\square universität innsbruck

α-Avoidance
FSCD 2023, July 5 - Rome, Italy

Samuel Frontull, Georg Moser, Vincent van Oostrom

www.tcs-informatik.uibk.ac.at

Overview

1. Motivation

2. α-Paths
3. α-Avoidance in different calculi
4. Soundness and Undecidability
5. Conclusion and Future Work

Overview

1. Motivation

2. α-Paths
3. α-Avoidance in different calculi
4. Soundness and Undecidability
5. Conclusion and Future Work

Substitution and bindings

β-reduction in the λ-calculus

A variable capture may lead to inconsistent results.

Substitution and bindings

β-reduction in the λ-calculus

A variable capture may lead to inconsistent results.

α-Avoidance

$$
\begin{array}{ccccccc}
M & \rightarrow_{\beta} & N_{1} & \rightarrow_{\beta} & \ldots & \rightarrow_{\beta} & N_{k}
\end{array}
$$

α-Avoidance

$$
\begin{array}{ccccccc}
M & \rightarrow_{\beta} & N_{1} & \rightarrow_{\beta} & \ldots & \rightarrow_{\beta} & N_{k}
\end{array}
$$

\rightarrow_{β} : ordinary β-step where we may (need to) apply α.

α-Avoidance

Question

Can α-conversion steps be avoided for a λ-term M

$$
\begin{array}{ccccccc}
M & \rightarrow_{\beta} & N_{1} & \rightarrow_{\beta} & \ldots & \rightarrow_{\beta} & N_{k}
\end{array}
$$

\rightarrow_{β} : ordinary β-step where we may (need to) apply α.

α-Avoidance

Question

Can α-conversion steps be avoided for a λ-term M, by suitably α-converting it up front, say to a term M^{\prime}

$$
\begin{array}{lllllll}
M & \rightarrow_{\beta} & N_{1} & \rightarrow_{\beta} & \ldots & \rightarrow_{\beta} & N_{k} \\
\equiv_{\alpha} & & & & & & \\
M^{\prime} & & & & & &
\end{array}
$$

\rightarrow_{β} : ordinary β-step where we may (need to) apply α.

α-Avoidance

Question

Can α-conversion steps be avoided for a λ-term M, by suitably α-converting it up front, say to a term M^{\prime} such that no α-conversion step needs to be invoked along any reduction from M^{\prime}.

$$
\begin{array}{lllllll}
M & \rightarrow_{\beta} & N_{1} & \rightarrow_{\beta} & \ldots & \rightarrow_{\beta} & N_{k} \\
\equiv_{\alpha} & & & & \\
M^{\prime} & \rightarrow_{\beta_{\text {naive }}} & N_{1}^{\prime} & \rightarrow_{\beta_{\text {naive }}} \ldots \rightarrow_{\beta_{\text {naive }}} N_{k}^{\prime}
\end{array}
$$

\rightarrow_{β} : ordinary β-step where we may (need to) apply α.

α-Avoidance

Question

Can α-conversion steps be avoided for a λ-term M, by suitably α-converting it up front, say to a term M^{\prime} such that no α-conversion step needs to be invoked along any reduction from M^{\prime}.

$$
\begin{array}{lllllll}
M & \rightarrow_{\beta} & N_{1} & \rightarrow_{\beta} & \ldots & \rightarrow_{\beta} & N_{k} \\
\equiv_{\alpha} & & & & \\
M^{\prime} & \rightarrow_{\beta_{\text {naive }}} & N_{1}^{\prime} & \rightarrow_{\beta_{\text {naive }}} \ldots \rightarrow_{\beta_{\text {naive }}} & N_{k}^{\prime}
\end{array}
$$

\rightarrow_{β} : ordinary β-step where we may (need to) apply α.
$\rightarrow_{\beta_{\text {naive }}}$: naïve β-step with naïve substitution (no α).

α-Avoidance

Question

Can α-conversion steps be avoided for a λ-term M, by suitably α-converting it up front, say to a term M^{\prime} such that no α-conversion step needs to be invoked along any reduction from M^{\prime}.

$$
\begin{array}{cccccc}
M & \rightarrow_{\beta} & N_{1} & \rightarrow_{\beta} & \ldots & \rightarrow_{\beta}
\end{array} N_{k}
$$

\rightarrow_{β} : ordinary β-step where we may (need to) apply α.
$\rightarrow_{\beta_{\text {naive }}}$: naïve β-step with naïve substitution (no α).

α-Avoidance

Question

Can α-conversion steps be avoided for a λ-term M, by suitably α-converting it up front, say to a term M^{\prime} such that no α-conversion step needs to be invoked along any reduction from M^{\prime}.
\rightarrow_{β} : ordinary β-step where we may (need to) apply α.
$\rightarrow_{\beta_{\text {naive }}}$: naïve β-step with naïve substitution (no α).

Variable capture

A naïve substitution leads to a variable capture whenever we:

Variable capture

A naïve substitution leads to a variable capture whenever we:
(1) naïvely contract a redex $(\lambda x . M) N$ where

Variable capture

A naïve substitution leads to a variable capture whenever we:
(1) naïvely contract a redex $(\lambda x . M) N$ where
(2) where some variable y occurs free in N

Variable capture

A naïve substitution leads to a variable capture whenever we:
(1) naïvely contract a redex $(\lambda x . M) N$ where
(2) where some variable y occurs free in N
(3) is moved into M, where some x that is free

Variable capture

A naïve substitution leads to a variable capture whenever we:
(1) naïvely contract a redex ($\lambda x . M) N$ where
(2) where some variable y occurs free in N
(3) is moved into M, where some x that is free
(4) is in the scope of a λy

Variable capture

A naïve substitution leads to a variable capture whenever we:
(1) naïvely contract a redex ($\lambda x . M) N$ where
(2) where some variable y occurs free in N
(3) is moved into M, where some x that is free
(4) is in the scope of a λy

