

The problem of the calissons, by rewriting

Vincent van Oostrom University of Sussex

vvo@sussex.ac.uk

The problem of the calissons (David & Tomei 89)

119 IWC, Tallinn, Estonia July 9th 2024 1 UNIVERSITY OF SUSSEX

The problem of the calissons by 4 confluence techniques

 $\overline{11}$ UNIVERSITY
OF SUSSEX IWC, Tallinn, Estonia July 9th 2024 2

 $\overline{11}$ UNIVERSITY
OF SUSSEX IWC, Tallinn, Estonia July 9th 2024 2

 $\overline{11}$ UNIVERSITY
OF SUSSEX IWC, Tallinn, Estonia July 9th 2024 2

• filling \Rightarrow is string rewrite system over { \equiv , \equiv , \equiv } with rules

⇒ ⇒ ⇒ (recover hexagonal shape from associating colours to angles of lines; Logo)

- filling \Rightarrow is string rewrite system over { \equiv , \equiv , \equiv } with rules
- filled box B iff exists \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow filling B (any partial filling allows some filling step toward that B)

⇒ ⇒ ⇒
• filling \Rightarrow is string rewrite system over $\{\blacksquare, \blacksquare, \blacksquare\}$ with rules ⇒ ⇒ ⇒ • filled box B iff exists \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow filling B • filling \Rightarrow is ordered weak Church–Rosser (OWCR) for measure on steps \Rightarrow \mapsto $(1, 0, 0)$ \Rightarrow \mapsto $(0, 1, 0)$ \Rightarrow \mapsto $(0, 0, 1)$ (measure: mapping steps to (non-zero) elements of a derivation monoid) ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ critical peak ψ legs same measure (1,1,1)

- filling \Rightarrow is string rewrite system over { $\qquad \qquad , \qquad \qquad$ with rules
- filled box B iff exists ⇒⇒ filling B
- filling \Rightarrow is ordered weak Church–Rosser (OWCR) for measure on steps $\Rightarrow \mapsto (1, 0, 0) \Rightarrow \mapsto (0, 1, 0) \Rightarrow \mapsto (0, 0, 1)$

⇒ ⇒ ⇒

• OWCR \iff random descent (RD) so all fillings same spectrum (= measure) (RD: if reduction ends in nf then all maximal such do with same measure; Newman 42, 907, 9 & Toyama 16)

- filling \Rightarrow is string rewrite system over { \equiv , \equiv , \equiv } with rules
- filled box B iff exists ⇒⇒ source ⇒ ⇒ session and filling B
- filling ⇒ is ordered weak Church–Rosser (OWCR) for measure on steps $\Rightarrow \mapsto (1, 0, 0) \Rightarrow \mapsto (0, 1, 0) \Rightarrow \mapsto (0, 0, 1)$

⇒ ⇒ ⇒

- OWCR \iff random descent (RD) so all fillings same spectrum
- filling \Rightarrow is weakly normalising (WN) so filling fills $(\Rightarrow$ is sorting-by-swapping; termination of bubblesort shows WN)

- filling \Rightarrow is string rewrite system over { \equiv , \equiv , \equiv } with rules
- filled box B iff exists \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow filling B
- filling \Rightarrow is ordered weak Church–Rosser (OWCR) for measure on steps $\Rightarrow \mapsto (1, 0, 0) \Rightarrow \mapsto (0, 1, 0) \Rightarrow \mapsto (0, 0, 1)$

⇒ ⇒ ⇒

- OWCR \iff random descent (RD) so all fillings same spectrum
- filling \Rightarrow is weakly normalising (WN) so filling fills

remark

CR & SN \iff OWCR & WN (\mathscr{V} 22), measure on objects \iff on steps (answer of sorts to Barendregt–Geuvers–Klop conjecture; to when WN lifts to SN)

- filling \Rightarrow is string rewrite system over { \equiv , \equiv , \equiv } with rules
- filled box B iff exists \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow filling B
- filling \Rightarrow is ordered weak Church–Rosser (OWCR) for measure on steps \Rightarrow \mapsto $(1, 0, 0)$ \Rightarrow \mapsto $(0, 1, 0)$ \Rightarrow \mapsto $(0, 0, 1)$

⇒ ⇒ ⇒

- OWCR \iff random descent (RD) so all fillings same spectrum
- filling \Rightarrow is weakly normalising (WN) so filling fills

remark

CR & SN \iff OWCR & WN (\mathscr{V} 22), measure on objects \iff on steps measure on objects decreasing for filling?

