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The problem of the calissons (David & Tomei 89)

hexagonal boxcalissons
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The problem of the calissons

box random generator
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The problem of the calissons

spectrum (4, 4, 4)
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The problem of the calissons

spectrum (4, 4, 4)
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The problem of the calissons by 4 confluence techniques

same box =⇒ same spectrum
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Confluence

Definition

rewrite system→ := ⟨A,Φ, src, tgt⟩ with objects A and steps Φ

ϕ : a→ b or a→ϕ b denotes step ϕ with source src(ϕ) = a, target tgt(ϕ) = b
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Confluence

Definition

rewrite system→ := ⟨A,Φ, src, tgt⟩ with objects A and steps Φ

rewrite systems have same data as multigraphs, quivers, pre-categories
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Confluence

Definition

rewrite system→ is confluent (CR) if ∀a b c, b ↞ a ↠ c =⇒ ∃d, b ↠ d ↞ c

↠ denotes a (finite) reduction; a sequence of consecutive steps of→
CR after Chuch and Rosser for introducing and proving it, for λβ (1936)
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Confluence

Definition

rewrite system→ is confluent (CR) if ∀a b c, b ↞ a ↠ c =⇒ ∃d, b ↠ d ↞ c

CR

a

b c

d
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Confluence

Definition

rewrite system→ is confluent (CR) if ∀a b c, b ↞ a ↠ c =⇒ ∃d, b ↠ d ↞ c

ψ′

ϕ · ψ′ = ψ · ϕ′

a

b c

d

ψϕ

ϕ′

algebra: existence of common multiple; concatenation is (typed) multiplication
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Confluence

Definition

rewrite system→ is confluent (CR) if ∀a b c, b ↞ a ↠ c =⇒ ∃d, b ↠ d ↞ c

a ↠ b, c ↠ d

a

b c

d

orders: existence of upperbound; ↠ is quasi-order
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Confluence

Definition

rewrite system→ is confluent (CR) if ∀a b c, b ↞ a ↠ c =⇒ ∃d, b ↠ d ↞ c

ψ/ϕ

CR

a

b c

d

ψϕ

ϕ/ψ

categories: having a pushout (axioms); skolemisation is residuation / (after)
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(1) random descent

filling rules filling

⇒

⇒

⇒

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps

⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)
• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)

FoSS Seminar, Brighton ⊗ Hove, University of Sussex, United Kingdom of Great Britain and Northern Ireland, December 4th 2024 3



(1) random descent

filling rules filling
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⇒
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• filling⇒ is weakly normalising (WN) so filling fills
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confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

filling

⇒

⇒

⇒

⇒1

⇒2

filling rules

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps

⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)
• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

filling rules filling

⇒

⇒

⇒

⇒1

⇒2

⇒3

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps

⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)
• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

⇒

⇒

⇒

⇒4

filling

⇒3

⇒2

filling rules

⇒1

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps

⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)
• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

⇒
⇒5

filling

⇒

⇒4

⇒3

filling rules

⇒2

⇒1

⇒

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps

⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)
• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

filling

⇒

⇒

⇒

⇒1

⇒2

⇒3

⇒4

⇒5

⇒6

filling rules

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps

⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)
• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

⇒6

⇒7

filling rules

⇒3

filling

⇒

⇒

⇒

⇒1

⇒2

⇒4

⇒5

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps

⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)
• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

filling

⇒

⇒

⇒

⇒1

⇒2
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⇒4

⇒5

⇒6

⇒7
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filling rules

• filling⇒ is string rewrite system over { , , } with rules
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⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)
• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

filling

⇒

⇒

⇒

⇒1

⇒2

⇒3

⇒4

⇒5

⇒6

⇒7

⇒8
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filling rules

• filling⇒ is string rewrite system over { , , } with rules
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• filled box B iff exists ⇒⇒ filling B
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• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

filling

⇒

⇒

⇒
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⇒10

filling rules
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filling
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(1) random descent

⇒1

⇒2

⇒3
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⇒10

⇒11

⇒12

filling rules filling

⇒

⇒

⇒

• filling⇒ is string rewrite system over { , , } with rules
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• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps

⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)
• filling⇒ is weakly normalising (WN) so filling fills
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(1) random descent

string rewritestring rewrite rules

⇒

⇒

⇒

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps

⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)
• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

string rewrite

⇒1

string rewrite rules

⇒

⇒

⇒

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps

⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)
• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

string rewrite

⇒2

string rewrite rules

⇒

⇒

⇒

• filling⇒ is string rewrite system over { , , } with rules
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• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps
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• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

string rewrite
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string rewrite rules
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(1) random descent
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string rewrite rules
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(1) random descent
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⇒10
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(1) random descent

string rewrite

⇒11

string rewrite rules
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(1) random descent

string rewrite

⇒12

string rewrite rules

⇒

⇒

⇒

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps

⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)
• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)

FoSS Seminar, Brighton ⊗ Hove, University of Sussex, United Kingdom of Great Britain and Northern Ireland, December 4th 2024 3



(1) random descent

string rewritestring rewrite rules

⇒

⇒

⇒

⇒⇒

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps
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(1) random descent

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

(recover hexagonal shape from associating colours to angles of lines; Logo)

• filled box B iff exists ⇒⇒ filling B

• filling⇒ has random descent (RD) for measure on steps
⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)

• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
(any partial filling allows some filling step toward that B)

• filling⇒ has random descent (RD) for measure on steps
⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)

• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ has random descent (RD) for measure on steps

⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)
(measure: mapping steps to (non-zero) elements of a derivation monoid)

⇒⇒

⇒⇒

⇒⇒

critical peak legs same measure (1,1,1)

• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(1) random descent

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B

• filling⇒ has random descent (RD) for measure on steps
⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)

RD: if reduction ends in nf then all maximal such do with same measure

• filling⇒ is weakly normalising (WN) so filling fills

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)

FoSS Seminar, Brighton ⊗ Hove, University of Sussex, United Kingdom of Great Britain and Northern Ireland, December 4th 2024 3



(1) random descent

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B

• filling⇒ has random descent (RD) for measure on steps
⇒ 7→ (1,0,0) ⇒ 7→ (0,1,0) ⇒ 7→ (0,0,1)

RD: if reduction ends in nf then all maximal such do with same spectrum

• filling⇒ is weakly normalising (WN) so filling fills
(⇒ is sorting-by-swapping; bubblesort shows WN)

Theorem ( 22 ; more on it in second half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)
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(2) proof order

Pg

4

2

2

2
Pr Pb4

2

4

2

2

(4,4,4)

volume

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

(4,4,3)

Pg

4

Pr Pb4 3

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?

FoSS Seminar, Brighton ⊗ Hove, University of Sussex, United Kingdom of Great Britain and Northern Ireland, December 4th 2024 4



(2) proof order

2

(4,4,2)

Pg

4

Pr Pb4

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

(4,3,2)

Pg

Pr Pb4 2

3

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

(4,2,2)

Pg

Pr Pb4 2

2

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

3

(3,2,2)

Pg

Pr Pb 2

2

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

(2,2,2)

Pg

Pr Pb 2

2

2

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

(1,2,2)

Pg

Pr Pb 2

2

1

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

(1,1,2)

Pg

Pr Pb 2
1

1

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

1(1,1,1)

Pg

Pr Pb 1
1

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

(1,0,1)

Pg

Pr Pb 1
1

0

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

Pg

Pr Pb

1

0

0

(1,0,0)

Pg

Pr Pb

1

0

0

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

(0,0,0)

Pg

Pr Pb

0

0

0

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B

• filling⇒ is WN so filling fills

• filling⇒ decrements volume (r,g,b) of path P

• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements (one component of) volume (r,g,b) of path P

(volume of trichrome path P: triple of areas of projections Pr,Pg,Pb

area of dichrome path P: #missing calissons)

• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?

FoSS Seminar, Brighton ⊗ Hove, University of Sussex, United Kingdom of Great Britain and Northern Ireland, December 4th 2024 4



(2) proof order

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B
• filling⇒ is WN so filling fills
• filling⇒ decrements volume (r,g,b) of path P so SN
• volume of normal form path is (0,0,0) so spectrum = volume of initial path

(initial path only depends on hexagon / box, not on filling / filled box)

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B

• filling⇒ is WN so filling fills

• filling⇒ decrements volume (r,g,b) of path P so SN

• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order (Bachmaier & Dershowitz 94) as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a (Felgenhauer & 13)

proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(2) proof order

• filling⇒ is string rewrite system over { , , } with rules
⇒ ⇒ ⇒

• filled box B iff exists ⇒⇒ filling B

• filling⇒ is WN so filling fills

• filling⇒ decrements volume (r,g,b) of path P so SN

• volume of normal form path is (0,0,0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism
area proof order to triple (ℓ, a, r) with #missing calissons a
proofs by random descent and proof order show spectrum independent of filling
but can different fillings be related?
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(3) bricklaying

bricklaying rule

local tri-peak
⇛

bricklaying step possible?

• bricklaying ⇛ is graph rewrite system over beds
• spectrum preserved by bricklaying ⇛ steps
• bricklaying ⇛ terminating
• bricklaying ⇛ normal form iff big brick
• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying
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⇛

bricklaying rule

local tri-peak

bricklaying step

• bricklaying ⇛ is graph rewrite system over beds
• spectrum preserved by bricklaying ⇛ steps
• bricklaying ⇛ terminating
• bricklaying ⇛ normal form iff big brick
• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying

⇛

bricklaying rule

local tri-peak

bricklaying step possible?

• bricklaying ⇛ is graph rewrite system over beds
• spectrum preserved by bricklaying ⇛ steps
• bricklaying ⇛ terminating
• bricklaying ⇛ normal form iff big brick
• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying

%
bricklaying rule

⇛

bricklaying step possible?

local tri-peak

• bricklaying ⇛ is graph rewrite system over beds
• spectrum preserved by bricklaying ⇛ steps
• bricklaying ⇛ terminating
• bricklaying ⇛ normal form iff big brick
• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying

!

bricklaying rule

⇛

bricklaying step

local tri-peak

• bricklaying ⇛ is graph rewrite system over beds
• spectrum preserved by bricklaying ⇛ steps
• bricklaying ⇛ terminating
• bricklaying ⇛ normal form iff big brick
• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying

bricklaying step possible?

local tri-peak

bricklaying rule

⇛

• bricklaying ⇛ is graph rewrite system over beds
• spectrum preserved by bricklaying ⇛ steps
• bricklaying ⇛ terminating
• bricklaying ⇛ normal form iff big brick
• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying

!

local tri-peak

bricklaying rule

⇛

bricklaying step

• bricklaying ⇛ is graph rewrite system over beds
• spectrum preserved by bricklaying ⇛ steps
• bricklaying ⇛ terminating
• bricklaying ⇛ normal form iff big brick
• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying

bricklaying step possible?