Variable capture

A naïve substitution leads to a variable capture whenever we:
(1) naïvely contract a redex $(\lambda x . M) N$ where (r-edge \longrightarrow)
(2) where some variable y occurs free in N
(3) is moved into M, where some x that is free
(4) is in the scope of a λy

Variable capture

A naïve substitution leads to a variable capture whenever we:
(1) naïvely contract a redex $(\lambda x . M) N$ where (r-edge
(2) where some variable y occurs free in N (a-edge $-=->$)
(3) is moved into M, where some x that is free
(4) is in the scope of a λy

Variable capture

A naïve substitution leads to a variable capture whenever we:
(1) naïvely contract a redex $(\lambda x . M) N$ where (r-edge
(2) where some variable y occurs free in N (a-edge $-=->$)
(3) is moved into M, where some x that is free (b-edge $=\cdot->$)
(4) is in the scope of a λy

Variable capture

A naïve substitution leads to a variable capture whenever we:
(1) naïvely contract a redex $(\lambda x . M) N$ where (r-edge
(2) where some variable y occurs free in N (a-edge $-=->$)
(3) is moved into M, where some x that is free (b-edge $=\cdot-\gg$)
(4) is in the scope of a λy (c-edge $\cdots \cdots \gg$)

α via paths

arbc α-path

$$
x=-=->@ \longrightarrow \lambda y=\cdot->y \cdots \cdots>\lambda x
$$

α via paths

arbc α-path

$$
x=-=->@ \longrightarrow \lambda y=\cdot->y \cdots \cdots>\lambda x
$$

α via paths

arbc α-path

$$
x=-=->@ \longrightarrow \lambda y=\cdots>y \cdots \cdots>\lambda x
$$

α via paths

arbc α-path

$$
x=-=->@ \longrightarrow \lambda y=\cdot=\cdot>y \cdots \cdots\rangle \lambda x
$$

α via paths

arbc α-path

$$
x=-=->@ \longrightarrow \lambda y=\cdot=\cdot>y \cdots \cdots\rangle \lambda x
$$

$$
(\lambda z \cdot(\lambda x \cdot(\lambda y \cdot x) x) z) y
$$

α via paths

$(\text { arb })^{i} c \alpha$-path

$$
(x=-=->@ \longrightarrow \lambda y=\cdot=\cdot\rangle y)^{i} \cdots \cdots>\lambda x
$$

α via paths

$(\text { arb })^{i} c \alpha$-path

$$
(x-=->@ \longrightarrow \lambda y=\cdot-\cdot>y)^{i} \cdots \cdots \gg \lambda x
$$

α via paths

$(\lambda x . x x)(\lambda y z . y z)$

$(\text { arb })^{i} c \alpha$-path

$\left(x^{-\cdots-} @ \longrightarrow \lambda y \cdots>y\right)^{+\cdots \cdots \cdots>\lambda x}$

α via paths

$(\lambda x . x x)(\lambda y z . y z)$

$(\text { arb })^{i} c \alpha$-path

$\left(x^{-\cdots-} @ \longrightarrow \lambda y \cdots>y\right)^{+\cdots \cdots \cdots>\lambda x}$

α via paths

$(\lambda x . x x)(\lambda y z . y z)$

$(\text { arb })^{i} c \alpha$-path

$\left(x^{-\cdots-} @ \longrightarrow \lambda y \cdots>y\right)^{+\cdots \cdots \cdots>\lambda x}$

α via paths

$(\text { arb })^{i} c \alpha$-path

$$
(x=-=->@ \longrightarrow \lambda y=\cdot-\cdot>y)^{+} \cdots \cdots>\lambda x
$$

α via paths

$(\text { arb })^{i} c \alpha$-path

$$
(x=-=->@ \longrightarrow \lambda y=\cdot-\cdot>y)^{+} \cdots \cdots>\lambda x
$$

α via paths

$(\text { arb })^{i} c \alpha$-path

$$
(x---->@ \longrightarrow \lambda y-\cdots>y)^{+} \cdots \cdots>\lambda x
$$

α via paths

$(\text { arb })^{i} c \alpha$-path

$$
(x---->@ \longrightarrow \lambda y-\cdots>y)^{+} \cdots \cdots>\lambda x
$$

α via paths

$$
\begin{aligned}
\rightarrow_{\beta} & \frac{(\lambda x \cdot x x)(\lambda y z \cdot y z)}{(\lambda y z \cdot y z)(\lambda y z \cdot y z)} \\
\rightarrow_{\beta} & \lambda z \cdot(\lambda y z \cdot y z) z \\
\rightarrow_{\beta} & \lambda z \cdot\left(\lambda z^{\prime} \cdot z z^{\prime}\right)
\end{aligned}
$$

$(\text { arb })^{i} c \alpha$-path
 $$
(x---->@ \longrightarrow \lambda y-\cdots>y)^{+} \cdots \cdots>\lambda x
$$

α via paths

$$
\begin{array}{ll}
\rightarrow_{\beta} & \frac{(\lambda x \cdot x x)(\lambda y z \cdot y z)}{(\lambda y z \cdot y z)(\lambda y z \cdot y z)} \\
\rightarrow_{\beta} & \lambda z \cdot(\lambda y z \cdot y z) z \\
\rightarrow_{\beta} & \lambda z \cdot\left(\lambda z^{\prime} \cdot z z^{\prime}\right)
\end{array}
$$

need characterisation of created redexes

$(\text { arb })^{i} c \alpha$-path

$$
(x---->@ \longrightarrow \lambda y-\cdots>y)^{+} \cdots \cdots>\lambda x
$$

Created redexes

$$
(\lambda x . x x)(\lambda y z . y z)
$$

Created redexes

Created redexes

$(\lambda x . x x)(\lambda y z . y z)$

Created redexes

$$
\rightarrow_{\beta} \frac{(\lambda x . x x)(\lambda y z . y z)}{(\lambda y z . y z)(\lambda y z . y z)}
$$

