

Critical Peaks Redefined $\Phi \sqcup \Psi = \top$

Nao Hirokawa Julian Nagele Vincent van Oostrom Michio Oyamaguchi

SIG

IWC, Friday September 8th, 2017

Theorem (Huet)

term rewrite system is locally confluent if all critical pairs joinable

Theorem (Huet)

term rewrite system is locally confluent if all critical pairs joinable

Theorem (Rosen)

left-linear term rewrite system is confluent if it has no critical pairs

Theorem (Huet)

term rewrite system is locally confluent if all critical pairs joinable

Theorem (Rosen)

left-linear term rewrite system is confluent if it has no critical pairs

integrate?

Theorem (Huet)

term rewrite system is locally confluent if all critical pairs joinable

Theorem (Rosen)

left-linear term rewrite system is confluent if it has no critical pairs

integrate?

abstract rewrite systems: Newman's Lemma and diamond property integration: decreasing diagrams

Theorem (Huet)

term rewrite system is locally confluent if all critical pairs joinable

Theorem (Rosen)

left-linear term rewrite system is confluent if it has no critical pairs

integrate?

abstract rewrite systems: Newman's Lemma and diamond property integration: decreasing diagrams this talk: left-linear first-order term rewrite systems

Critical peak lemma

Lemma (critical peak)

- a multi-multi peak either
 - is empty or critical; or
 - can be decomposed into smaller such peaks

Critical peak lemma

Lemma (critical peak)

- a multi-multi peak either
 - is empty or critical; or
 - can be decomposed into smaller such peaks

Assumption

- *P* set of multi-multi peaks closed under decomposition
- V set of valleys closed under (re)composition

Critical peak lemma

Lemma (critical peak)

- a multi-multi peak either
 - is empty or critical; or
 - can be decomposed into smaller such peaks

Assumption

- *P* set of multi-multi peaks closed under decomposition
- V set of valleys closed under (re)composition

Theorem

if empty and critical peaks in P are in V, then all peaks in P are.

Proof.

by induction on size, using the assumption in the base case, and closure under decomposition and composition in the step case. Nao Hirokawa Julian Nagele Vincent van Oo Critical Peaks Redefined Φ ⊔ Ψ = ⊤

Derecomposition in action

TRS

$$egin{array}{cccc} a &
ightarrow & b & g(a) &
ightarrow & c & b &
ightarrow & d \ f(g(x),y) &
ightarrow & h(x,y,y) & f(c,y) &
ightarrow & h(b,y,y) \end{array}$$

Example (types of rewriting)

rewriting from term t = g(f(g(a), a))

- empty: t = t;
- one⁼: $t \rightarrow g(f(g(b), a)), t \rightarrow g(f(c, a)), t \rightarrow g(h(a, a, a))$
- parallel: $t \leftrightarrow g(f(g(b), b)), t \leftrightarrow g(f(c, b))$
- multi: $t \rightarrow g(h(b, a, a)), t \rightarrow g(h(a, b, b))$
- many: $t \rightarrow g(f(g(d), a))$

Derecomposition in action

TRS

$$egin{array}{cccc} a &
ightarrow & b & g(a) &
ightarrow & c & b &
ightarrow & d \ f(g(x),y) &
ightarrow & h(x,y,y) & f(c,y) &
ightarrow & h(b,y,y) \end{array}$$

Example (de/recomposing peaks)

multi-parallel peak $g(h(b, a, a)) \leftrightarrow g(f(g(a), a)) \leftrightarrow g(f(c, b))$

- empty peak g(z) = g(z) = g(z); empty joinable
- multi-parallel peak $h(b, a, a) \leftrightarrow f(g(a), a) \leftrightarrow f(c, b)$
 - empty-one peak $a = a \rightarrow b$; one-empty joinable
 - critical multi-one peak h(b, u, u) ↔ f(g(a), u) → f(c, u); empty-one joinable (by rule f(c, y) → h(b, y, y))

parallel–one joinable $h(b, a, a) \leftrightarrow h(b, b, b) \leftarrow f(c, b)$

parallel–one joinable $g(h(b, a, a) \leftrightarrow g(h(b, b, b)) \leftarrow g(f(c, b))$

Corollaries to critical peak lemma

Corollary (Huet)

term rewrite system is locally confluent if all critical pairs joinable

Proof.

- P = set of all one⁼-one⁼ peaks
- V = set of all valleys

base case empty or ordinary (one-one) critical peak

Corollaries to critical peak lemma

Corollary (Rosen)

left-linear term rewrite system is confluent if it has no critical pairs

Proof.

