

The problem of the calissons, by rewriting

Vincent van Oostrom University of Sussex

vvo@sussex.ac.uk

The problem of the calissons (David & Tomei 89)

The problem of the calissons by 4 confluence techniques

Definition

rewrite system $\rightarrow := \langle A, \Phi, src, tgt \rangle$ with objects A and steps Φ

 $\phi: a \rightarrow b \text{ or } a \rightarrow_{\phi} b \text{ denotes step } \phi \text{ with source } \operatorname{src}(\phi) = a, \operatorname{target tgt}(\phi) = b$

Definition

rewrite system $\rightarrow := \langle A, \Phi, src, tgt \rangle$ with objects A and steps Φ

rewrite systems have same data as multigraphs, quivers, pre-categories

Definition

rewrite system \rightarrow is confluent (CR) if $\forall a \, b \, c, \, b \twoheadleftarrow a \twoheadrightarrow c \implies \exists d, \, b \twoheadrightarrow d \twoheadleftarrow c$

 \rightarrow denotes a (finite) reduction; a sequence of consecutive steps of \rightarrow CR after Chuch and Rosser for introducing and proving it, for $\lambda\beta$ (1936)

Definition

rewrite system \rightarrow is confluent (CR) if $\forall a \, b \, c, \, b \twoheadleftarrow a \twoheadrightarrow c \implies \exists d, \, b \twoheadrightarrow d \twoheadleftarrow c$

Definition

rewrite system \rightarrow is confluent (CR) if $\forall a \, b \, c, \, b \twoheadleftarrow a \twoheadrightarrow c \implies \exists d, \, b \twoheadrightarrow d \twoheadleftarrow c$

algebra: existence of common multiple; concatenation is (typed) multiplication

UNIVERSITY FoSS Seminar, Brighton \otimes Hove, University of Sussex, United Kingdom of Great Britain and Northern Ireland, December 4th 2024 or sussex

Definition

110

rewrite system \rightarrow is confluent (CR) if $\forall a \, b \, c, \, b \twoheadleftarrow a \twoheadrightarrow c \implies \exists d, \, b \twoheadrightarrow d \twoheadleftarrow c$

Definition

110

rewrite system \rightarrow is confluent (CR) if $\forall a \, b \, c, \, b \twoheadleftarrow a \twoheadrightarrow c \implies \exists d, \, b \twoheadrightarrow d \twoheadleftarrow c$

categories: having a pushout (axioms); skolemisation is residuation / (after)

• filling \Rightarrow is string rewrite system over $\{--, --, --\}$ with rules

(recover hexagonal shape from associating colours to angles of lines; Logo)

- filling \Rightarrow is string rewrite system over $\{--, --, --\}$ with rules
- filled box B iff exists
 (any partial filling allows some filling step toward that B)

- filling \Rightarrow is string rewrite system over $\{--, --, --\}$ with rules
- filled box *B* iff exists \implies \implies \implies filling *B*
- filling \Rightarrow has random descent (RD) for measure on steps

 $\Rightarrow \mapsto (\mathbf{1}, \mathbf{0}, \mathbf{0}) \qquad \Rightarrow \mapsto (\mathbf{0}, \mathbf{1}, \mathbf{0}) \qquad \Rightarrow \mapsto (\mathbf{0}, \mathbf{0}, \mathbf{1})$

RD: if reduction ends in nf then all maximal such do with same measure

 \rightarrow

- filling \Rightarrow is string rewrite system over $\{--, ---\}$ with rules
- filled box B iff exists \implies \implies filling B
- filling \Rightarrow has random descent (RD) for measure on steps $\Rightarrow \mapsto (\mathbf{1}, 0, \mathbf{0}) \Rightarrow \mapsto (\mathbf{0}, 1, \mathbf{0}) \Rightarrow \mapsto (\mathbf{0}, 0, \mathbf{1})$

RD: if reduction ends in nf then all maximal such do with same spectrum

 \rightarrow

• filling \Rightarrow is weakly normalising (WN) so filling fills (\Rightarrow is sorting-by-swapping; bubblesort shows WN)

- filling \Rightarrow is string rewrite system over $\{--, --, --\}$ with rules
- filled box B iff exists \implies \implies filling B
- filling \Rightarrow has random descent (RD) for measure on steps

