A puzzle to ponder on α-conversion

- give an upperbound on the $\# \alpha$-renamings needed to β-reduce $((\underline{2} \underline{8})(\underline{4} \underline{9}))(\underline{5} \underline{7})(\underline{4} \underline{2})$ to normal form?
- note 1: $\underline{n}:=\lambda s z \cdot s^{n} z$ is Church-numeral n
- note 2: application of Church-numerals is exponentiation; $\underline{k} \underline{n} \rightarrow \beta \underline{n^{k}}$
- note 3: whether α-conversion is needed in a β-reduction is undecidable

Thoughts on naïvely implementing the $\lambda \beta$-calculus

Vincent van Oostrom

λ-calculus naïvely

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
\text { Church numeral } 2
\end{gathered}
$$

running example, reduces to four
$(\lambda s z . s(s z)) \lambda s z . s(s z)$

λ-calculus naïvely

$$
\underline{2}:=\lambda s z . s(s z)
$$

$\underline{2} 2$

λ-calculus naïvely

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
\beta \text {-reduction with naïve substitution } \\
\text { (not in } \lambda x ; \text { indiscriminantly in } \lambda y \text {) } \\
\underline{2} \underline{2}
\end{gathered}
$$

Substitution naïvely (no α)

$$
\begin{aligned}
& x[x:=N]:=N \\
& y[x:=N]:=y \\
& (\text { for } x \neq y) \\
& (\lambda x . M)[x:=N] \quad:=\lambda x . M \\
& (\lambda y \cdot M)[x:=N] \quad:=\lambda y \cdot M[x:=N] \quad(\text { for } x \neq y) \\
& \left(M_{1} M_{2}\right)[x:=N]:=M_{1}[x:=N] M_{2}[x:=N]
\end{aligned}
$$

λ-calculus naïvely

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N]
\end{gathered}
$$

$$
\underline{2} \underline{2}
$$

combinator system

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \quad \text { lifting } \lambda z . s(s z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N]
\end{gathered}
$$

$\underline{2} 2$

combinator system

$$
\begin{array}{cl}
\underline{2}:=\lambda s z . s(s z) & \text { lifting } \lambda z . s(s z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & \text { skeleton } \lambda z .[]([] z) \mapsto \mathrm{f} \text {-symbol } Z \\
& \text { maximal free subexpressions } s, s
\end{array}
$$

$\underline{2} 2$

combinator system

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & Z[x, y] z \rightarrow_{k} x(y z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & Z[x, y] \text { represents } \lambda z . x(y z)
\end{array}
$$

22

combinator system

$$
\underline{2}:=\lambda s z . s(s z) \quad \mid \quad Z[x, y] z \rightarrow_{k} x(y z)
$$

$$
(\lambda x \cdot M) N \rightarrow_{\beta} M[x:=N]
$$

$$
\underline{2} \underline{2}
$$

combinator system

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & \quad \text { | } \quad Z[x, y] z \rightarrow_{k} x(y z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & \text { lifting } \lambda s . Z[s, s] \\
& \text { its own skeleton } \mapsto \text { f-symbol } s \\
& \text { no maximal free subexpressions }
\end{array}
$$

combinator system

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x . M) N \rightarrow{ }_{\beta} M[x:=N]
\end{gathered}
$$

$$
\begin{gathered}
Z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} Z[z, z]
\end{gathered}
$$

$$
S \text { represents } \underline{2}:=\lambda s z . s(s z)
$$

$\underline{2} 2$

combinator system

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N]
\end{gathered}
$$

$$
\begin{gathered}
Z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} Z[z, z]
\end{gathered}
$$

running example, reduces to four
$\underline{2} 2$ SS

combinator system

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N]
\end{gathered}
$$

$$
\begin{gathered}
Z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} Z[z, z]
\end{gathered}
$$

$\underline{2} 2$ SS

TGRS

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & Z[x, y] z \rightarrow_{\kappa} x(y z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & S z \rightarrow_{\kappa} z[z, z]
\end{array}
$$

22SS

TGRS

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & Z[x, y] z \rightarrow_{\kappa} x(y z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & S z \rightarrow_{K} Z[z, z]
\end{array}
$$

22
SS
duplication by sharing in rhs

TGRS

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & Z[x, y] z \rightarrow_{\kappa} x(y z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & S z \rightarrow_{\kappa} z[z, z]
\end{array}
$$

22SS

TGRS

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & \quad \\
(\lambda x . M) N \rightarrow_{\beta} M[x: y] z \rightarrow_{k} x(y z) & S z \rightarrow_{K} Z[z, z]
\end{array}
$$

running example, reduces to four
λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS
$\underline{2}:=\lambda s z . s(s z)$
$(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$

$$
\begin{gathered}
z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} z[z, z]
\end{gathered}
$$

