicting the minimality of “
according to <rev.

2. – = “: Equality of – and “ contradicts SD4.

3. “1 ı –: By Lemma 6.2.5 there exists a step, which, as well, contradicts the
minimality of “ according to <rev.

Hence, for a step “ minimal according to <rev it holds that “0 ı — ‚ – Î “.

Now it is easy to show that for a trek (t, U) the cardinality of U decreases by one
traced under a minimal single-step of U .

Lemma 6.3.7. Let (s, U) ærev (t, V ), then |V | = |U | ≠ 1.

Proof. Let (“, “0) œ U be the smallest step according to <rev among all steps in U .
Obviously, {(“, “0)}[[“ÍÍ = ÿ, since the sp-trace of a position pair is a subset of @. We
show, that for all other pairs (–, —) œ U the sp-trace {(–, —)}[[“ÍÍ consists of exactly one
pair.

Let (–, —) œ U be distinct from (“, “0). Since “ is minimal according to <rev it
follows by Lemma 6.3.6 that “0 ı — or – Î “. The latter implies — Î “ and therefore
{(–, —)}[[“ÍÍ = {(–, —)}. For the former, note, that for — œ {“0, “00”, “01”} with ” œ Pos
it holds that |(—[[“ÍÍ)| = 1. Thus, the same holds for the pair (–, —), i.e., |{(–, —)}[[“ÍÍ| = 1.

Hence, for one pair the trace is always empty and all other pairs result in a set consisting
of one pair. We conclude by |U | > |V | for (s, U) ærev (t, V ). The equality |V | = |U | ≠ 1
follows from the fact that —1 ”= —2 implies (—1[[“ÍÍ) fl (—2[[“ÍÍ) = ÿ.

As a direct consequence of the previous lemma we get weak normalisation, which we
state in the following corollary.

Corollary 6.3.8. Developments of treks are weakly normalizing.
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6.3 Completeness of Developments

Proof. Since the norm Î(t, U)Î := |U | is strictly decreasing for ærev, the strategy is
terminating.

To show strong normalization we introduce the size of a term, which corresponds to
the number of function symbols.

Definition 6.3.9. Let t be a term. Define the size of t by

|t| =
I

0 if t is a variable
1 + |t0| + |t1| if t = t0 · t1.

Since the size of a term increases under a single-step, it poses an increasing function
for treks, which is stated in the next lemma.

Lemma 6.3.10. Developments of treks are increasing.

Proof. By a simple structural induction on proof terms „ : s ØTSD t it follow that |s| < |t|,
since a single-step consists of exactly one rule symbol and for fl(s0, s1, s2) : s æSD t
it holds that |s| = 2 + |s0| + |s1| + |s2| < 3 + |s0| + |s1| + 2|s2| = |t|. Then, defining
|(s, U)| := |s| the claim follows for developments, since developments are compositions of
single-steps.

Having done all preparatory work, the following theorem states the main result of this
section, namely completeness of developments, paving the path to a residual system for
SD.

Theorem 6.3.11. Developments of treks are complete.

Proof. By Theorem 6.2.12 treks are locally confluent, by Corollary 6.3.8 treks are weakly
normalizing, hence, having treks as objects so are developments. Furthermore, by
Lemma 6.3.10 developments are increasing. Thus, by Theorem 2.2.15 developments are
terminating and with Newman’s Lemma completeness follows.

Remark 6.3.12. With ærev we also found an optimal1 strategy. This is a direct consequence
of Lemma 6.3.7, since each pair in U is traced to at least one pair in V for a step
„ : (s, U) ærev (t, V ) except for the pair RPair(„) œ U .

Interestingly, the dual strategy æino that applies the smallest step – according to
the in-order tree traversal is maximal2. One way to check this provides van Oostrom’s
ordered local commutation [24]. He defines æSD ordered locally commutes with æino,
if t1 ΩSD s æino t2 implies either t2 has no æSD-normal form or t1 æn

ino t Ωm
SD t2

with n Æ m. It is abbreviated by OLCOM(æSD, æino). He further shows that, if
OLCOM(æSD, æino) then æino is maximal.

1
A strategy ⇢ is optimal, if for any term s the length of any ⇢-reduction from s to any normal from t
is minimal among all possible reductions from s to t.

2
A strategy ⇢ is maximal, if the minimal number of ⇢-steps needed to reach a normal form is maximal

among all reductions to normal form for any term.
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6 Self-Distributivity

To show OLCOM(æSD, æino) we distinguish the relative position of – and “ for an
arbitrary SD-step – : s æSD t1 and an SD-step according to in-order “ : s æino t2. If
– = “ the steps are equivalent and t1 = t2. If – Î “ the position “ stays the smallest
position according to the in-order tree traversal, even after we have done an SD-step at
position –, hence on both sides of the digram we can find a common reduct in one step,
i.e., n = 1 = m. If – ı “ it either is the situation of Figure 6.4, i.e., n = 2 Æ 3 = m or “
is further down in the left subtree of –, where in all cases we have n = m. If “ ı – it
holds that – is in the right subtree of “ and it follows that n = 1 Æ 2 = m.

Similarly, we could check the claim above and give a second prove of afore-mentioned
optimality of ærev by showing OLCOM(ærev, æSD). For further details we refer the
reader to the paper of van Oostrom as this is a very brief remark [24].

6.4 A Residual System for Self-Distributivity

In Section 6.3 completeness of developments was shown, which we will be using in this
section to define a rewrite system having treks as steps, where sources and targets
correspond to a complete development. The fact that non-complete developments can
always be extended to complete developments is then, similar to associativity, the key
ingredient for proving the cube identity R1. Thus, we first introduce said rewrite system
and a corresponding join.