 $\Rightarrow \mapsto (\mathbf{1}, \mathbf{0}, \mathbf{0}) \qquad \Rightarrow \mapsto (\mathbf{0}, \mathbf{1}, \mathbf{0}) \qquad \Rightarrow \mapsto (\mathbf{0}, \mathbf{0}, \mathbf{1})$

RD: if reduction ends in nf then all maximal such do with same spectrum

 \rightarrow

• filling \Rightarrow is weakly normalising (WN) so filling fills

Theorem (22 ; more on it in second half)

confluent & terminating (SN) \iff random descent & normalising (WN)

- filling \Rightarrow is string rewrite system over $\{--, --, --\}$ with rules
- filled box *B* iff exists \implies \implies \implies filling *B*
- filling \Rightarrow is WN so filling fills

- filling \Rightarrow is string rewrite system over $\{--, ---\}$ with rules
- filled box *B* iff exists \implies \implies filling *B*
- filling \Rightarrow is WN so filling fills

 \rightarrow

 filling ⇒ decrements (one component of) volume (r, g, b) of path P (volume of trichrome path P: triple of areas of projections P_r,P_g,P_b area of dichrome path P: #missing calissons)

 \Rightarrow

- filling \Rightarrow is string rewrite system over $\{--, --, --\}$ with rules
- filled box *B* iff exists \implies \implies \implies filling *B*
- filling \Rightarrow is WN so filling fills
- filling \Rightarrow decrements volume (r, g, b) of path P so SN
- volume of normal form path is (0, 0, 0) so spectrum = volume of initial path (initial path only depends on hexagon / box, not on filling / filled box)

 \rightarrow

- filling \Rightarrow is string rewrite system over $\{--, ---\}$ with rules
- filled box *B* iff exists \implies \implies \implies filling *B*
- filling \Rightarrow is WN so filling fills
- filling \Rightarrow decrements volume (r, g, b) of path P so SN
- volume of normal form path is (0, 0, 0) so spectrum = volume of initial path

remark

proof order (Bachmaier & Dershowitz 94) as involutive monoid homomorphism area proof order to triple (ℓ, a, r) with #missing calissons *a* (Felgenhauer & $\forall 13$)

- filling \Rightarrow is string rewrite system over $\{--, ---\}$ with rules
- filled box *B* iff exists \implies \implies \implies filling *B*
- filling \Rightarrow is WN so filling fills
- filling \Rightarrow decrements volume (r, g, b) of path P so SN
- volume of normal form path is (0, 0, 0) so spectrum = volume of initial path

remark

proof order as involutive monoid homomorphism area proof order to triple (ℓ, a, r) with #missing calissons *a* proofs by random descent and proof order show spectrum independent of filling but can different fillings be related?

bricklaying ⇒ is graph rewrite system over beds
(bed: plane bed-graph; bed-graph: dag obtained by tiling; 23)

- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum per construction preserved by bricklaying \Rightarrow steps

- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum preserved by bricklaying \Rightarrow steps
- bricklaying ⇒ terminating (trivial; calissons closer to their origin)

- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum preserved by bricklaying \Rightarrow steps
- bricklaying \Rightarrow terminating
- bricklaying ⇒ normal form iff big brick (out-degree edges ≤ 3; if some tri-peak ⇒ bricklaying step found by following back in-edges; if no tri-peaks ⇒ big brick; holds for bed-graphs)

- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum preserved by bricklaying \Rightarrow steps
- bricklaying \Rightarrow terminating
- bricklaying \Rightarrow normal form iff big brick
- big brick unique for hexagon; filled boxes ⇒-convertible so same spectrum (4 calissons of each colour)

- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum preserved by bricklaying \Rightarrow steps
- bricklaying \Rightarrow terminating
- bricklaying \Rightarrow normal form iff big brick
- big brick unique for hexagon; filled boxes \Rightarrow -convertible so same spectrum

remark

conversions : (2-dimensional) tiling = beds : (3-dimensional) bricklaying ; 23

- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum preserved by bricklaying \Rightarrow steps
- bricklaying \Rightarrow terminating
- bricklaying \Rightarrow normal form iff big brick
- big brick unique for hexagon; filled boxes \Rightarrow -convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to \Rightarrow -normal form, a big brick, unique for hexagon but characterisation of big bricks?

- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum preserved by bricklaying \Rightarrow steps
- bricklaying \Rightarrow terminating
- bricklaying \Rightarrow normal form iff big brick
- big brick unique for hexagon; filled boxes \Rightarrow -convertible so same spectrum

remark

conversions : tiling = beds : bricklaying

bricklaying reduces all fillings to \Rightarrow -normal form, a big brick, unique for hexagon filling (\Rightarrow) equivalent iff projection (\Downarrow) equivalent; big brick least \Downarrow -upperbound

(4) local undercutting; from \Rightarrow -filling to \Downarrow -projection

(4) local undercutting; from \Rightarrow -filling to \Downarrow -projection

(4) local undercutting; from \Rightarrow -filling to \Downarrow -projection

(4) local undercutting; from \Rightarrow -filling to \Downarrow -projection

• calissons as diamonds $\overset{\phi}{\chi} \diamond^{\psi}_{\upsilon}$ and $\overset{\phi}{\varepsilon} \diamond^{\phi}_{\varepsilon}$ of grid rewrite system \rightarrow for hexagon filling $\phi \cdot \chi \Rightarrow \psi \cdot v$ on reductions, projection $\phi^{-1} \cdot \psi \Downarrow \chi \cdot v^{-1}$ on conversions

• calissons as diamonds ${}^{\phi}_{\chi} \diamond^{\psi}_{\upsilon}$ and ${}^{\phi}_{\varepsilon} \diamond^{\phi}_{\varepsilon}$ of grid rewrite system \rightarrow for hexagon filling $\phi \cdot \chi \Rightarrow \psi \cdot v$ on reductions, projection $\phi^{-1} \cdot \psi \Downarrow \chi \cdot v^{-1}$ on conversions

• calissons as diamonds ${}^{\phi}_{\chi} \diamond^{\psi}_{\upsilon}$ and ${}^{\phi}_{\varepsilon} \diamond^{\phi}_{\varepsilon}$ of grid rewrite system \rightarrow for hexagon filling $\phi \cdot \chi \Rightarrow \psi \cdot \upsilon$ on reductions, projection $\phi^{-1} \cdot \psi \Downarrow \chi \cdot \upsilon^{-1}$ on conversions

(4) local undercutting; from \Rightarrow -filling to \Downarrow -projection

- calissons as diamonds $\overset{\phi}{\chi}\diamond^{\psi}_{\upsilon}$ and $\overset{\phi}{\varepsilon}\diamond^{\phi}_{\varepsilon}$ of grid rewrite system \rightarrow for hexagon filling $\phi \cdot \chi \Rightarrow \psi \cdot \upsilon$ on reductions, projection $\phi^{-1} \cdot \psi \Downarrow \chi \cdot \upsilon^{-1}$ on conversions
- $\Phi \Rightarrow \Psi$ iff $\Phi^{-1} \cdot \Psi \notin \varepsilon$ for reductions Φ, Ψ (Lévy 78, \mathcal{D} & Klop & de Vrijer 98)

(4) local undercutting; from \Rightarrow -filling to \Downarrow -projection

- calissons as diamonds ${}^{\phi}_{\chi} \diamond^{\psi}_{\upsilon}$ and ${}^{\phi}_{\varepsilon} \diamond^{\phi}_{\varepsilon}$ of grid rewrite system \rightarrow for hexagon filling $\phi \cdot \chi \Rightarrow \psi \cdot v$ on reductions, projection $\phi^{-1} \cdot \psi \Downarrow \chi \cdot v^{-1}$ on conversions
- $\Phi \Rightarrow \Psi$ iff $\Phi^{-1} \cdot \Psi \notin \varepsilon$ for reductions Φ, Ψ
 - if \rightarrow terminating and projection \Downarrow locally undercutting (LUC; more later)

- calissons as diamonds $\stackrel{\phi}{\chi} \diamond^{\psi}_{\upsilon}$ and $\stackrel{\phi}{\varepsilon} \diamond^{\phi}_{\varepsilon}$ of grid rewrite system \rightarrow for hexagon filling $\phi \cdot \chi \Rightarrow \psi \cdot v$ on reductions, projection $\phi^{-1} \cdot \psi \Downarrow \chi \cdot v^{-1}$ on conversions
- $\Phi \Rightarrow \Psi$ iff $\Phi^{-1} \cdot \Psi \notin \varepsilon$ for reductions Φ, Ψ if \rightarrow terminating and projection \Downarrow locally undercutting (LUC; more later)
- grid rewrite system \rightarrow is terminating (trivial; \rightarrow is a dag)