Created redexes

Created redexes

$$
\rightarrow_{\beta} \quad \frac{(\lambda x . x x)(\lambda y z . y z)}{(\lambda y z . y z)(\lambda y z . y z)}
$$

Created redexes

Created redexes

$$
\begin{aligned}
\rightarrow_{\beta} & \frac{(\lambda x . x x)(\lambda y z . y z)}{(\lambda y z \cdot y z)(\lambda y z . y z)} \\
\rightarrow_{\beta} & \lambda z \cdot(\lambda y z . y z) z
\end{aligned}
$$

Created redexes

$$
\begin{aligned}
& \frac{(\lambda x . x x)(\lambda y z . y z)}{(\lambda y z \cdot y z)(\lambda y z \cdot y z)} \\
\rightarrow_{\beta} & \frac{(\lambda z \cdot \underline{(\lambda y z . y z) z}}{\rightarrow_{\beta}}
\end{aligned}
$$

Created redexes

$$
\begin{aligned}
& \frac{(\lambda x \cdot x x)(\lambda y z \cdot y z)}{(\lambda y z \cdot y z)(\lambda y z \cdot y z)} \\
\rightarrow_{\beta} & \frac{(\lambda z \cdot(\lambda y z \cdot y z) z}{}
\end{aligned}
$$

Legal paths (Asperti et al. 1994)

Characterise virtual redexes.

Created redexes

$$
\begin{aligned}
& \frac{(\lambda x \cdot x x)(\lambda y z \cdot y z)}{} \\
\rightarrow_{\beta} & \frac{(\lambda y z \cdot y z)(\lambda y z \cdot y z)}{\rightarrow_{\beta}}
\end{aligned}
$$

Legal paths (Asperti et al. 1994)

Characterise virtual redexes.

Overview

1. Motivation

2. α-Paths

3. α-Avoidance in different calculi
4. Soundness and Undecidability
5. Conclusion and Future Mork

α-Paths

Combining $a-, b$ - and c-edges with legal paths $\Longrightarrow(a l b)^{i} c \alpha$-path
Allows the prediction of the potential need for α.

α-Paths

$$
\begin{aligned}
& \frac{(\lambda x \cdot x x)(\lambda y z \cdot y z)}{} \\
\rightarrow_{\beta} & \underline{(\lambda y z \cdot y z)(\lambda y z \cdot y z)} \\
\rightarrow_{\beta} & \lambda z \cdot(\lambda y z \cdot y z) z \\
\rightarrow_{\beta} & \lambda z \cdot\left(\lambda z^{\prime} \cdot z z^{\prime}\right)
\end{aligned}
$$

Combining a-, b - and c-edges with legal paths $\Longrightarrow(a / b)^{i} c \alpha$-path
Allows the prediction of the potential need for α.

α-Paths

$$
\begin{aligned}
& \frac{(\lambda x \cdot x x)(\lambda y z \cdot y z)}{} \\
\rightarrow_{\beta} & \underline{(\lambda y z \cdot y z)(\lambda y z \cdot y z)} \\
\rightarrow_{\beta} & \lambda z \cdot(\lambda y z \cdot y z) z \\
\rightarrow_{\beta} & \lambda z \cdot\left(\lambda z^{\prime} \cdot z z^{\prime}\right)
\end{aligned}
$$

Combining a-, b - and c-edges with legal paths $\Longrightarrow(a / b)^{i} c \alpha$-path
Allows the prediction of the potential need for α.

α-Paths

$$
\begin{aligned}
& \frac{(\lambda x \cdot x x)(\lambda y z \cdot y z)}{} \\
\rightarrow_{\beta} & \underline{(\lambda y z \cdot y z)(\lambda y z \cdot y z)} \\
\rightarrow_{\beta} & \lambda z \cdot(\lambda y z \cdot y z) z \\
\rightarrow_{\beta} & \lambda z \cdot\left(\lambda z^{\prime} \cdot z z^{\prime}\right)
\end{aligned}
$$

Combining a-, b - and c-edges with legal paths $\Longrightarrow(a / b)^{i} c \alpha$-path
Allows the prediction of the potential need for α.

α-Paths

Combining $a-, b$ - and c-edges with legal paths $\Longrightarrow(a / b)^{i} c \alpha$-path
Allows the prediction of the potential need for α.

α-Avoidance

Question

Can α-conversion steps be avoided for a λ-term \boldsymbol{M}, by suitably α-converting it up front, say to a term M^{\prime} such that no α-conversion step needs to be invoked along any reduction from M^{\prime}.

$$
\begin{array}{ccccc}
M & \rightarrow_{\beta} & N_{1} & \rightarrow_{\beta} \ldots & \rightarrow_{\beta}
\end{array} N_{k}
$$

\rightarrow_{β} : ordinary β-step where we may (need to) apply α.
$\rightarrow_{\beta_{\text {naive }}}$: naïve β-step with naïve substitution (no α).

α-Avoidance

Question

Can α-conversion steps be avoided for a λ-term M, by suitably α-converting it up front, say to a term M^{\prime} such that no α-conversion step needs to be invoked along any reduction from M^{\prime}.

$$
\begin{array}{rlll}
\alpha \text {-paths } & M & \rightarrow_{\beta} & N_{1} \quad \rightarrow_{\beta} \ldots
\end{array} \rightarrow_{\beta} \quad N_{k} .
$$

\rightarrow_{β} : ordinary β-step where we may (need to) apply α.
$\rightarrow_{\beta_{\text {naive }}}$: naïve β-step with naïve substitution (no α).