- filling \Rightarrow is string rewrite system over { $\qquad \qquad , \qquad \qquad$ with rules
- filled box B iff exists \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow filling B

⇒ ⇒ ⇒

• filling \Rightarrow is WN so filling fills

- filling \Rightarrow is string rewrite system over { $\qquad \qquad , \qquad \qquad$ with rules
- ⇒ ⇒ ⇒ • filled box B iff exists \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow filling B
- filling \Rightarrow is WN so filling fills
- filling \Rightarrow decrements (one component of) volume (r, q, b) of path P (volume of trichrome path P: triple of areas of projections P_r , P_g , P_b area of dichrome path P: #missing calissons)

- filling \Rightarrow is string rewrite system over { $\qquad \qquad , \qquad \qquad$ } with rules
- filled box B iff exists ⇒⇒ filling B
- filling \Rightarrow is WN so filling fills
- filling \Rightarrow decrements volume (r, g, b) of path P so SN
- volume of normal form path is $(0, 0, 0)$ so spectrum = volume of initial path (initial path only depends on hexagon / box, not on filling / filled box)

⇒ ⇒ ⇒

- filling \Rightarrow is string rewrite system over { $\qquad \qquad , \qquad \qquad$ with rules
- filled box B iff exists \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow filling B
- filling \Rightarrow is WN so filling fills
- filling \Rightarrow decrements volume (r, g, b) of path P so SN
- volume of normal form path is $(0, 0, 0)$ so spectrum = volume of initial path

⇒ ⇒ ⇒

remark

proof order (Bachmaier & Dershowitz 94) as involutive monoid homomorphism area proof order to triple (ℓ, a, r) with #missing calissons a (Felgenhauer & $\mathscr V$ 13)

- filling \Rightarrow is string rewrite system over { \equiv , \equiv , \equiv } with rules
- filled box B iff exists \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow filling B
- filling \Rightarrow is WN so filling fills
- filling \Rightarrow decrements volume (r, g, b) of path P so SN
- volume of normal form path is $(0, 0, 0)$ so spectrum = volume of initial path

⇒ ⇒ ⇒

remark

proof order as involutive monoid homomorphism area proof order to triple (ℓ, a, r) with #missing calissons a proofs by random descent and proof order show spectrum independent of filling but can different fillings be related?

• bricklaying \Rightarrow is graph rewrite system over beds (bed: plane bed-graph; bed-graph: dag obtained by tiling; $\sqrt{\ }$ 23)

- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum per construction preserved by bricklaying \Rightarrow steps

- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum preserved by bricklaying \Rightarrow steps
- bricklaying \Rightarrow terminating (trivial; calissons closer to their origin)

- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum preserved by bricklaying \Rightarrow steps
- bricklaying \Rightarrow terminating
- bricklaying \Rightarrow normal form iff big brick (out-degree edges \leq 3; if some tri-peak \implies bricklaying step found by following back in-edges; if no tri-peaks \implies big brick; holds for bed-graphs)
- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum preserved by bricklaying \Rightarrow steps
- bricklaying \Rightarrow terminating
- bricklaying \Rightarrow normal form iff big brick
- big brick unique for hexagon; filled boxes \Rightarrow -convertible so same spectrum (4 calissons of each colour)

- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum preserved by bricklaying \Rightarrow steps
- bricklaying \Rightarrow terminating
- bricklaying \Rightarrow normal form iff big brick
- big brick unique for hexagon; filled boxes \Rightarrow -convertible so same spectrum

remark

conversions : (2-dimensional) tiling $=$ beds : (3-dimensional) bricklaying ; $\sqrt{\ }$ 23

- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum preserved by bricklaying \Rightarrow steps
- bricklaying \Rightarrow terminating
- bricklaying \Rightarrow normal form iff big brick
- big brick unique for hexagon; filled boxes \Rightarrow -convertible so same spectrum

remark

 $conversions: tiling = beds: bricklaying$

bricklaying reduces all fillings to \Rightarrow -normal form, a big brick, unique for hexagon but characterisation of big bricks?