- calissons as diamonds $\stackrel{\phi}{\chi} \diamond^{\psi}_{\upsilon}$ and $\stackrel{\phi}{\varepsilon} \diamond^{\phi}_{\varepsilon}$ of grid rewrite system \rightarrow for hexagon filling $\phi \cdot \chi \Rightarrow \psi \cdot \upsilon$ on reductions, projection $\phi^{-1} \cdot \psi \Downarrow \chi \cdot \upsilon^{-1}$ on conversions
- $\Phi \Rightarrow \Psi$ iff $\Phi^{-1} \cdot \Psi \notin \varepsilon$ for reductions Φ, Ψ
 - if \rightarrow terminating and projection \Downarrow locally undercutting (LUC; more later)
- grid rewrite system \rightarrow is terminating
- projection \Downarrow is locally undercutting

- calissons as diamonds $\stackrel{\phi}{\chi} \diamond^{\psi}_{\upsilon}$ and $\stackrel{\phi}{\varepsilon} \diamond^{\phi}_{\varepsilon}$ of grid rewrite system \rightarrow for hexagon filling $\phi \cdot \chi \Rightarrow \psi \cdot v$ on reductions, projection $\phi^{-1} \cdot \psi \Downarrow \chi \cdot v^{-1}$ on conversions
- $\Phi \Rightarrow \Psi$ iff $\Phi^{-1} \cdot \Psi \notin \varepsilon$ for reductions Φ, Ψ
 - if \rightarrow terminating and projection \Downarrow locally undercutting (LUC; more later)
- grid rewrite system \rightarrow is terminating
- projection \Downarrow is locally undercutting
- undercutting preserves spectrum so spectrum of filling and projection same (spectrum of projection is unique by random descent; \$\V07\$)

- calissons as diamonds ${}^{\phi}_{\chi} \diamond^{\psi}_{\upsilon}$ and ${}^{\phi}_{\varepsilon} \diamond^{\phi}_{\varepsilon}$ of grid rewrite system \rightarrow for hexagon filling $\phi \cdot \chi \Rightarrow \psi \cdot v$ on reductions, projection $\phi^{-1} \cdot \psi \Downarrow \chi \cdot v^{-1}$ on conversions
- $\Phi \Rightarrow \Psi$ iff $\Phi^{-1} \cdot \Psi \notin \varepsilon$ for reductions Φ, Ψ if \rightarrow terminating and projection \Downarrow locally undercutting (LUC; more later)
- grid rewrite system \rightarrow is terminating
- projection \Downarrow is locally undercutting
- undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42 it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory (Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and polygraphs (the 'polybook', Ara et al. 25)

115

OF SUSSEX

Definition

- $\langle M, \bot, +, \leq
 angle$ derivation monoid if
 - $\langle M, \bot, + \rangle$ a monoid;

idea: measure reduction (derivation) as sum of the weights of its (non- \perp) steps

Definition

- $\langle \textit{M}, \bot, +, \leq
 angle$ derivation monoid if
 - $\langle M, \bot, + \rangle$ a monoid;
 - \leq well-founded order with \perp least;

idea: measure reduction (derivation) as sum of the weights of its (non- \perp) steps

Definition

- $\langle \textit{M}, \bot, +, \leq
 angle$ derivation monoid if
 - $\langle M, \bot, + \rangle$ a monoid;
 - \leq well-founded order with \perp least;
 - + is \leq -monotonic in both arguments; strictly in 2nd.

idea: measure reduction (derivation) as sum of the weights of its (non- \perp) steps

Definition

- $\langle \textit{M}, \bot, +, \leq
 angle$ derivation monoid if
 - $\langle M, \bot, + \rangle$ a monoid;
 - \leq well-founded order with \perp least;
 - + is \leq -monotonic in both arguments; strictly in 2nd.

main example: ordinals with zero, addition, less-than-or-equal

Definition

 $\langle \textit{M}, \bot, +, \leq
angle$ derivation monoid

• measure on \rightarrow maps steps to $M - \{\bot\}$;

Definition

$\langle \textit{M}, \bot, +, \leq angle$ derivation monoid

- measure on \rightarrow maps steps to $M \{\perp\}$;
- measure of finite reduction is sum (+; tail to head) of steps (starting with \perp);

Definition

$\langle \textit{M}, \bot, +, \leq angle$ derivation monoid

- measure on \rightarrow maps steps to $M \{\bot\}$;
- measure of finite reduction is sum of steps ;
- measure of infinite reduction is \top (fresh top greater than all $m \in M$).