bricklaying rule

⇛
local tri-peak

• bricklaying ⇛ is graph rewrite system over beds
• spectrum preserved by bricklaying ⇛ steps
• bricklaying ⇛ terminating
• bricklaying ⇛ normal form iff big brick
• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying

big brick (bricklayer)

bricklaying rule

⇛
local tri-peak

• bricklaying ⇛ is graph rewrite system over beds
• spectrum preserved by bricklaying ⇛ steps
• bricklaying ⇛ terminating
• bricklaying ⇛ normal form iff big brick
• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying

• bricklaying ⇛ is graph rewrite system over beds
(bed: plane bed-graph; bed-graph: dag obtained by tiling; 23)

• spectrum preserved by bricklaying ⇛ steps

• bricklaying ⇛ terminating

• bricklaying ⇛ normal form iff big brick

• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying

• bricklaying ⇛ is graph rewrite system over beds

• spectrum per construction preserved by bricklaying ⇛ steps

• bricklaying ⇛ terminating

• bricklaying ⇛ normal form iff big brick

• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon

FoSS Seminar, Brighton ⊗ Hove, University of Sussex, United Kingdom of Great Britain and Northern Ireland, December 4th 2024 5



(3) bricklaying

• bricklaying ⇛ is graph rewrite system over beds

• spectrum preserved by bricklaying ⇛ steps

• bricklaying ⇛ terminating
(trivial; calissons closer to their origin)

• bricklaying ⇛ normal form iff big brick

• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying

• bricklaying ⇛ is graph rewrite system over beds

• spectrum preserved by bricklaying ⇛ steps

• bricklaying ⇛ terminating

• bricklaying ⇛ normal form iff big brick
(out-degree edges ≤ 3; if some tri-peak =⇒ bricklaying step found by
following back in-edges; if no tri-peaks =⇒ big brick; holds for bed-graphs)

• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying

• bricklaying ⇛ is graph rewrite system over beds

• spectrum preserved by bricklaying ⇛ steps

• bricklaying ⇛ terminating

• bricklaying ⇛ normal form iff big brick

• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum
(4 calissons of each colour)

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying

• bricklaying ⇛ is graph rewrite system over beds

• spectrum preserved by bricklaying ⇛ steps

• bricklaying ⇛ terminating

• bricklaying ⇛ normal form iff big brick

• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : (2-dimensional) tiling = beds : (3-dimensional) bricklaying ; 23

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
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(3) bricklaying

• bricklaying ⇛ is graph rewrite system over beds

• spectrum preserved by bricklaying ⇛ steps

• bricklaying ⇛ terminating

• bricklaying ⇛ normal form iff big brick

• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
but characterisation of big bricks?
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(3) bricklaying

• bricklaying ⇛ is graph rewrite system over beds

• spectrum preserved by bricklaying ⇛ steps

• bricklaying ⇛ terminating

• bricklaying ⇛ normal form iff big brick

• big brick unique for hexagon; filled boxes ⇛-convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to ⇛-normal form, a big brick, unique for hexagon
filling (⇒) equivalent iff projection (⇓) equivalent; big brick least ⇓-upperbound
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(4) local undercutting; from⇒-filling to ⇓-projection

filling rules

⇒1

⇒2

⇒3

⇒4

⇒5

⇒6

⇒7

⇒8

⇒

⇒

⇒9

⇒10

⇒11

⇒12

⇒

from⇒-filling

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting; from⇒-filling to ⇓-projection

⇓

⇓⇓

⇓

⇓

⇓

⇓
⇓

⇓

⇓

⇓

zap rules

⇓

to ⇓-projection with same spectrum

⇓

trivial zap rules

⇓
⇓

⇓

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

⇓

⇒9

⇒8

⇒7

⇒6

⇒5

⇓⇒3

⇒2

⇒1 ⇒12

trivial zap rules

⇓

zap stepzap rules

⇓

⇒11

⇒10

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

zap rules

⇓

⇓⇓

⇓

⇓

⇒12

⇒11

⇒10

⇒9

trivial zap rules

⇒8

⇒7

⇒6

⇒5

⇓

⇒3

⇒2

⇒1

foliage (for cyclic conversion)

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

⇓

⇒9

⇒8

⇒7

⇒6

⇓

⇒5⇒2

⇒1

trivial zap rules

⇓

zap stepzap rules

⇓

⇒12

⇒11

⇒10

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

⇓

⇓

zap rules foliage

⇒1

⇒2 ⇒5

⇒6

⇒7

⇒8

⇒9

⇒10

⇒11

⇒12

trivial zap rules

⇓

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

⇓

⇓

zap rules zap step

⇒1

⇒5

⇒6

⇒7

⇒8

⇒9

⇒10

⇒11

⇒12

trivial zap rules

⇓

⇓

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

⇓

⇓

zap rules foliage

⇒1

⇒5

⇒6

⇒7

⇒8

⇒9

⇒10

⇒11

⇒12

trivial zap rules

⇓

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

⇓

⇓

zap rules zap step

⇒5

⇒6

⇒7

⇒8

⇒9

⇒10

⇒11

⇒12

trivial zap rules

⇓

⇓

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

⇓

⇓

⇓

zap rules foliage

⇒5

⇒6

⇒7

⇒8

⇒9

⇒10

⇒11

⇒12

trivial zap rules

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓⇓

⇓

⇓

zap rules trivial zap step

⇒5

⇒6

⇒7

⇒8

⇒9

⇒10

⇒11

⇒12

trivial zap rules

⇓

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

⇓

⇓

⇓

zap rules foliage

⇒5

⇒6

⇒7

⇒8

⇒9

⇒10

⇒11

⇒12

trivial zap rules

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓?