- bricklaying \Rightarrow is graph rewrite system over beds
- spectrum preserved by bricklaying \Rightarrow steps
- bricklaying \Rightarrow terminating
- bricklaying \Rightarrow normal form iff big brick
- big brick unique for hexagon; filled boxes \Rightarrow -convertible so same spectrum

remark

```
conversions: tiling = beds: bricklaying
```
bricklaying reduces all fillings to \Rightarrow -normal form, a big brick, unique for hexagon filling (\Rightarrow) equivalent iff projection (\downarrow) equivalent; big brick least \downarrow -upperbound

(4) local undercutting; from \Rightarrow -filling to \downarrow -projection

(4) local undercutting; from \Rightarrow -filling to \downarrow -projection

(4) local undercutting; from \Rightarrow -filling to \downarrow -projection

(4) local undercutting; from \Rightarrow -filling to \downarrow -projection

 $\bullet\,$ calissons as diamonds $^\phi_\chi\diamond^\psi_\upsilon$ and $^\phi_\varepsilon\diamond^\phi_\varepsilon$ of grid rewrite system \to for hexagon filling $\phi\cdot\chi\Rightarrow\psi\cdot v$ on reductions, projection $\phi^{-1}\cdot\psi\downarrow\chi\cdot v^{-1}$ on conversions

 $\bullet\,$ calissons as diamonds $^\phi_\chi\diamond^\psi_\upsilon$ and $^\phi_\varepsilon\diamond^\phi_\varepsilon$ of grid rewrite system \to for hexagon filling $\phi\cdot\chi\Rightarrow\psi\cdot v$ on reductions, projection $\phi^{-1}\cdot\psi\downarrow\chi\cdot v^{-1}$ on conversions

 $\bullet\,$ calissons as diamonds $^\phi_\chi\diamond^\psi_\upsilon$ and $^\phi_\varepsilon\diamond^\phi_\varepsilon$ of grid rewrite system \to for hexagon filling $\phi\cdot\chi\Rightarrow\psi\cdot v$ on reductions, projection $\phi^{-1}\cdot\psi\downarrow\chi\cdot v^{-1}$ on conversions

(4) local undercutting; from \Rightarrow -filling to \downarrow -projection

- $\bullet\,$ calissons as diamonds $^\phi_\chi\diamond^\psi_\upsilon$ and $^\phi_\varepsilon\diamond^\phi_\varepsilon$ of grid rewrite system \to for hexagon filling $\phi\cdot\chi\Rightarrow \psi\cdot v$ on reductions, projection $\phi^{-1}\cdot\psi\Downarrow \chi\cdot v^{-1}$ on conversions
- $\;\;\bullet\;\Rightarrow\;\mathsf{\Psi}\;$ iff $\mathsf{\Phi}^{-1}\cdot\mathsf{\Psi}\;\mathsf{\&}\;\varepsilon$ for reductions $\mathsf{\Phi},\mathsf{\Psi}\;$ (Lévy 78, $\mathsf{\mathsf{\Psi}}\;$ & Klop & de Vrijer 98)

(4) local undercutting; from \Rightarrow -filling to \downarrow -projection

- $\bullet\,$ calissons as diamonds $^\phi_\chi\diamond^\psi_\upsilon$ and $^\phi_\varepsilon\diamond^\phi_\varepsilon$ of grid rewrite system \to for hexagon filling $\phi\cdot\chi\Rightarrow \psi\cdot v$ on reductions, projection $\phi^{-1}\cdot\psi\Downarrow \chi\cdot v^{-1}$ on conversions
- $\bullet \; \Phi \Rightarrow \Psi \; \mathsf{iff} \; \Phi^{-1} \cdot \Psi \; \Downarrow \varepsilon$ for reductions Φ, Ψ

if \rightarrow terminating and projection \Downarrow locally undercutting (LUC) local undercutting; novel, based on Dehornoy et al. 15:

- $\bullet\,$ calissons as diamonds $^\phi_\chi\diamond^\psi_v$ and $^\phi_\varepsilon\diamond^\phi_v$ of grid rewrite system \to for hexagon filling $\phi\cdot\chi\Rightarrow \psi\cdot v$ on reductions, projection $\phi^{-1}\cdot\psi\Downarrow \chi\cdot v^{-1}$ on conversions
- $\bullet \;\; \Phi \Rightarrow \Psi \; \mathsf{iff} \; \Phi^{-1} \cdot \Psi \; \Downarrow{}_{\mathrel{\mathcal{E}}}$ for reductions Φ, Ψ if \rightarrow terminating and projection \Downarrow locally undercutting (LUC)
- grid rewrite system \rightarrow is terminating (trivial; \rightarrow is a dag)