Definition

$\langle \textit{M}, \bot, +, \leq angle$ derivation monoid

- measure on \rightarrow maps steps to $M \{\bot\}$;
- measure of finite reduction is sum of steps ;
- measure of infinite reduction is \top (fresh top greater than all $m \in M$).

Theorem (RD)

local peaks completable to same weight \iff peak random descent (PR): NF $\ni a_n^* \leftarrow \cdot \rightarrow_{\mu}^{\circ} b \implies \exists k.a_k^* \leftarrow b \& k + \mu = n$ (peak of reductions to nf \implies reductions same weight)
Theorem (Church 41)

if M is a λ I-term, then M is normalising (WN) iff M is terminating (SN)

 λI is the original non-erasing λ -calculus where $x \in FV(M)$ for all $\lambda x.M$

Theorem (Church 41)

if M is a λ I-term, then M is normalising (WN) iff M is terminating (SN)

intuition: because β is non-erasing in λI it makes terms larger but does not quite work, e.g. $(\lambda x.x x) (\lambda x.x x) \beta$ -reduces to itself

Theorem (Church 41)

if M is a λ I-term, then M is normalising (WN) iff M is terminating (SN)

Proof.

• introduce (unary) edge symbol e; measure terms by number of e's

Theorem (Church 41)

if M is a λ I-term, then M is normalising (WN) iff M is terminating (SN)

- introduce (unary) edge symbol e; measure terms by number of e's
- lift β -rule: $e^n(\lambda x.M) N \rightarrow e^{n+1}(M[x:=N])$; weigh step by difference

Theorem (Church 41)

if M is a λ I-term, then M is normalising (WN) iff M is terminating (SN)

- introduce (unary) edge symbol e; measure terms by number of e's
- lift β -rule: $e^n(\lambda x.M) N \rightarrow e^{n+1}(M[x:=N])$; weigh step by difference
- local peaks completable into same weight by orthogonality of lifted system

Theorem (Church 41)

if M is a λ I-term, then M is normalising (WN) iff M is terminating (SN)

- introduce (unary) edge symbol e; measure terms by number of e's
- lift β -rule: $e^n(\lambda x.M) N \rightarrow e^{n+1}(M[x:=N])$; weigh step by difference
- local peaks completable into same weight by orthogonality of lifted system
- conclude SN of *M* from WN of *M* by RD theorem (weight of no reduction exceeds that of one to normal form, so SN)

Definition

rewrite system \rightarrow is complete if it is confluent (CR) and terminating (SN)

for every object there exists (SN) a unique (CR) normal form; ightarrow models function

Definition

rewrite system \rightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

confluent & terminating (SN) \iff random descent & normalising (WN)

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Proof by example.

if-direction above; idea for only only–if-direction: assign weights by topological sorting starting from normal forms

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Proof by example.

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Proof by example.

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Proof by example.

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Proof by example.

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Proof by example.

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Proof by example.

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Definition

rewrite system ightarrow is complete if it is confluent (CR) and terminating (SN)

Theorem (as mentioned in first half)

complete \iff random descent & normalising (WN)

Definition (Nederpelt & Klop)

 \rightarrow is increasing (INC) if map from objects to $\mathbb N$ that increases by rewriting

Definition (Nederpelt & Klop)

 \rightarrow is increasing (INC) if map from objects to $\mathbb N$ that increases by rewriting

Corollary (result by Nederpelt & Klop)

normalisation WN & local confluence (WCR) & INC \implies complete (CR & SN)

Proof.

WCR & INC \implies random descent (RD) by weighing with difference

Corollary (result by Nederpelt & Klop)

normalisation WN & local confluence (WCR) & INC \implies complete (CR & SN)

Theorem

simply typed $\lambda\beta$ -calculus is complete

Proof.