Overview

1. Motivation

2. α-Paths
3. α-Avoidance in different calculi
4. Soundness and Undecidability
5. Conclusion and Future Work

α-Avoidance in different calculi

λ-calculus

α is unavoidable

$$
\begin{aligned}
& \underline{(\lambda x \cdot x x)(\lambda y \lambda z \cdot y z)} \\
\rightarrow_{\beta} & \underline{(\lambda y \lambda z \cdot y z)(\lambda y \lambda z \cdot y z)} \\
\rightarrow_{\beta} & \lambda z \cdot \underline{(\lambda y \lambda z \cdot y z) z} \\
\rightarrow_{\alpha} & \lambda z \cdot\left(\lambda y \cdot \lambda z^{\prime} \cdot y z^{\prime}\right) z \\
\rightarrow_{\beta} & \lambda z \lambda z^{\prime} \cdot z z^{\prime}
\end{aligned}
$$

α-Avoidance in different calculi

λ-calculus

α is unavoidable

$$
\begin{aligned}
& \frac{(\lambda x \cdot x x)(\lambda y \lambda z \cdot y z)}{} \quad \mathcal{L} \text { duplication } \\
\rightarrow_{\beta} & \underline{(\lambda y \lambda z \cdot y z)(\lambda y \lambda z \cdot y z)} \\
\rightarrow_{\beta} & \lambda z \cdot \underline{(\lambda y \lambda z \cdot y z) z} \\
\rightarrow_{\alpha} & \lambda z \cdot\left(\lambda y \cdot \lambda z^{\prime} \cdot y z^{\prime}\right) z \\
\rightarrow_{\beta} & \lambda z \lambda z^{\prime} \cdot z z^{\prime}
\end{aligned}
$$

α-Avoidance in different calculi

λ-calculus

α is unavoidable

$$
\begin{aligned}
& \begin{array}{l}
\rightarrow_{\beta} \frac{(\lambda x \cdot x x)(\lambda y \lambda z . y z)}{(\lambda y \lambda z . y z)(\lambda y \lambda z \cdot y z)} \\
\rightarrow_{\beta} \quad L^{2 z \cdot(\lambda y \lambda z . y z) z} \text { redex creation }
\end{array} \\
& \rightarrow_{\alpha} \quad \lambda z \cdot\left(\lambda y \cdot \lambda z^{\prime} \cdot y z^{\prime}\right) z \\
& \rightarrow_{\beta} \quad \lambda z \lambda z^{\prime} . z z^{\prime}
\end{aligned}
$$

α-Avoidance in different calculi

λ-calculus

α is unavoidable

$$
\begin{array}{ll}
& \frac{(\lambda x \cdot x x)(\lambda y \lambda z \cdot y z)}{(\lambda y \lambda z \cdot y z)(\lambda y \lambda z \cdot y z)} \\
\rightarrow_{\beta} & \underline{(\lambda y d \text { duplication }} \\
\rightarrow_{\beta} & \lambda z \cdot \underline{(\lambda y \lambda z \cdot y z) z} \\
\rightarrow_{\alpha} & \lambda z \cdot \underline{\left(\lambda y \cdot \lambda z^{\prime} \cdot y z^{\prime}\right) z} \\
\rightarrow_{\beta} & \lambda z \lambda z^{\prime} \cdot z z^{\prime}
\end{array} \quad \mathcal{L} \text { redex creation }
$$

α-Avoidance in different calculi

λ-calculus

α is unavoidable

$$
\begin{aligned}
& \frac{(\lambda x . x x)(\lambda y \lambda z . y z)}{\mathcal{L}} \quad \mathcal{d u p l i c a t i o n} \\
& \left.\rightarrow_{\beta} \quad \underline{(\lambda y \lambda z . y z)(\lambda y \lambda z . y z)}\right)^{2} \text { redex creation } \\
& \rightarrow_{\beta} \quad \lambda z . \underline{(\lambda y \lambda z . y z) z} \\
& \rightarrow_{\alpha} \quad \lambda z \cdot\left(\lambda y \cdot \lambda z^{\prime} \cdot y z^{\prime}\right) z \\
& \text { open redex contraction } \\
& \rightarrow_{\beta} \quad \lambda z \lambda z^{\prime} . z z^{\prime}
\end{aligned}
$$

3 phenomena causing α - absence of each allows to avoid α

i.e. we always can α-rename up front such that no α-paths occur

α-Avoidance in different calculi

Developments are α-avoiding (Church and Rosser 1936)

No redex creation (r-edges are enough)

α-Avoidance in different calculi

Developments are α-avoiding (Church and Rosser 1936)

No redex creation (r-edges are enough)

Final λx-node at the left of the starting variable x

$$
\left(x^{p 2 q}=--->@^{p} \longrightarrow \lambda y^{p 1}=\cdot-\cdots y^{p 1 s 1 t}\right)^{+\ldots \ldots \ldots\rangle} \lambda x^{p 1 s}
$$

α-Avoidance in different calculi

Developments are α-avoiding (Church and Rosser 1936)

No redex creation (r-edges are enough)

\Longrightarrow no unremovable α-paths

Final λx-node at the left of the starting variable x

$$
\left(x^{p 2 q-=-->} @^{p} \longrightarrow \lambda y^{p 1 \cdots}=\cdots y^{p 1 s 1 t}\right)^{+\cdots \cdots \cdots} \lambda x^{p 1 s}
$$

α-Avoidance in different calculi

The linear (affine) λ-calculus (Hindley 1989)
Forbids duplication by restricting term-formation

α-Avoidance in different calculi

The linear (affine) λ-calculus (Hindley 1989)

Forbids duplication by restricting term-formation

Lemma 19.

Let M be a linear λ-term, $M \rightarrow_{\beta} N$ and $q \prec p$ for some positions p, q in M. If $p \triangleright p^{\prime}$ and $q \vee q^{\prime}$, then $q^{\prime} \prec p^{\prime}$.

α-Avoidance in different calculi

The linear (affine) λ-calculus (Hindley 1989)

Forbids duplication by restricting term-formation

```
\lambdax p
*
|
|
\vartheta
x
```


Lemma 19.

Let M be a linear λ-term, $M \rightarrow_{\beta} N$ and $q \prec p$ for some positions p, q in M. If $p \triangleright p^{\prime}$ and $q \vee q^{\prime}$, then $q^{\prime} \prec p^{\prime}$.