- $\bullet\,$ calissons as diamonds $^\phi_\chi\diamond^\psi_\upsilon$ and $^\phi_\varepsilon\diamond^\phi_\varepsilon$ of grid rewrite system \to for hexagon filling $\phi\cdot\chi\Rightarrow \psi\cdot v$ on reductions, projection $\phi^{-1}\cdot\psi\Downarrow \chi\cdot v^{-1}$ on conversions
- $\bullet \; \Phi \Rightarrow \Psi \; \mathsf{iff} \; \Phi^{-1} \cdot \Psi \; \Downarrow \varepsilon$ for reductions Φ, Ψ

if \rightarrow terminating and projection \Downarrow locally undercutting (LUC)

• grid rewrite system \rightarrow is terminating

• projection \Downarrow is locally undercutting

- $\bullet\,$ calissons as diamonds $^\phi_\chi\diamond^\psi_\upsilon$ and $^\phi_\varepsilon\diamond^\phi_\varepsilon$ of grid rewrite system \to for hexagon filling $\phi\cdot\chi\Rightarrow \psi\cdot v$ on reductions, projection $\phi^{-1}\cdot\psi\Downarrow \chi\cdot v^{-1}$ on conversions
- $\bullet \; \Phi \Rightarrow \Psi \; \mathsf{iff} \; \Phi^{-1} \cdot \Psi \; \Downarrow \varepsilon$ for reductions Φ, Ψ
	- if \rightarrow terminating and projection \Downarrow locally undercutting (LUC)
- grid rewrite system \rightarrow is terminating
- projection \Downarrow is locally undercutting
- undercutting preserves spectrum so spectrum of filling and projection same (spectrum of projection is unique by random descent; $\mathcal V$ 07)

- $\bullet\,$ calissons as diamonds $^\phi_\chi\diamond^\psi_v$ and $^\phi_\varepsilon\diamond^\phi_v$ of grid rewrite system \to for hexagon filling $\phi\cdot\chi\Rightarrow \psi\cdot v$ on reductions, projection $\phi^{-1}\cdot\psi\Downarrow \chi\cdot v^{-1}$ on conversions
- $\bullet \;\; \Phi \Rightarrow \Psi \; \mathsf{iff} \; \Phi^{-1} \cdot \Psi \; \Downarrow{}_{\mathrel{\mathcal{E}}}$ for reductions Φ, Ψ if \rightarrow terminating and projection \Downarrow locally undercutting (LUC)
- grid rewrite system \rightarrow is terminating
- projection \Downarrow is locally undercutting
- undercutting preserves spectrum so spectrum of filling and projection same

remark

zapping, contracting conversion cycles to a loop, goes back to Newman 42 it is a basic tool for e.g. Finite Derivation Types (Squier 87), Garside theory (Dehornoy et al. 15), homotopy type theory (Kraus & von Raumer 23), and polygraphs (the 'polybook', Ara et al. 25)

115 IWC, Tallinn, Estonia July 9th 2024 6UNIVERSITY
OF SUSSEX

• modern confluence techniques powerful; 4 solve problem of the calissons (for all zonogonal hexagons; non-convex boxes? Dijkstra 89)

• modern confluence techniques powerful; solve problem of the calissons (for all zonogonal hexagons; non-convex boxes? Dijkstra 89)

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with $^{\phi}_{X}\circ^{\psi}_{Y}$ $\stackrel{\psi}{\Upsilon}$ iff $\stackrel{\psi}{\Upsilon} \diamond^{\phi}_{X}$ χ^{φ}) \implies filling iff projection for term rewriting and positive braids; extends Dehornoy et al. 15 (Projection Theorem: permutation iff projection equivalence (Terese 03) entails cube-property; Lévy 78)

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with $^{\phi}_{X}\circ^{\psi}_{Y}$ $\stackrel{\psi}{\Upsilon}$ iff $\stackrel{\psi}{\Upsilon} \diamond^{\phi}_{X}$ χ^{φ}) \implies filling iff projection for term rewriting and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)? (coinduction instead of induction?)

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with $^{\phi}_{X}\circ^{\psi}_{Y}$ $\stackrel{\psi}{\Upsilon}$ iff $\stackrel{\psi}{\Upsilon} \diamond^{\phi}_{X}$ χ^{φ}) \implies filling iff projection for term rewriting and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)?
- quantitative tiling methods (combinatorics) for quantitative rewriting?