- P = set of all multi-multi peaks
- V = set of all multi-multi valleys

only empty base case by assumption

Pattern overlap intuition

Example

 $a \leftarrow f(g(g(b))) \rightarrow f(g(c))$ for $f(g(x)) \rightarrow a$ and $g(b) \rightarrow c$

Pattern overlap intuition

Example

 $h(a) \leftarrow h(f(g(b))) \rightarrow h(f(c))$ for $f(g(x)) \rightarrow a$ and $g(b) \rightarrow c$

Multiple patterns

Multiple patterns

Definition (cluster)

term with multiple occurrences of patterns $t = M^{\llbracket \vec{X} := ar{\ell}
rbracket}$

- *M* is the skeleton; term linear in \vec{X}
- \vec{X} is list of second-order variables; gaps
- \vec{l} is list of patterns; non-var, linear first-order terms

Coarsening/refining clusters

coarser than order \supseteq (finer than \sqsubseteq) intuition: split and forget

Coarsening/refining clusters

coarser than order \supseteq (finer than \sqsubseteq) intuition: split and forget

Meet of clusters

refinement order: $\varsigma \sqsubseteq \zeta$ iff $\varsigma = \varsigma \sqcap \zeta$

Join of clusters

refinement order: $\varsigma \sqsubseteq \zeta$ iff $\varsigma \sqcup \zeta = \zeta$

Join of clusters

refinement order: $\varsigma \sqsubseteq \zeta$ iff $\varsigma \sqcup \zeta = \zeta$

- \perp : term without patterns
- \top : term one big pattern (except for root-edge, vars)

Definition

 $(N,\beta) \sqsupseteq (M,\alpha)$ if $N^{\gamma} = M$ and $\beta = \alpha \circ \gamma$ for meta-substitution γ

Birkhoff's Fundamental Theorem for Distributive Lattices

a finite distributive lattice \sqsubseteq is isomorphic to the \subseteq -lattice of downward closed sets of its join-irreducible elements

Birkhoff's Fundamental Theorem for Distributive Lattices

a finite distributive lattice \sqsubseteq is isomorphic to the \subseteq -lattice of downward closed sets of its join-irreducible elements

Join-irreducible

if not smallest and not the join of two smaller elements

Birkhoff's Fundamental Theorem for Distributive Lattices

a finite distributive lattice \sqsubseteq is isomorphic to the \subseteq -lattice of downward closed sets of its join-irreducible elements

Join-irreducible

if not smallest and not the join of two smaller elements

Birkhoff's Fundamental Theorem for Distributive Lattices

a finite distributive lattice \sqsubseteq is isomorphic to the \subseteq -lattice of downward closed sets of its join-irreducible elements

Join-irreducible

if not smallest and not the join of two smaller elements; for \sqsubseteq :

• single symbol; $f(\vec{v})$

Birkhoff's Fundamental Theorem for Distributive Lattices

a finite distributive lattice \sqsubseteq is isomorphic to the \subseteq -lattice of downward closed sets of its join-irreducible elements

Join-irreducible

if not smallest and not the join of two smaller elements; for \sqsubseteq :

- single symbol; $f(\vec{v})$
- two adjacent symbols; $f(\vec{v_1}, g(\vec{v_2}), \vec{v_3})$;

Birkhoff's Fundamental Theorem for Distributive Lattices

a finite distributive lattice \sqsubseteq is isomorphic to the \subseteq -lattice of downward closed sets of its join-irreducible elements

Join-irreducible

if not smallest and not the join of two smaller elements; for \sqsubseteq :

- single symbol; $f(\vec{v})$
- two adjacent symbols; $f(\vec{v_1}, g(\vec{v_2}), \vec{v_3})$; (\Box single symbols f, g)

Birkhoff's Fundamental Theorem for Distributive Lattices

a finite distributive lattice \sqsubseteq is isomorphic to the \subseteq -lattice of downward closed sets of its join-irreducible elements

Join-irreducible

if not smallest and not the join of two smaller elements; for \sqsubseteq :

- single symbol; $f(\vec{v})$
- two adjacent symbols; $f(\vec{v_1}, g(\vec{v_2}), \vec{v_3})$;

node and edge positions are join-irreducible w.r.t. \Box

Theorem

clusters are sets of positions that are downward-closed (edge is larger than its endpoints/nodes) \Box is finite distributive lattice isomorphic to \subseteq (on sets of positions)

Lemma (Multisteps as clusters)

$$t \to s$$
 iff $t = M^{\llbracket \vec{X} := \vec{\ell} \rrbracket}$ and $M^{\llbracket \vec{X} := \vec{r} \rrbracket} = s$, for rules $\overrightarrow{\ell \to r}$

Lemma (Multisteps as clusters)

$$t \to s$$
 iff $t = M^{\llbracket \vec{X} := \vec{\ell} \rrbracket}$ and $M^{\llbracket \vec{X} := \vec{r} \rrbracket} = s$, for rules $\overrightarrow{\ell \to r}$

refinement extended to multisteps via left-hand side (t)