⇓

⇓

⇓

zap rules zap step incompatible with⇒

⇒5

⇒6

⇒7

⇒8

⇒9

⇒10

⇒11

⇒12

trivial zap rules

⇓

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

preserves spectrum

⇓

⇓

⇓

zap rules ⇓ locally undercuts⇒

⇒5

⇒7

⇒8

⇒9 ⇒12

trivial zap rules

⇓

⇓

⇓⇓

⇓ ⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇒6

⇓

⇓

⇓

zap rules zap step compatible with⇒

⇒5

⇒7

⇒8

⇒9 ⇒12

trivial zap rules

⇓

⇓

⇓⇓

⇒11

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇒6

⇓

⇓

⇓

zap rules foliage

⇒5

⇒7

⇒8

⇒9 ⇒12

trivial zap rules

⇓

⇓

⇓

⇒11

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

⇓

⇓

⇓

zap rules zap step

⇒5

⇒7

⇒8

⇒9 ⇒12

trivial zap rules

⇓

⇓

⇓

⇒11

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

zap rules

⇓

⇓

⇓ ⇓

⇓

trivial zap rules

⇒12⇒9

⇒8

⇒7

⇒11⇒5

foliage

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

zap stepzap rules

⇓

⇓

⇒8

⇓

⇓

trivial zap rules

⇒12⇒9

⇓

⇒7

⇒11⇒5

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

foliagezap rules

⇓

⇓

⇓ ⇓

⇓
⇒11

trivial zap rules

⇒9

⇒8

⇒7

⇒5

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇒11⇒5

trivial zap stepzap rules

⇓

⇒9

⇓

⇓

⇓⇓

⇓

trivial zap rules

⇓

⇒8

⇒7

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

foliagezap rules

⇓

⇓

⇓ ⇓

⇓

trivial zap rules

⇒9

⇒8

⇒7

⇒5 ⇒11

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓?

⇓

⇓

⇓

zap rules zap step incompatible with⇒

⇒5

⇒7

⇒8

⇒9

trivial zap rules

⇓

⇓

⇓

⇒11

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

?

no local undercutting yet

⇒5

⇒7

⇒8

⇒9

trivial zap rules

⇒11 ⇓

⇓

⇓?

⇓

⇓

⇓

⇓

zap rules

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇒5

subfoliagezap rules

⇓

⇓

⇓ ⇓

⇓

trivial zap rules

⇒9

⇒8

⇒11

⇓

⇒7

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓⇓

⇓

⇓

zap rules zap steps by IH for subfoliage

⇒5

trivial zap rules

⇓

⇓

⇓

⇒11

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

⇓

trivial zap rules

⇓

⇓

⇓

⇒5

⇒7⇒9

foliagezap rules

⇒8

⇒11

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓ locally undercuts⇒zap rules

⇓

⇓

⇓

⇓

⇒7⇒9

⇓

⇓

⇓

trivial zap rules

⇓⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

zap step compatible with⇒zap rules

⇓

⇓

⇓

⇒11

⇒7⇒9

⇓

⇓

⇓

trivial zap rules

⇓

⇒5

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇒11

zap rules

⇓

⇓

⇓

⇒7⇒9

⇒5

⇓

⇓

⇓

trivial zap rulesfoliage

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇒5

zap rules

⇓

⇓

⇓

⇒7⇒9

⇓

⇓

⇓

⇓

trivial zap ruleszap step

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

zap rules

⇒5

⇒7

⇓

⇓

⇓ ⇒9

⇓

⇓

⇓

trivial zap rulesfoliage

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

zap rules

⇒5

⇓

⇓

⇓

⇒7⇒9

⇓

⇓

⇓

trivial zap ruleszap step

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇒5

⇓

⇓

⇓

zap rules foliage trivial zap rules

⇓

⇓

⇓

⇒7

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓
⇓

⇓

⇓

zap rules trivial zap step trivial zap rules

⇓

⇓

⇓

⇒7

⇒5

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇒5

⇓

⇓

⇓

zap rules foliage trivial zap rules

⇓

⇓

⇓

⇒7

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

zap stepzap rules

⇓

⇓
⇓

⇓ ⇒7

⇓

⇓

⇓

trivial zap rules

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇒7⇓

⇓

⇓

zap rules foliage trivial zap rules

⇓

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓⇓

⇓

⇓

zap rules zap step trivial zap rules

⇓

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

⇓⇓

zap rules foliage trivial zap rules

⇓

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

⇓

⇓

⇓

⇓

zap rules 3 trivial zap steps trivial zap rules

⇓

⇓

⇓

⇓

⇓

⇓

zap rules 3 trivial zap steps trivial zap rules

⇓

⇓

⇓

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)

FoSS Seminar, Brighton ⊗ Hove, University of Sussex, United Kingdom of Great Britain and Northern Ireland, December 4th 2024 6



(4) local undercutting

trivial zap rules

⇓

⇓

⇓

empty foliagezap rules

⇓

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting; from⇒-filling to ⇓-projection

from⇒-fillingzap rules

⇓⇓

⇒8

⇓

⇒12

⇒11

⇒10

⇒9

⇓

⇓

⇒7

⇒6

⇒5

⇒4

⇒3

⇒2

⇒1

⇓

trivial zap rules

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting; from⇒-filling to ⇓-projection