WCR by orthogonality, WN by strategy (Turing), but INC?? (erasing!)

Corollary (result by Nederpelt & Klop)

normalisation WN & local confluence (WCR) & INC \implies complete (CR & SN)

Theorem

simply typed $\lambda\beta$ -calculus is complete

Proof.

• memorise (Nederpelt, Klop, Khasidashvili, de Groote, Wells, ...)

Corollary (result by Nederpelt & Klop)

normalisation WN & local confluence (WCR) & INC \implies complete (CR & SN)

Theorem

simply typed $\lambda\beta$ -calculus is complete

- memorise (Nederpelt, Klop, Khasidashvili, de Groote, Wells, ...)
- lift β as $\langle (\lambda x.M), \vec{K} \rangle N \rightarrow \langle M[x:=N], N\vec{K} \rangle$ where $\langle L, \vec{K} \rangle$ is L with memory \vec{K}

Corollary (result by Nederpelt & Klop)

normalisation WN & local confluence (WCR) & INC \implies complete (CR & SN)

Theorem

simply typed $\lambda\beta$ -calculus is complete

- memorise (Nederpelt, Klop, Khasidashvili, de Groote, Wells, ...)
- lift β as $\langle (\lambda x.M), \vec{K} \rangle N \rightarrow \langle M[x:=N], N\vec{K} \rangle$ where $\langle L, \vec{K} \rangle$ is L with memory \vec{K}
- lifting preserves WCR, WN, typing; creates INC

Corollary (result by Nederpelt & Klop)

normalisation WN & local confluence (WCR) & INC \implies complete (CR & SN)

Theorem

simply typed $\lambda\beta$ -calculus is complete

Proof.

10

- memorise (Nederpelt, Klop, Khasidashvili, de Groote, Wells, ...)
- lift β as $\langle (\lambda x.M), \vec{K} \rangle N \rightarrow \langle M[x:=N], N\vec{K} \rangle$ where $\langle L, \vec{K} \rangle$ is L with memory \vec{K}
- lifting preserves WCR, WN, typing; creates INC
- conclude to completeness (CR & SN) by corollary

Corollary (result by Nederpelt & Klop)

normalisation WN & local confluence (WCR) & INC \implies complete (CR & SN)

Theorem

simply typed $\lambda\beta$ -calculus is complete

Barendregt-Geuvers-Klop conjecture

proofs of WN lift to proofs of SN for typed λ -calculi (PTSs)

Corollary (result by Nederpelt & Klop)

normalisation WN & local confluence (WCR) & INC \implies complete (CR & SN)

Theorem

simply typed $\lambda\beta$ -calculus is complete

Barendregt-Geuvers-Klop conjecture

proofs of WN lift to proofs of SN for typed λ -calculi (PTSs) my take: λ -calculi confluent, so the same as proving RD; which measure??

Finitely branching systems

Observation

for finitely branching (FB) systems, measures in completeness proof in $\mathbb N$

Finitely branching systems

Observation

for finitely branching systems, measures in completeness proof in $\mathbb N$

+ commutative, cancellative; then RD \iff locally Dyck (Toyama, 2016)

Finitely branching systems

Observation

for finitely branching systems, measures in completeness proof in $\mathbb N$

Finitely branching systems

Corollary

(WN systems) complete iff locally Dyck for some measure

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

- ullet ightarrow locally Dyck for length measure, hence uniformly complete
- $\bullet \ \rightarrow \text{ is trivially WN}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

- ullet ightarrow locally Dyck for length measure, hence uniformly complete
- ullet \to is trivially WN
- hence \rightarrow is complete

Local undercutting / semi-lattice

LSL for least upperbounds

Example (positive natural numbers with multiplication)

30 is an upperbound of lcm(2,5) and lcm(5,3)and is so too of lcm(2,3) obtained by cutting 5 (lcm(2,3) undercuts the upperbound 30 of lcm(2,5) and lcm(5,3))

LSL for least common multiples

Example (positive braids; Dehornoy et al. 15, Example II.4.20)