Lemma (Multisteps as clusters)

$$t \to s$$
 iff $t = M^{\llbracket \vec{X} := \vec{\ell} \rrbracket}$ and $M^{\llbracket \vec{X} := \vec{r} \rrbracket} = s$, for rules $\overrightarrow{\ell \to r}$

refinement extended to multisteps via left-hand side (t)

Definition

 $s \oplus \longleftrightarrow t \longrightarrow_{\Psi} u$ critical if non-empty and $\Phi \sqcup \Psi = \top$

Lemma (Multisteps as clusters)

$$t \to s$$
 iff $t = M^{\llbracket \vec{X} := \vec{\ell} \rrbracket}$ and $M^{\llbracket \vec{X} := \vec{r} \rrbracket} = s$, for rules $\overrightarrow{\ell \to r}$

refinement extended to multisteps via left-hand side (t)

Definition

 $s \hspace{0.1cm} \bullet \leftarrow \hspace{0.1cm} t \hspace{0.1cm} \bullet \rightarrow_{\Psi} u \hspace{0.1cm}$ critical if non-empty and $\Phi \sqcup \Psi = \top$

Critical peak lemma

if $s \,_{\Phi} \longleftrightarrow t \longrightarrow_{\Psi} u$ then

• $\Phi \sqcup \Psi = \top$: empty or variable-instance of critical peak; or

•
$$\Phi \sqcup \Psi \neq \top$$
: $\Phi = \Phi_0^{[x:=\Phi_1]}$ and $\Psi = \Psi_0^{[x:=\Psi_1]}$, both smaller

Corollary (Okui)

if multi-one critical peaks are many-multi joinable then confluent

Proof.

- *P* = set of all multi–one⁼ peaks
- V = set of all many-multi valleys

Corollary (Gramlich, Toyama, Felgenhauer)

confluent if parallel-one critical peaks are many-parallel joinable

Proof.

- *P* = set of all parallel–one⁼ peaks
- V = set of all many-parallel valleys

Corollary (Gramlich, Toyama, Felgenhauer)

confluent if parallel-one critical peaks are many-parallel joinable

Proof.

- P = set of all parallel-one⁼ peaks
- V = set of all many-parallel valleys

parallel not composition closed; [Toyama,Gramlich] conditions

Corollary (Huet, Toyama, vO)

confluent if every inner-outer critical peak multi-empty joinable

Proof.

- P = set of all multi-multi peaks
- V = set of all multi-multi valleys

Corollary (Huet, Toyama, vO)

confluent if every inner-outer critical peak multi-empty joinable

Proof.

- P = set of all multi-multi peaks
- V = set of all multi-multi valleys

multi-multi critical peaks split into such with less overlap induction on amount of overlap; based on distributive lattice

• integrated critical peak criteria

- integrated critical peak criteria
- based on de/recomposition with critical peaks as base case

- integrated critical peak criteria
- based on de/recomposition with critical peaks as base case
- refinement is finite distributive lattice on clusters

- integrated critical peak criteria
- based on de/recomposition with critical peaks as base case
- refinement is finite distributive lattice on clusters
- positions synthesised (via Birkhoff) as join-irreducible clusters

- integrated critical peak criteria
- based on de/recomposition with critical peaks as base case
- refinement is finite distributive lattice on clusters
- positions synthesised (via Birkhoff) as join-irreducible clusters
- critical peak redefinition as $\Phi \sqcup \Psi = \top$

- integrated critical peak criteria
- based on de/recomposition with critical peaks as base case
- refinement is finite distributive lattice on clusters
- positions synthesised (via Birkhoff) as join-irreducible clusters
- critical peak redefinition as $\Phi \sqcup \Psi = \top$
- critical peak definitions in literature covered
 - one-one: Knuth-Bendix, Huet
 - parallel-one: Toyama, Gramlich
 - multi–one: Okui
 - multi-multi: Felgenhauer

 integrate with decreasing diagrams into HOT-criterion (same authors; work done at moment of FSCD deadline ...)

- integrate with decreasing diagrams into HOT-criterion (same authors; work done at moment of FSCD deadline ...)
- non-left-linear (refinement not a distributive lattice)

- integrate with decreasing diagrams into HOT-criterion (same authors; work done at moment of FSCD deadline ...)
- non-left-linear (refinement not a distributive lattice)
- higher-order (refinement is distributive lattice)

- integrate with decreasing diagrams into HOT-criterion (same authors; work done at moment of FSCD deadline ...)
- non-left-linear (refinement not a distributive lattice)
- higher-order (refinement is distributive lattice)
- investigate when finitely many critical multi-multi peaks

- integrate with decreasing diagrams into HOT-criterion (same authors; work done at moment of FSCD deadline ...)
- non-left-linear (refinement not a distributive lattice)
- higher-order (refinement is distributive lattice)
- investigate when finitely many critical multi-multi peaks
- investigate closure under (re)composition of decreasingness