⇓

⇓⇓

⇓

⇓

⇓

⇓
⇓

⇓

⇓

⇓

zap rules

⇓

to ⇓-projection with same spectrum

⇓

trivial zap rules

⇓
⇓

⇓

⇓

⇓

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions

trivial diamondsgrid rewrite system→diamonds

⋄

⋄

⋄

⋄

⋄

⋄

• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions

⇒

⇒

⇒
⇒

trivial filling rulesgrid rewrite system→filling rules

⇒⇒

• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions

⇓

⇓

⇓
⇓

trivial projection rulesgrid rewrite system→projection rules

⇓⇓

• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting; from⇒-filling to ⇓-projection

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ (Lévy 78, & Klop & de Vrijer 98)

filling Φ⇒⇒ Ψ projection Φ−1 ·Ψ ⇓⇓ ε

Φ Ψ Φ Ψ⇓1

⇒1

⇒2

⇒3

⇒4

⇒5

⇒6

⇒7

⇒8

⇒9

⇒10

⇒11

⇒12

⇓2

⇓10

⇓3

⇓4

⇓5

⇓6

⇓7

⇓8

⇓9 ⇓11

⇓12

iff

• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting; from⇒-filling to ⇓-projection

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ

if→ terminating and projection ⇓ locally undercutting (LUC; more later)

χϕ ψ

ΥX

χ

⇓⇓

ψϕ

⇓⇓

⇓⇓

ΥX

if

=

(ϕ · X)−1 · ψ ·Υ ⇓⇓ εϕ−1 · χ · χ−1 · ψ ⇓⇓ X ·Υ−1

then
⇓

• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ

if→ terminating and projection ⇓ locally undercutting (LUC; more later)
• grid rewrite system→ is terminating (trivial;→ is a dag)

• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ

if→ terminating and projection ⇓ locally undercutting (LUC; more later)
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting

⇓

local cut

⇓

⇓

if then
⇓

undercut

⇓ ⇓

• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)

FoSS Seminar, Brighton ⊗ Hove, University of Sussex, United Kingdom of Great Britain and Northern Ireland, December 4th 2024 6



(4) local undercutting

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ

if→ terminating and projection ⇓ locally undercutting (LUC; more later)
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

(spectrum of projection is unique by random descent; 07)

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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(4) local undercutting

• calissons as diamonds ϕ
χ⋄ψυ and ϕ

ε⋄ϕε of grid rewrite system→ for hexagon
filling ϕ · χ⇒ ψ · υ on reductions, projection ϕ−1 · ψ ⇓ χ · υ−1 on conversions
• Φ⇒⇒ Ψ iff Φ−1 ·Ψ ⇓⇓ ε for reductions Φ,Ψ

if→ terminating and projection ⇓ locally undercutting (LUC; more later)
• grid rewrite system→ is terminating
• projection ⇓ is locally undercutting
• undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42
it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory
(Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and
polygraphs (the ‘polybook’, Ara et al. 25)
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big brick as unique normal form of beds

⇒ ⇒

(3) bricklaying

(1) random descent

upperbound =⇒ least upperbound / emph

confluent =⇒ orthogonal

⇒

typed involutive monoids for conversions

RD & WN ⇐⇒ WCR & SN

quantitative commutation

(2) proof order

common multiple =⇒ least common multiple

if then
=

⇓⇓

(4) local undercutting

RD

⇒

⇒

⇒

⇓⇓
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Characterising random descent

Definition

⟨M,⊥,+,≤⟩ derivation monoid if

• ⟨M,⊥,+⟩ a monoid;

• ≤ well-founded order with ⊥ least;

• + is ≤-monotonic in both arguments; strictly in .

idea: measure reduction (derivation) as sum of the weights of its (non-⊥) steps

Theorem (RD)

local peaks completable to same weight ⇐⇒ peak random descent (PR):
NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b & k + µ = n
(peak of reductions to nf =⇒ reductions same weight)
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• ≤ well-founded order with ⊥ least;

• + is ≤-monotonic in both arguments; strictly in 2nd.
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Characterising random descent

Definition

⟨M,⊥,+,≤⟩ derivation monoid if

• ⟨M,⊥,+⟩ a monoid;

• ≤ well-founded order with ⊥ least;

• + is ≤-monotonic in both arguments; strictly in 2nd.

main example: ordinals with zero, addition, less–than–or–equal

Theorem (RD)

local peaks completable to same weight ⇐⇒ peak random descent (PR):
NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b & k + µ = n
(peak of reductions to nf =⇒ reductions same weight)
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Characterising random descent

Definition

⟨M,⊥,+,≤⟩ derivation monoid

• measure on→ maps steps to M− {⊥};

• measure of finite reduction is sum of steps ;

• measure of infinite reduction is ⊤ (fresh top greater than all m ∈ M).

Theorem (RD)

local peaks completable to same weight ⇐⇒ peak random descent (PR):
NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b & k + µ = n
(peak of reductions to nf =⇒ reductions same weight)
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Characterising random descent

Definition

⟨M,⊥,+,≤⟩ derivation monoid

• measure on→ maps steps to M− {⊥};
• measure of finite reduction is sum (+; tail to head) of steps (starting with ⊥);

• measure of infinite reduction is ⊤ (fresh top greater than all m ∈ M).

Theorem (RD)

local peaks completable to same weight ⇐⇒ peak random descent (PR):
NF ∋ a ∗

n← ·→◦
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Applying random descent

Theorem (Church 41)

if M is a λI-term, then M is normalising (WN) iff M is terminating (SN)

λI is the original non-erasing λ-calculus where x ∈ FV(M) for all λx.M

Proof.