α-Avoidance in different calculi

The linear (affine) λ-calculus (Hindley 1989)

Forbids duplication by restricting term-formation

Lemma 19.

Let M be a linear λ-term, $M \rightarrow_{\beta} N$ and $q \prec p$ for some positions p, q in M. If $p \triangleright p^{\prime}$ and $q \vee q^{\prime}$, then $q^{\prime} \prec p^{\prime}$.

α-Avoidance in different calculi

The linear (affine) λ-calculus (Hindley 1989)

Forbids duplication by restricting term-formation

$$
\begin{array}{lll}
\lambda x^{p} & p \triangleright p^{\prime} & \\
y^{2} & \rightarrow x^{p^{\prime}} \\
x^{q} & q>q^{\prime} & \\
y^{q} & x^{q^{\prime}}
\end{array}
$$

Lemma 19.

Let M be a linear λ-term, $M \rightarrow_{\beta} N$ and $q \prec p$ for some positions p, q in M. If $p \triangleright p^{\prime}$ and $q q^{\prime}$, then $q^{\prime} \prec p^{\prime}$.

α-Avoidance in different calculi

The linear (affine) λ-calculus (Hindley 1989)

Forbids duplication by restricting term-formation

Lemma 19.

Let M be a linear λ-term, $M \rightarrow_{\beta} N$ and $q \prec p$ for some positions p, q in M. If $p \triangleright p^{\prime}$ and $q q^{\prime}$, then $q^{\prime} \prec p^{\prime}$.

α-Avoidance in different calculi

The linear (affine) λ-calculus (Hindley 1989)

Forbids duplication by restricting term-formation

λx^{p}	$p>p^{\prime}$	$\lambda x^{p^{\prime}}$	context	$p \triangleright p$	if o is not prefix of p
λx		$\lambda \times$	body	o11p	if $p \neq \epsilon$ and $p \neq q$
'	\rightarrow_{β}^{*}	"	arg	o2p - oqp	for all positions q,
!		$!$			such that $o 11 q$ is bound by ol
\wedge	$q \vee q^{\prime}$	\checkmark			
x^{q}		$x^{q^{\prime}}$			

Lemma 19.

Let M be a linear λ-term, $M \rightarrow_{\beta} N$ and $q \prec p$ for some positions p, q in M. If $p \triangleright p^{\prime}$ and $q q^{\prime}$, then $q^{\prime} \prec p^{\prime}$.

α-Avoidance in different calculi

The linear (affine) λ-calculus (Hindley 1989)

Forbids duplication by restricting term-formation

$$
\begin{array}{rll}
\text { context } & p \vee p & \text { if } o \text { is not prefix of } p \\
\text { body } & o 11 p \vee o p & \text { if } p \neq \epsilon \text { and } p \neq q \\
\text { arg } & o 2 p \vee o q p & \text { for all positions } q \\
& & \text { such that oll } q \text { is bound by ol }
\end{array}
$$

Lemma 19.

Let M be a linear λ-term, $M \rightarrow_{\beta} N$ and $q \prec p$ for some positions p, q in M. If $p \triangleright p^{\prime}$ and $q q^{\prime}$, then $q^{\prime} \prec p^{\prime}$.

α-Avoidance in different calculi

The linear (affine) λ-calculus (Hindley 1989)

Forbids duplication by restricting term-formation

$$
\begin{array}{rll}
\text { context } & p>p & \text { if } o \text { is not prefix of } p \\
\text { body } & o 11 p \vee o p & \text { if } p \neq \epsilon \text { and } p \neq q \\
\text { arg } & o 2 p \vee \text { oqp } & \text { for all positions } q \\
& & \text { such that oll } q \text { is bound by ol }
\end{array}
$$

Lemma 19.

Let M be a linear λ-term, $M \rightarrow_{\beta} N$ and $q \prec p$ for some positions p, q in M. If $p \triangleright p^{\prime}$ and $q q^{\prime}$, then $q^{\prime} \prec p^{\prime}$.

α-Avoidance in different calculi

The linear (affine) λ-calculus (Hindley 1989)

Forbids duplication by restricting term-formation

λx^{p}	$p>p^{\prime}$	$\lambda x^{p^{\prime}}$	context	$p \triangleright p$	if o is not prefix of p
$\because \Gamma$		\cdots	body	o11p op	if $p \neq \epsilon$ and $p \neq q$
$!\downarrow$	$\rightarrow{ }^{*}$		arg	o2p ${ }^{\text {d }}$ oqp	for all positions q,
: 1					such that ollq is bound by ol
\because	$q>q^{\prime}$	± 1			
x^{q}		$x^{q^{\prime}}$	\Rightarrow no	unremova	α-paths

Lemma 19.

Let M be a linear λ-term, $M \rightarrow_{\beta} N$ and $q \prec p$ for some positions p, q in M. If $p \triangleright p^{\prime}$ and $q q^{\prime}$, then $q^{\prime} \prec p^{\prime}$.