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with $^{\phi}_{X}\circ^{\psi}_{Y}$ $\stackrel{\psi}{\Upsilon}$ iff $\stackrel{\psi}{\Upsilon} \diamond^{\phi}_{X}$ χ^{φ}) \implies filling iff projection for term rewriting and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)?
- quantitative tiling methods for quantitative rewriting?
- contrapositive of LSL for non-confluence? Dehornoy et al. 15; Klop 24

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with $^{\phi}_{X}\circ^{\psi}_{Y}$ $\stackrel{\psi}{\Upsilon}$ iff $\stackrel{\psi}{\Upsilon} \diamond^{\phi}_{X}$ χ^{φ}) \implies filling iff projection for term rewriting and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)?
- quantitative tiling methods for quantitative rewriting?
- contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting as in (1),(2)

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with $^{\phi}_{X}\circ^{\psi}_{Y}$ $\stackrel{\psi}{\Upsilon}$ iff $\stackrel{\psi}{\Upsilon} \diamond^{\phi}_{X}$ χ^{φ}) \implies filling iff projection for term rewriting and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)?
- quantitative tiling methods for quantitative rewriting?
- contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model the problem of the calissons by rewriting Nicolai Kraus, Yves Guiraud for discussion on Newman's II-Lemma (see paper)

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with $^{\phi}_{X}\circ^{\psi}_{Y}$ $\stackrel{\psi}{\Upsilon}$ iff $\stackrel{\psi}{\Upsilon} \diamond^{\phi}_{X}$ χ^{φ}) \implies filling iff projection for term rewriting and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)?
- quantitative tiling methods for quantitative rewriting?
- contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting Nicolai Kraus, Yves Guiraud for discussion on Newman's II-Lemma Nils for [example generator and filler](https://callissons-hexagon-solver.netlify.app/) (app needs WebGL)

- modern confluence techniques powerful; solve problem of the calissons
- local semi-lattice (LSL = LUC with $^{\phi}_{X}\circ^{\psi}_{Y}$ $\stackrel{\psi}{\Upsilon}$ iff $\stackrel{\psi}{\Upsilon} \diamond^{\phi}_{X}$ χ^{φ}) \implies filling iff projection for term rewriting and positive braids
- productivity instead of termination of \rightarrow for filling iff projection (given LSL)?
- quantitative tiling methods for quantitative rewriting?
- contrapositive of LSL for non-confluence?

Thanks to

Jan Willem Klop for suggesting to model calissons by rewriting Nicolai Kraus, Yves Guiraud for discussion on Newman's II-Lemma Nils for [example generator and filler](https://callissons-hexagon-solver.netlify.app/) you for your interest

Local undercutting / semi-lattice

LSL for least upperbounds

Example (positive natural numbers with multiplication)

30 is an upperbound of $lcm(2, 5)$ and $lcm(5, 3)$ and is so too of $lcm(2, 3)$ obtained by cutting 5 $(lcm(2, 3)$ undercuts the upperbound 30 of $lcm(2, 5)$ and $lcm(5, 3)$)

LSL for least common multiples

Example (positive braids; Dehornoy et al. 15, Example II.4.20)

σισ σ_1 σ σ_2 σ σ_1 is a common multiple of lcm(σ_1 , σ_2) and lcm(σ_2 , σ_3) and is so too of $\text{lcm}(\sigma_1, \sigma_3)$ obtained by cutting σ_2 (with $\sigma_1\sigma_2\sigma_1=\sigma_2\sigma_1\sigma_2$, $\sigma_1\sigma_3=\sigma_3\sigma_1$, $\sigma_3\sigma_2\sigma_3=\sigma_2\sigma_3\sigma_2$ on Artin generators σ_i)

10 IWC, Tallinn, Estonia July 9th 2024 8OF SUSSE>

LSL for orthogonality

Example (orthogonal TRSs; Terese 03, Figure 8.53)

 $g(g(b,b),g(b,b))$ is a common reduct of $f(\vartheta(a))^{-1}\cdot f(f(\varrho))$ and $f(f(\varrho))^{-1}\cdot \vartheta(f(a))$ is so too of $f(\vartheta(a))^{-1} \cdot \vartheta(f(a))$ obtained by cutting $f(f(\varrho))$ (for OTRS rules $\rho : a \rightarrow b$ and $\vartheta : f(x) \rightarrow g(x)$)

1 T C IWC, Tallinn, Estonia July 9th 2024 8OF SUSSE)