Definition 6.4.1. Define by ≠æ¶ SD the rewrite system consisting of steps defined by
treks, such that the source and the target of (s, U) is the source and the target of a
complete development of (s, U). We write (s, U) : s ≠æ¶ SD t and define (s, ÿ) as the
empty-step.

Remark 6.4.2. By Theorem 6.3.11 developments are complete, i.e., confluent and ter-
minating, meaning, that for two complete developments „, Â of (t, U) it holds that
tgt(„) = tgt(Â), i.e., the target of a trek is well-defined. Moreover, by completeness each
trek (t, U) induces a unique trace relation [[UÍÍ relating positions in the source and the
target of (t, U).

Definition 6.4.3. The join Û of two co-initial treks (t, U), (t, V ) is defined by (t, U) Û
(t, V ) := (t, (U fi V )+).

Next, we will show that the diagonals of the diamonds are part of the rewrite system,
i.e., that the join is a trek as well.

Lemma 6.4.4. Let (t, U) and (t, V ) be two co-initial treks, then the join (t, U) Û (t, V )
is a trek as well.

Proof. SD1: Since U, V ™ t it follows by Lemma 2.1.9 that (U fi V )+ ™ t. SD2: by
definition of transitive closure. SD3: Since t is a tree and U, V are scopic in t, it
follows by Theorem 3.2.6 that (U fi V )+ is scopic as well. SD4: Assume there exists
(–, –1—) œ (U fi V )+ := W . Since (t, U) and (t, V ) are treks there exists “, ” œ Pos�(t),
such that {(–, “), (”, –1—)} ™ U fi V and a chain “ W . . . W ”. Since t is a tree it holds
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6.4 A Residual System for Self-Distributivity

that – @ “ @ ” @ –1—, meaning, there exists —Õ, such that “ = –1—Õ contradicting
(t, U), (t, V ) being treks.

Introducing a binary function on treks and showing that this function is a residuation
poses the last step before defining a residual system for SD.

Lemma 6.4.5. Let (s, U), (s, V ) be two co-initial treks. The function /SD defined by
(s, V )/SD(s, U) := (t, (U fi V )+[[UÍÍ) is a residuation for ≠æ¶ SD, where s [[UÍÍ t.

Proof. Since U ™ (U fi V )+ there exists a (not necessarily complete) development
of (s, (U fi V )+) with the steps taken completely developing (s, U), i.e., tgt(s, U) =
src(t, (U fi V )+[[UÍÍ) = src((t, U)/SD(t, V )). Furthermore, note that by (repeatedly
applying) Lemma 6.2.8 (s, (U fiV )+[[UÍÍ) is a trek again. Hence, by co-finality of complete
developments and by commutativity of the join the equality tgt((t, U)/SD(t, V )) =
tgt((t, V )/SD(t, U)) holds.

With the next statement the main goal of this master thesis is presented, namely a
residual system for self-distributivity.

Theorem 6.4.6. È≠æ¶ SD, 1, /SDÍ constitutes a residual system for the residuation defined
in Lemma 6.4.5.

Proof. That /SD is a residuation for ≠æ¶ SD was shown in Lemma 6.4.5. The laws
R2–R4 are trivial. To see that the cube identity R1 also holds note, that each trek
defines a trace relation. In Lemma 6.4.5 we saw that the corresponding proof term
algebra A is a model for the diamonds. Hence, for two co-initial treks Â, ‰ it holds that
Â · (‰/SDÂ) =A ‰ · (Â/SD‰), meaning, both sides result in the same trace relation. Hence,
a further co-initial trek „ after completely developing either path of the diamond results
in the same trek, i.e., („/SDÂ)/SD(‰/SDÂ) = („/SD‰)/SD(Â/SD‰).

Confluence of ≠æ¶ SD follows from the residuation /SD. Confluence of TSD is easily
established completely developing a trek into single-steps. Since the residuation /SD

fulfils R1–R4 it yields the least common reduct according to ≠æ¶ SD.
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7 Conclusion

This master thesis showed that self-distributivity is orthogonal in the semantic sense
of having a residual system (as defined in Terese [23, Section 8.7]). This was done by
abstracting from the constructions of residual systems for the S-combinator, associativity
and braids.

First, statements about Melliès’ scopic relations [17] were generalized to make them
applicable to our purposes. Then treks were introduced, extending the definition of a
braid multi-step. The derivation of a residual system for self-distributivity was done
by developments over treks, analogue to associativity. Here, a crucial role played the
concept of tracing as introduced in Terese [23, Section 8.6]. Showing termination of
developments over treks was proven by the increasingness-theorem using a normalizing
strategy. This bears similarities to the also duplicating term rewrite system of the S-
combinator considering the inductive definition of a residual as a normalizing, innermost
strategy. That the finally obtained residual system for self-distributivity indeed fulfils
the cube law and the unit identities was verified by the fact that the proof term algebra
defined by the trace relations over treks acts as a model for the diamond.

Furthermore, we remarked that developing a trek according to the reversed in-order
tree traversal formulates an optimal strategy. On the contrary, developing according to
the in-order tree traversal results in a maximal strategy.

Future Work

Parallel reductions in ⁄-calculus as defined by Tait & Martin-Löf and later refined by
Takahashi opened the opportunity to inductive proofs [22], since they are defined on
the structure of ⁄-terms. Similarly the theory involving self-distributivity could simplify
and benefit from an inductive definition for the target of a trek’s complete development.
So far, attempts by the author remained unsuccessful. As a starting point could serve
Dehornoy’s dilatation operator, inductively defining a common reduct of all possible
single SD-steps of a term [8, Definition V.3.8].
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