• introduce (unary) edge symbol e; measure terms by number of e’s

• lift β-rule: en(λx.M)N→ en+1(M[x:=N]); weigh step by difference

• local peaks completable into same weight by orthogonality of lifted system

• conclude SN of M from WN of M by RD theorem
(weight of no reduction exceeds that of one to normal form, so SN)
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Applying random descent

Theorem (Church 41)

if M is a λI-term, then M is normalising (WN) iff M is terminating (SN)

intuition: because β is non-erasing in λI it makes terms larger
but does not quite work, e.g. (λx.x x) (λx.x x) β-reduces to itself

Proof.

• introduce (unary) edge symbol e; measure terms by number of e’s

• lift β-rule: en(λx.M)N→ en+1(M[x:=N]); weigh step by difference

• local peaks completable into same weight by orthogonality of lifted system
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Theorem (Church 41)

if M is a λI-term, then M is normalising (WN) iff M is terminating (SN)

Proof.

• introduce (unary) edge symbol e; measure terms by number of e’s

• lift β-rule: en(λx.M)N→ en+1(M[x:=N]); weigh step by difference

• local peaks completable into same weight by orthogonality of lifted system

• conclude SN of M from WN of M by RD theorem
(weight of no reduction exceeds that of one to normal form, so SN)

FoSS Seminar, Brighton ⊗ Hove, University of Sussex, United Kingdom of Great Britain and Northern Ireland, December 4th 2024 9



Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

for every object there exists (SN) a unique (CR) normal form;→ models function

Theorem (as mentioned in first half)

⇐⇒ random descent & normalising (WN)

Proof by example.
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

confluent & terminating (SN) ⇐⇒ random descent & normalising (WN)

Proof by example.
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.

if-direction above; idea for only only–if-direction:
assign weights by topological sorting starting from normal forms
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.

measure a by supremum{(measure of b) + 1 | a→ b}; step a→ b by dif a and b
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.

measure a by supremum{(measure of b) + 1 | a→ b}; step a→ b by dif a and b

0
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complete ⇐⇒ random descent & normalising (WN)

Proof by example.

measure a by supremum{(measure of b) + 1 | a→ b}; step a→ b by dif a and b

0 1
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.

measure a by supremum{(measure of b) + 1 | a→ b}; step a→ b by dif a and b

1
0 1
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.

measure a by supremum{(measure of b) + 1 | a→ b}; step a→ b by dif a and b

1
0 1 2
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.

measure a by supremum{(measure of b) + 1 | a→ b}; step a→ b by dif a and b

1
0 1 2

2

1
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.

0
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.

10
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.

10 2
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.

10 2 3
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.

10 2 3 . . .
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.

ω

10 2 3 . . .
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Completeness of random descent for completeness

Definition

rewrite system→ is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete ⇐⇒ random descent & normalising (WN)

Proof by example.

ω

10 2 3 . . .

ωω
ω

ω

1 1 1
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Applying completeness of random descent

Definition (Nederpelt & Klop)

→ is increasing (INC) if map from objects to N that increases by rewriting

Corollary (result by Nederpelt & Klop)

normalisation WN & local confluence (WCR) & INC =⇒ complete (CR & SN)

Theorem

simply typed λβ-calculus is complete

Barendregt–Geuvers–Klop conjecture

proofs of WN lift to proofs of SN for typed λ-calculi (PTSs)

my take: λ-calculi confluent, so the same as proving RD; which measure??
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Applying completeness of random descent

Definition (Nederpelt & Klop)

→ is increasing (INC) if map from objects to N that increases by rewriting

Corollary (result by Nederpelt & Klop)

normalisation WN & local confluence (WCR) & INC =⇒ complete (CR & SN)

Proof.

WCR & INC =⇒ random descent (RD) by weighing with difference

Theorem

simply typed λβ-calculus is complete

Barendregt–Geuvers–Klop conjecture

proofs of WN lift to proofs of SN for typed λ-calculi (PTSs)

my take: λ-calculi confluent, so the same as proving RD; which measure??
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Applying completeness of random descent

Corollary (result by Nederpelt & Klop)

normalisation WN & local confluence (WCR) & INC =⇒ complete (CR & SN)

Theorem

simply typed λβ-calculus is complete

Proof.

WCR by orthogonality, WN by strategy (Turing), but INC?? (erasing!)

• memorise (Nederpelt,Klop,Khasidashvili,de Groote,Wells,. . . )

• lift β as ⟨(λx.M), K⃗⟩N→ ⟨M[x:=N],NK⃗⟩ where ⟨L, K⃗⟩ is L with memory K⃗

• lifting preserves WCR, WN, typing; creates INC

• conclude to completeness (CR & SN) by corollary

Barendregt–Geuvers–Klop conjecture

proofs of WN lift to proofs of SN for typed λ-calculi (PTSs)

my take: λ-calculi confluent, so the same as proving RD; which measure??
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Applying completeness of random descent

Corollary (result by Nederpelt & Klop)

normalisation WN & local confluence (WCR) & INC =⇒ complete (CR & SN)
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simply typed λβ-calculus is complete
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• memorise (Nederpelt,Klop,Khasidashvili,de Groote,Wells,. . . )
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normalisation WN & local confluence (WCR) & INC =⇒ complete (CR & SN)
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Applying completeness of random descent