 $\sigma_1\sigma_2\sigma_1\sigma_3\sigma_2\sigma_1$ is a common multiple of lcm (σ_1, σ_2) and lcm (σ_2, σ_3) and is so too of lcm (σ_1, σ_3) obtained by cutting σ_2 (with $\sigma_1\sigma_2\sigma_1 = \sigma_2\sigma_1\sigma_2, \sigma_1\sigma_3 = \sigma_3\sigma_1, \sigma_3\sigma_2\sigma_3 = \sigma_2\sigma_3\sigma_2$ on Artin generators σ_i)

UNIVERSITY of SUSSEX

LSL for orthogonality

Example (orthogonal TRSs; Terese 03, Figure 8.53)

g(g(b,b),g(b,b)) is a common reduct of $f(\vartheta(a))^{-1} \cdot f(f(\varrho))$ and $f(f(\varrho))^{-1} \cdot \vartheta(f(a))$ is so too of $f(\vartheta(a))^{-1} \cdot \vartheta(f(a))$ obtained by cutting $f(f(\varrho))$ (for OTRS rules $\varrho: a \to b$ and $\vartheta: f(x) \to g(x)$)

 modern confluence techniques powerful; 4 solve problem of the calissons (for all zonogonal hexagons; non-convex boxes? Dijkstra 89)

 modern confluence techniques powerful; solve problem of the calissons (for all zonogonal hexagons; non-convex boxes? Dijkstra 89)

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with ${}^{\phi}_{X} \diamond^{\psi}_{\Upsilon}$ iff ${}^{\psi}_{\Upsilon} \diamond^{\phi}_{X}$) \implies filling iff projection for term rewriting, $\lambda\beta$ and positive braids; extends Dehornoy et al. 15 (Projection Theorem: permutation iff projection equivalence (Terese 03) entails cube-property; Lévy 78)

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with ${}^{\phi}_{X} \diamond^{\psi}_{\Upsilon}$ iff ${}^{\psi}_{\Upsilon} \diamond^{\phi}_{X}$) \implies filling iff projection for term rewriting, $\lambda\beta$ and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)? (coinduction instead of induction?)

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with ${}^{\phi}_{X} \diamond^{\psi}_{\Upsilon}$ iff ${}^{\psi}_{\Upsilon} \diamond^{\phi}_{X}$) \implies filling iff projection for term rewriting, $\lambda\beta$ and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)?
- quantitative tiling methods (combinatorics) for quantitative rewriting?

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with ${}^{\phi}_{X} \diamond^{\psi}_{\Upsilon}$ iff ${}^{\psi}_{\Upsilon} \diamond^{\phi}_{X}$) \implies filling iff projection for term rewriting, $\lambda\beta$ and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)?
- quantitative tiling methods for quantitative rewriting?
- contrapositive of LSL for non-confluence? Dehornoy et al. 15; Klop 24

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with ${}^{\phi}_{X} \diamond^{\psi}_{\Upsilon}$ iff ${}^{\psi}_{\Upsilon} \diamond^{\phi}_{X}$) \implies filling iff projection for term rewriting, $\lambda\beta$ and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)?
- quantitative tiling methods for quantitative rewriting?
- contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting as in (1),(2)

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with ${}^{\phi}_{X} \diamond^{\psi}_{\Upsilon}$ iff ${}^{\psi}_{\Upsilon} \diamond^{\phi}_{X}$) \implies filling iff projection for term rewriting, $\lambda\beta$ and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)?
- quantitative tiling methods for quantitative rewriting?
- contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model the problem of the calissons by rewriting Nicolai Kraus, Yves Guiraud for discussion on Newman's II-Lemma (see paper)

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with ${}^{\phi}_{X} \diamond^{\psi}_{\Upsilon}$ iff ${}^{\psi}_{\Upsilon} \diamond^{\phi}_{X}$) \implies filling iff projection for term rewriting, $\lambda\beta$ and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)?
- quantitative tiling methods for quantitative rewriting?
- contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting Nicolai Kraus, Yves Guiraud for discussion on Newman's II-Lemma Nils for example generator and filler (app needs WebGL)

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with ${}^{\phi}_{X} \diamond^{\psi}_{\Upsilon}$ iff ${}^{\psi}_{\Upsilon} \diamond^{\phi}_{X}$) \implies filling iff projection for term rewriting, $\lambda\beta$ and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)?
- quantitative tiling methods for quantitative rewriting?
- contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting Nicolai Kraus, Yves Guiraud for discussion on Newman's II-Lemma Nils for example generator and filler you for your interest