α-Avoidance in different calculi

The weak λ-calculus (Çağman and Hindley 1998)

Forbids to contract open redexes

α-Avoidance in different calculi

The weak λ-calculus (Çağman and Hindley 1998)

Forbids to contract open redexes
a term with an unremovable α-path

α-Avoidance in different calculi

The weak λ-calculus (Çağman and Hindley 1998)

Forbids to contract open redexes
"bound variables are never relased"
a term with an unremovable α-path

α-Avoidance in different calculi

The weak λ-calculus (Çağman and Hindley 1998)

Forbids to contract open redexes
"bound variables are never relased" $\Longrightarrow \lambda y$
a term with an unremovable α-path

α-Avoidance in different calculi

The weak λ-calculus (Çağman and Hindley 1998)

Forbids to contract open redexes
"bound variables are never relased" $\Longrightarrow \lambda y$
a term with an unremovable α-path

α-Avoidance in different calculi

The simply-typed λ-calculus à la Church

α is unavoidable

$$
\left(\lambda f^{\tau \rightarrow \tau} x^{\sigma} . f(f x)\right)\left(\lambda x^{\tau} y^{\sigma} z^{\sigma} . x z y\right)
$$

α-Avoidance in different calculi

The simply-typed λ-calculus à la Church

α is unavoidable

$$
\left(\lambda f^{\tau \rightarrow \tau} \boldsymbol{x}^{\sigma} . f(f x)\right)\left(\lambda x^{\tau} y^{\sigma} z^{\sigma} . x z y\right)
$$

$$
\sigma=0, \tau=0 \rightarrow 0 \rightarrow 0
$$

α-Avoidance in different calculi

The simply-typed λ-calculus à la Church

α is unavoidable

$$
\begin{aligned}
& \frac{\left(\lambda f^{\tau \rightarrow \tau} x^{\sigma} \cdot f(f x)\right)\left(\lambda x^{\tau} y^{\sigma} z^{\sigma} \cdot x z y\right)}{\lambda x \cdot(\lambda x y z \cdot x z y) \underline{((\lambda x y z \cdot x z y) x)}} \\
\rightarrow_{\beta} & \lambda x \cdot(\lambda x y z \cdot x z y)(\lambda y z \cdot x z y) \\
\rightarrow_{\beta} & \lambda x \overline{((\lambda y z \cdot x z y) z y} \\
\rightarrow_{\beta} & \lambda x y \cdot \overline{\left(\lambda y z^{\prime} \cdot x z^{\prime} y\right) z y} \\
\rightarrow_{\alpha} & \lambda x y z \cdot \overline{\left(\lambda z^{\prime} \cdot x z^{\prime} z\right) y} \\
\rightarrow_{\beta} & \lambda x y z \cdot \overline{(x y z} \\
\rightarrow_{\beta} & \lambda x y z \cdot x y
\end{aligned}
$$

α-Avoidance in different calculi

The safe λ-calculus (Blum and Ong 2007)

safety: if $x \in \mathcal{F} V(M)$, then $\operatorname{ord} M \leq \operatorname{ord} x$.

$$
\begin{aligned}
& \text { ord } o:=0 \\
& \text { ord } \sigma \rightarrow \tau:=\max (1+\operatorname{ord} \sigma, \text { ord } \tau)
\end{aligned}
$$

a term with an unremovable α-path

α-Avoidance in different calculi

The safe λ-calculus (Blum and Ong 2007)

safety: if $x \in \mathcal{F} V(M)$, then $\operatorname{ord} M \leq \operatorname{ord} x$.

$$
\begin{aligned}
& \text { ord } o:=0 \\
& \text { ord } \sigma \rightarrow \tau:=\max (1+\operatorname{ord} \sigma, \text { ord } \tau) \\
& \text { ord } y \geq \operatorname{ord} x
\end{aligned}
$$

a term with an unremovable α-path
y

α-Avoidance in different calculi

The safe λ-calculus (Blum and Ong 2007)

safety: if $x \in \mathcal{F} V(M)$, then ord $M \leq$ ord x.

```
ord o := 0
ord }\sigma->\tau:=max(1+\operatorname{ord}\sigma,\operatorname{ord}\tau
ord y }\geq\mathrm{ ord }
ord}(\lambday.t)\leqord
```

a term with an unremovable α-path

α-Avoidance in different calculi

The safe λ-calculus (Blum and Ong 2007)

safety: if $x \in \mathcal{F} V(M)$, then ord $M \leq$ ord x.

```
ordo:= 0
ord }\sigma->\tau:=max(1+\operatorname{ord}\sigma,\operatorname{ord}\tau
ord y }\geq\mathrm{ ord }
ord}(\lambday.t)\leqord
ord y<ordx
```

a term with an unremovable α-path

α-Avoidance in different calculi

The safe λ-calculus (Blum and Ong 2007)

safety: if $x \in \mathcal{F} V(M)$, then ord $M \leq$ ord x.

```
ordo:= 0
ord }\sigma->\tau:=max(1+\operatorname{ord}\sigma,\operatorname{ord}\tau
ord y }\geq\mathrm{ ord }
ord}(\lambday.t)\leq\operatorname{ord}
ord y< ordx
z noo \alpha-paths
```

a term with an unremovable α-path

α-Avoidance in different calculi

The safe λ-calculus (Blum and Ong 2007)

safety: if $x \in \mathcal{F} V(M)$, then $\operatorname{ord} M \leq \operatorname{ord} x$.

```
ord o := 0
ord \(\sigma \rightarrow \tau:=\max (1+\operatorname{ord} \sigma, \operatorname{ord} \tau)\)
ord \(y \geq\) ord \(x\)
ord \((\lambda y . t) \leq \operatorname{ord} x\)
ord \(y<\) ord \(x\)
```

$z \Longrightarrow$ no α-paths
a term with an unremovable α-path
y
\rightarrow analysing the safe λ-calculus as presented in (Blum and Ong 2009) using our tools, we found that the claim that α could be avoided in it, was not entirely correct.