Corollary (result by Nederpelt & Klop)

normalisation WN & local confluence (WCR) & INC =⇒ complete (CR & SN)

Theorem

simply typed λβ-calculus is complete

Barendregt–Geuvers–Klop conjecture

proofs of WN lift to proofs of SN for typed λ-calculi (PTSs)
my take: λ-calculi confluent, so the same as proving RD; which measure??
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Finitely branching systems

Observation

for finitely branching (FB) systems, measures in completeness proof in N
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Finitely branching systems

Observation

for finitely branching systems, measures in completeness proof in N

+ commutative, cancellative; then RD ⇐⇒ locally Dyck (Toyama, 2016)
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Finitely branching systems

Observation

for finitely branching systems, measures in completeness proof in N

locally Dyck if

n µ

µ′
1 n′

1

. . .

n′
kµ′

k

≥

and forward weights > backward weights: ∀ i.n +
∑
µ′i >

∑
n′

i
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Finitely branching systems

Corollary

(WN systems) complete iff locally Dyck for some measure

locally Dyck if

n µ

µ′
1 n′

1

. . .

n′
kµ′

k

≥

and forward weights > backward weights: ∀ i.n +
∑
µ′i >

∑
n′

i
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Example: deep valleys with shallow conversions

Example ( 2008)

→ with bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1

• → locally Dyck for length measure, hence uniformly complete
• → is trivially WN

hence→ is complete
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Example: deep valleys with shallow conversions

Example ( 2008)

→ with bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1

• → locally Dyck for length measure, hence uniformly complete:

forward 3 ≥ 3 backward

• → is trivially WN

hence→ is complete
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Example: deep valleys with shallow conversions

Example ( 2008)

→ with bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1

• → locally Dyck for length measure, hence uniformly complete:

forward 3 > 2 backward

• → is trivially WN

hence→ is complete
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Example: deep valleys with shallow conversions

Example ( 2008)

→ with bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1

• → locally Dyck for length measure, hence uniformly complete:

forward 3 > 1 backward

• → is trivially WN

hence→ is complete
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Example: deep valleys with shallow conversions

Example ( 2008)

→ with bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1

• → locally Dyck for length measure, hence uniformly complete:

forward 2 > 1 backward

• → is trivially WN

hence→ is complete
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Example: deep valleys with shallow conversions

Example ( 2008)

→ with bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1

• → locally Dyck for length measure, hence uniformly complete:

forward 2 > 0 backward

• → is trivially WN

hence→ is complete
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Example: deep valleys with shallow conversions

Example ( 2008)

→ with bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1

• → locally Dyck for length measure, hence uniformly complete:

forward 1 > 0 backward

• → is trivially WN

hence→ is complete
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Example: deep valleys with shallow conversions

Example ( 2008)

→ with bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1

• → locally Dyck for length measure, hence uniformly complete

• → is trivially WN

hence→ is complete
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Example: deep valleys with shallow conversions

Example ( 2008)

→ with bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1

• → locally Dyck for length measure, hence uniformly complete

• → is trivially WN

hence→ is complete

FoSS Seminar, Brighton ⊗ Hove, University of Sussex, United Kingdom of Great Britain and Northern Ireland, December 4th 2024 13



Local undercutting / semi-lattice

if then

χϕ ψ
ψϕ

Example ()
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LSL for least upperbounds

5

10

2
3

3if then

52 3
32

5 5

3 2
15

2

Example (positive natural numbers with multiplication)

30 is an upperbound of lcm(2,5) and lcm(5,3)
and is so too of lcm(2,3) obtained by cutting 5
(lcm(2,3) undercuts the upperbound 30 of lcm(2,5) and lcm(5,3))
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LSL for least common multiples

σ2σ3σ1σ2

σ2σ3σ1σ2σ3

σ1σ2

σ3
σ3σ2

if then

σ2σ1 σ3

σ3σ1

σ2σ1 σ2σ3

σ3σ2σ1 σ1σ2σ3

σ2σ1σ3σ2σ1

σ1

Example (positive braids; Dehornoy et al. 15, Example II.4.20)

σ1σ2σ1σ3σ2σ1 is a common multiple of lcm(σ1, σ2) and lcm(σ2, σ3)
and is so too of lcm(σ1, σ3) obtained by cutting σ2

(with σ1σ2σ1 = σ2σ1σ2, σ1σ3 = σ3σ1, σ3σ2σ3 = σ2σ3σ2 on Artin generators σi)
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LSL for orthogonality

g(g(ϱ,ϱ),g(ϱ,ϱ))

g(f(ϱ),f(ϱ))·g(ϑ(b),ϑ(b))

f(ϑ(b))

ϑ(g(a,a))

ϑ(f(b))
if then

f(f(ϱ))f(ϑ(a)) ϑ(f(a))

ϑ(f(a))f(ϑ(a))

f(g(ϱ,ϱ)) g(f(ϱ),f(ϱ))

ϑ(g(b,b)) g(ϑ(b),ϑ(b))

f(g(ϱ,ϱ))·ϑ(g(b,b))

g(ϑ(a),ϑ(a))

Example (orthogonal TRSs; Terese 03, Figure 8.53)

g(g(b,b),g(b,b)) is a common reduct of f(ϑ(a))−1 · f(f(ϱ)) and f(f(ϱ))−1 · ϑ(f(a))
is so too of f(ϑ(a))−1 · ϑ(f(a)) obtained by cutting f(f(ϱ))
(for OTRS rules ϱ : a→ b and ϑ : f(x)→ g(x))
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Conclusions

• modern confluence techniques powerful; 4 solve problem of the calissons
(for all zonogonal hexagons; non-convex boxes? Dijkstra 89)

• local semi-lattice (LSL = LUC with ϕ
X⋄
ψ
Υ iff ψΥ⋄

ϕ
X) =⇒ filling iff projection

for term rewriting, λβ and positive braids
• productivity instead of termination of→ for filling iff projection (given LSL)?
• quantitative tiling methods for quantitative rewriting?
• contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting
Nicolai Kraus, Yves Guiraud for discussion on Newman’s II-Lemma
Nils for example generator and filler
you for your interest
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Conclusions

• modern confluence techniques powerful; solve problem of the calissons
• local semi-lattice (LSL = LUC with ϕ

X⋄
ψ
Υ iff ψΥ⋄

ϕ
X) =⇒ filling iff projection

for term rewriting, λβ and positive braids; extends Dehornoy et al. 15
(Projection Theorem: permutation iff projection equivalence (Terese 03)
entails cube-property; Lévy 78)

• productivity instead of termination of→ for filling iff projection (given LSL)?
• quantitative tiling methods for quantitative rewriting?
• contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting
Nicolai Kraus, Yves Guiraud for discussion on Newman’s II-Lemma
Nils for example generator and filler
you for your interest

FoSS Seminar, Brighton ⊗ Hove, University of Sussex, United Kingdom of Great Britain and Northern Ireland, December 4th 2024 15

https://callissons-hexagon-solver.netlify.app/


Conclusions

• modern confluence techniques powerful; solve problem of the calissons
• local semi-lattice (LSL = LUC with ϕ

X⋄
ψ
Υ iff ψΥ⋄

ϕ
X) =⇒ filling iff projection

for term rewriting, λβ and positive braids
• productivity instead of termination of→ for filling iff projection (given LSL)?

(coinduction instead of induction?)

• quantitative tiling methods for quantitative rewriting?
• contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting
Nicolai Kraus, Yves Guiraud for discussion on Newman’s II-Lemma
Nils for example generator and filler
you for your interest
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Conclusions

• modern confluence techniques powerful; solve problem of the calissons

• local semi-lattice (LSL = LUC with ϕ
X⋄
ψ
Υ iff ψΥ⋄

ϕ
X) =⇒ filling iff projection

for term rewriting, λβ and positive braids

• productivity instead of termination of→ for filling iff projection (given LSL)?

• quantitative tiling methods (combinatorics) for quantitative rewriting?

• contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting
Nicolai Kraus, Yves Guiraud for discussion on Newman’s II-Lemma
Nils for example generator and filler
you for your interest
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Conclusions

• modern confluence techniques powerful; solve problem of the calissons

• local semi-lattice (LSL = LUC with ϕ
X⋄
ψ
Υ iff ψΥ⋄

ϕ
X) =⇒ filling iff projection

for term rewriting, λβ and positive braids

• productivity instead of termination of→ for filling iff projection (given LSL)?

• quantitative tiling methods for quantitative rewriting?

• contrapositive of LSL for non-confluence? Dehornoy et al. 15; Klop 24

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting
Nicolai Kraus, Yves Guiraud for discussion on Newman’s II-Lemma
Nils for example generator and filler
you for your interest
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Conclusions

• modern confluence techniques powerful; solve problem of the calissons

• local semi-lattice (LSL = LUC with ϕ
X⋄
ψ
Υ iff ψΥ⋄

ϕ
X) =⇒ filling iff projection

for term rewriting, λβ and positive braids

• productivity instead of termination of→ for filling iff projection (given LSL)?

• quantitative tiling methods for quantitative rewriting?

• contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting as in (1),(2)

Nicolai Kraus, Yves Guiraud for discussion on Newman’s II-Lemma
Nils for example generator and filler
you for your interest
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Conclusions

• modern confluence techniques powerful; solve problem of the calissons

• local semi-lattice (LSL = LUC with ϕ
X⋄
ψ
Υ iff ψΥ⋄

ϕ
X) =⇒ filling iff projection

for term rewriting, λβ and positive braids

• productivity instead of termination of→ for filling iff projection (given LSL)?

• quantitative tiling methods for quantitative rewriting?

• contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model the problem of the calissons by rewriting
Nicolai Kraus, Yves Guiraud for discussion on Newman’s II-Lemma (see paper)

Nils for example generator and filler
you for your interest
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Conclusions

• modern confluence techniques powerful; solve problem of the calissons

• local semi-lattice (LSL = LUC with ϕ
X⋄
ψ
Υ iff ψΥ⋄

ϕ
X) =⇒ filling iff projection

for term rewriting, λβ and positive braids

• productivity instead of termination of→ for filling iff projection (given LSL)?

• quantitative tiling methods for quantitative rewriting?

• contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting
Nicolai Kraus, Yves Guiraud for discussion on Newman’s II-Lemma
Nils for example generator and filler (app needs WebGL)

you for your interest
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Conclusions

• modern confluence techniques powerful; solve problem of the calissons

• local semi-lattice (LSL = LUC with ϕ
X⋄
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Υ iff ψΥ⋄

ϕ
X) =⇒ filling iff projection

for term rewriting, λβ and positive braids

• productivity instead of termination of→ for filling iff projection (given LSL)?

• quantitative tiling methods for quantitative rewriting?

• contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting
Nicolai Kraus, Yves Guiraud for discussion on Newman’s II-Lemma
Nils for example generator and filler
you for your interest
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