α-Avoidance in different calculi

The safe λ-calculus (Blum and Ong 2007)

safety + combined abstractions and simultaneous substitution.

$$
\begin{aligned}
& \text { ord } o:=0 \\
& \text { ord } \sigma \rightarrow \tau:=\max (1+\operatorname{ord} \sigma, \operatorname{ord} \tau)
\end{aligned}
$$

α-Avoidance in different calculi

The safe λ-calculus (Blum and Ong 2007)

safety + combined abstractions and simultaneous substitution.

```
ordo:= 0
ord }\sigma->\tau:=max(1+\operatorname{ord}\sigma,\operatorname{ord}\tau
ord y }\geq\operatorname{ord}
```


α-Avoidance in different calculi

The safe λ-calculus (Blum and Ong 2007)

safety + combined abstractions and simultaneous substitution.

```
ordo:= 0
ord }\sigma->\tau:=max(1+\operatorname{ord}\sigma,\operatorname{ord}\tau
ord y }\geq\mathrm{ ord }
ord y< ordx
```


α-Avoidance in different calculi

The safe λ-calculus (Blum and Ong 2007)

safety + combined abstractions and simultaneous substitution.

```
ordo:= 0
ord }\sigma->\tau:=max(1+\operatorname{ord}\sigma,\operatorname{ord}\tau
ord y }\geq\mathrm{ ord }
ordy Xordx
```


α-Avoidance in different calculi

The safe λ-calculus (Blum and Ong 2007)

safety + combined abstractions and simultaneous substitution.

$$
\begin{aligned}
& \operatorname{ord} o:=0 \\
& \operatorname{ord} \sigma \rightarrow \tau:=\max (1+\operatorname{ord} \sigma, \operatorname{ord} \tau) \\
& \operatorname{ord} y \geq \operatorname{ord} x \\
& \operatorname{ord} y \mathbf{X} \operatorname{ord} x \\
& \Longrightarrow \text { cannot exclude variable capture } \\
& \quad \text { a more restrictive system needed }
\end{aligned}
$$

Overview

1. Motivation

2. α-Paths
3. α-Avoidance in different calculi
4. Soundness and Undecidability
5. Conclusion and Future Work

Soundness, but not completeness

variable capture $\Longrightarrow \alpha$-path
Proven in our paper

Soundness, but not completeness

variable capture $\Longrightarrow \alpha$-path
Proven in our paper
α-path \nRightarrow variable capture
$(\lambda x . x x)(\lambda y x . y z)$ is α-free

Soundness, but not completeness

variable capture $\Longrightarrow \alpha$-path
Proven in our paper

α-path \nRightarrow variable capture

$(\lambda x . x x)(\lambda y x . y z)$ is α-free

Undecidability

Reduction from Post's correspondence problem (Post 1946)

α-avoidance is undecidable for the leftmost-outermost reduction strategy.

$$
(P C P \text { PAIRS AA BB) }(\lambda x y z .(x z) y)
$$

$A A \ldots$ encoding of string "aa" BB...encoding of string "bb"

Undecidability

Reduction from Post's correspondence problem (Post 1946)

α-avoidance is undecidable for the leftmost-outermost reduction strategy.

$$
A A \ldots \text { encoding of string "aa" BB ... encoding of string "bb" }
$$

Undecidability

Reduction from Post's correspondence problem (Post 1946)

α-avoidance is undecidable for the leftmost-outermost reduction strategy.

Undecidability

Reduction from Post's correspondence problem (Post 1946)

α-avoidance is undecidable for the leftmost-outermost reduction strategy.

Undecidability

Reduction from Post's correspondence problem (Post 1946)

α-avoidance is undecidable for the leftmost-outermost reduction strategy.

Undecidability

Reduction from Post's correspondence problem (Post 1946)

α-avoidance is undecidable for the leftmost-outermost reduction strategy.

Undecidability

Reduction from Post's correspondence problem (Post 1946)

α-avoidance is undecidable for the leftmost-outermost reduction strategy.

Overview

1. Motivation

2. α-Pähs
3. α-Avoidance in different calculi
4. Soundiness and Undecidaloilty
5. Conclusion and Future Work

α-Avoidance - Tool

Alpha Avoidance

Untyped Term:

$$
(/ x, x x)(/ y z, y z)
$$

```
UT = (UT) | &x ... y.UT | UT ... UT | x
```


Max depth:

16

Analyze

- Variable capture: Yes, unavoidable
- Safe naming: Yes.
- Typable: Not Typable
- Linear: No.

α-Avoidance - Tool

Conclusion \& Future Work

Known results...

from a new perspective/novel approach

Conclusion \& Future Work

Known results...

from a new perspective/novel approach

Completeness

Find a complete characterisation for α-avoidance via (α-) paths

Conclusion \& Future Work

Known results...

from a new perspective/novel approach

Completeness

Find a complete characterisation for α-avoidance via (α-) paths

Undecidability

Do we have general undecidability of α-avoidance?

Conclusion \& Future Work

Known results...

from a new perspective/novel approach

Completeness

Find a complete characterisation for α-avoidance via (α-) paths

Undecidability

Do we have general undecidability of α-avoidance?

Alpha "circumvention"

Given some λ-term M, find a maximal reduction sequence where α is never needed.
α-Avoidance FSCD 2023

Thank you for your attention!

Reference

圊 Samuel Frontull, Georg Moser, and Vincent van Oostrom. " α-Avoidance". In: 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023). Ed. by Marco Gaboardi and Femke van Raamsdonk. Vol. 260. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 22:1-22:22. ISBN: 978-3-95977-277-8. URL:
https://drops.dagstuhl.de/opus/volltexte/2023/18006.

Correspondence to binding-capturing chains in μ

The modal μ-calculus (Kozen 1983)

Unfolding does not create new redexes (Endrullis et al. 2011).

The safe λ-calculus

Claim, assuming the safe variable naming convention

Variable capture is guaranteed not to happen (Blum and Ong 2009).

$$
\begin{gathered}
(\text { var }) \frac{\Gamma: A \vdash_{s} x: A}{} \quad(\text { const }) \frac{\vdash_{s} f: A}{} f: A \in \equiv \quad(w k) \frac{\Gamma \vdash_{s} M: A}{\Delta \vdash_{s} M: A} \Gamma \subset \Delta \quad(\delta) \frac{\Gamma \vdash_{s} M: A}{\Gamma \vdash_{a s a} M: A} \\
\left(a p p_{a s a}\right) \frac{\Gamma \vdash_{a s a} M: A \rightarrow B \Gamma \vdash_{s} N: A}{\Gamma \vdash_{a s a} M N: B} \quad(a p p) \frac{\Gamma \vdash_{a s a} M: A \rightarrow B \Gamma \vdash_{s} N: A}{\Gamma \vdash_{s} M N: B} \quad \text { ord } B \leq \text { ord } \Gamma \\
(a b s) \frac{\Gamma, x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash_{\text {asa }} M: B}{\Gamma \vdash_{s} \lambda x_{1}^{A_{1}} \ldots x_{n}^{A_{n} \cdot M:\left(A_{1}, \ldots, A_{n}, B\right)}} \text { ord }\left(A_{1}, \ldots, A_{n}, B\right) \leq \text { ord } \Gamma
\end{gathered}
$$

The safe λ-calculus

Claim, assuming the safe variable naming convention

Variable capture is guaranteed not to happen (Blum and Ong 2009).

$$
\begin{gathered}
(\text { var }) \frac{\Gamma: A \vdash_{s} x: A}{} \quad(\text { const }) \frac{\vdash_{s} f: A}{} f: A \in \equiv \quad(w k) \frac{\Gamma \vdash_{s} M: A}{\Delta \vdash_{s} M: A} \Gamma \subset \Delta \quad(\delta) \frac{\Gamma \vdash_{s} M: A}{\Gamma \vdash_{\text {asa }} M: A} \\
\left(a p p_{a s a}\right) \frac{\Gamma \vdash_{a s a} M: A \rightarrow B \Gamma \vdash_{s} N: A}{\Gamma \vdash_{a s a} M N: B} \quad(a p p) \frac{\Gamma \vdash_{\text {asa }} M: A \rightarrow B \Gamma \vdash_{s} N: A}{\Gamma \vdash_{s} M N: B} \quad \text { ord } B \leq \text { ord } \Gamma \\
(a b s) \frac{\Gamma, x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash_{\text {asa }} M: B}{\Gamma \vdash_{s} \lambda x_{1}^{A_{1}} \ldots x_{n}^{A_{n} . M:\left(A_{1}, \ldots, A_{n}, B\right)}} \text { ord }\left(A_{1}, \ldots, A_{n}, B\right) \leq \text { ord } \Gamma
\end{gathered}
$$

A term where α is needed can be derived: $\vdash_{s}\left(\lambda f^{(0,0,0)} y^{0} . f y\right)\left(\lambda x^{0} y^{0} \cdot x\right)$

$$
(\lambda f y . f y)(\lambda x y . x) \rightarrow_{\beta_{\text {sim }}} \lambda y .(\lambda x y . x) y \rightarrow_{\beta_{\text {sim }}} \lambda y . \lambda y^{\prime} . y
$$

The safe λ-calculus

Counterexample: $\vdash_{s}\left(\lambda f^{(0,0,0)} y^{0} . f y\right)\left(\lambda x^{0} y^{0} . x\right)$

α is needed although the term is safe and the naming convention is followed.

The safe λ-calculus

Solution

A more restrictive set of rules forbidding "almost-safe" constructions.

$$
\begin{gathered}
\text { (var) } \frac{}{\{x: A\} \vdash_{s \alpha} x: A} \quad(\text { const }) \frac{\vdash_{s \alpha} f: A}{} f: A \in \equiv \quad(w k) \frac{\Gamma^{\prime} \vdash_{s \alpha} M: A}{\Gamma \vdash_{s \alpha} M: A} \Gamma^{\prime} \subset \Gamma \\
(a p p) \frac{\Gamma \vdash_{s \alpha} M:\left(A_{1}, \ldots, A_{n}, B\right) \Gamma_{\geq m} \vdash_{s \alpha} N_{1}: A_{1} \quad \ldots \quad \Gamma_{\geq m} \vdash_{s \alpha} N_{j}: B_{j}}{\Gamma \vdash_{s \alpha} M N_{1} \ldots N_{j}: B} m=\operatorname{ord} B \\
\text { (abs) } \frac{\Gamma_{\geq m} \cup\left\{x_{1}: A_{1}, \ldots, x_{n}: A_{n}\right\} \vdash_{s \alpha} M: B}{\Gamma \vdash_{s \alpha} \lambda x_{1} \ldots x_{n} \cdot M:\left(A_{1}, \ldots, A_{n}, B\right)} m=\operatorname{ord}\left(A_{1}, \ldots, A_{n}, B\right)
\end{gathered}
$$

Long-safety

These rules correspond to the typing rules for long-safe terms (Blum 2009; Blum and Ong 2009).

Naïve β-step

M	$\llbracket x:=N \rrbracket$ (capture-avoiding)	$[x:=N]$ (capture-permitting)
x	N	N
y	y	y
$e_{1} e_{2}$	$e_{1} \llbracket x:=N \rrbracket e_{2} \llbracket x:=N \rrbracket$	$e_{1}[x:=N] e_{2}[x:=N]$
$\lambda x . e$	$\lambda x . e$	$\lambda x . e$
$\lambda y . e$	$\lambda y . e \llbracket x:=N \rrbracket$ if $y \notin \mathcal{F} V(N)$	$\lambda y . e[x:=N]$
	$\lambda z . e \llbracket y:=z \rrbracket \llbracket x:=N \rrbracket$ else with z fresh for e and N.	

Definition

$$
(\lambda x . M) N \rightarrow_{\beta_{\text {naive }}} M[x:=N]
$$

Variable names are irrelevant

De Bruijn's lambda notation (Bruijn 1972)

Exclusively work with (representatives of) α-equivalence classes of λ-terms

Variable names are irrelevant

De Bruijn's lambda notation (Bruijn 1972)

Exclusively work with (representatives of) α-equivalence classes of λ-terms

Variable names are irrelevant

De Bruijn's lambda notation (Bruijn 1972)

Exclusively work with (representatives of) α-equivalence classes of λ-terms

Variable names are irrelevant

De Bruijn's lambda notation (Bruijn 1972)

Exclusively work with (representatives of) α-equivalence classes of λ-terms