22
SS

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS
$\underline{2}:=\lambda s z . s(s z)$
$(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$

$$
\begin{gathered}
z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} z[z, z]
\end{gathered}
$$

$\underline{2} \underline{2}$	$S S$
$\boldsymbol{\eta} \beta$	$\downarrow \kappa$
$\lambda z . \underline{2}(\underline{2} z)$	$Z[S, S]$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{gathered}
Z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} Z[z, z]
\end{gathered}
$$

$$
\lambda z . \underline{2}(\underline{2} z)
$$

$$
z[S, S]
$$

$$
\stackrel{z}{\stackrel{z}{s}}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & \quad \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & S z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{K} z[z, z]
\end{array}
$$

$$
\lambda z . \underline{2}(\underline{2} z)
$$

$$
Z[S, S]
$$

weak head normal form (under λ) normal form (Z is stuck)

normal form (Z is stuck)

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \begin{array}{c}
Z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} Z[z, z]
\end{array} \\
& Z[S, S]
\end{aligned}
$$

root-introduce fresh constant
root-introduce fresh constant root-introduce fresh constant

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \text { (} z^{\prime} \text { fresh; think of as constant) } \\
& \lambda z . \underline{2}(\underline{2} z) \\
& \text { factor } \alpha \text { through } \beta \text { (at root) } \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow{ }_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& Z[S, S] \\
& \text { unstuck combinator (at root) Z, S-rules as expected (at root) }
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& Z[x, y] z \rightarrow_{k} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} \cdot Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& z[S, S] \\
& \downarrow^{\alpha} \\
& \lambda z_{1} \cdot(\lambda z . \underline{2}(\underline{2} z)) z_{1} \\
& \lambda z_{1} \cdot(\lambda z . \underline{2}(\underline{2} z)) z_{1} \\
& \lambda z_{1} \cdot Z[S, S] z_{1} \\
& \alpha
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda z_{1} \cdot(\lambda z . \underline{2}(\underline{2} z)) z_{1} \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda z_{1}, Z[S, S] z_{1}
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x \cdot M) N \rightarrow_{\beta} M[x:=N] \\
\lambda z \cdot M \rightarrow_{\alpha} \lambda z^{\prime} \cdot(\lambda z \cdot M) z^{\prime} \\
\lambda z_{1} \cdot(\lambda z \cdot \underline{2}(\underline{2} z)) z_{1} \\
\boldsymbol{\beta}^{\beta} \\
\lambda z_{1} \cdot \underline{2}\left(\underline{2} z_{1}\right)
\end{gathered}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda z_{1} \cdot \underline{2}\left(\underline{2} z_{1}\right) \\
& Z[x, y] z \rightarrow_{k} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda z_{1} . S\left(S z_{1}\right)
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

unshare constructor of redex

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x \cdot M) N \rightarrow_{\beta} M[x:=N] \\
\lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} \cdot(\lambda z \cdot M) z^{\prime} \\
\lambda z_{1} \cdot \underline{2}\left(\underline{2} z_{1}\right) \\
\boldsymbol{\beta}_{\beta} \\
\lambda z_{1} \cdot \lambda z \cdot \underline{2} z_{1}\left(\underline{2} z_{1} z\right)
\end{gathered}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda z_{1} \cdot \lambda z . \underline{2} z_{1}\left(\underline{2} z_{1} z\right) \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda z_{1}, Z\left[S z_{1}, S z_{1}\right]
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$\underline{2}:=\lambda s z . s(s z)$
$(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$ $\lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime}$
$\lambda z_{1} . \lambda z .2 z_{1}\left(\underline{2} z_{1} z\right)$ ${ }^{\boldsymbol{\gamma}}{ }^{\alpha}$
$\lambda z_{1} z_{2} \cdot\left(\lambda z . \underline{2} z_{1}\left(\underline{2} z_{1} z\right)\right) z_{2}$
$Z[x, y] z \rightarrow_{\kappa} x(y z)$ $S z \rightarrow_{\kappa} Z[z, z]$
$Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime}$ $S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime}$
$\lambda z_{1} . Z\left[S z_{1}, S z_{1}\right]$
〉 ${ }^{\alpha}$
$\lambda z_{1} z_{2} \cdot Z\left[S z_{1}, S z_{1}\right] z_{2}$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda z_{1} z_{2} \cdot\left(\lambda z . \underline{2} z_{1}\left(\underline{2} z_{1} z\right)\right) z_{2} \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda z_{1} z_{2} \cdot Z\left[S z_{1}, S z_{1}\right] z_{2}
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda z_{1} z_{2} \cdot\left(\lambda z \cdot \underline{2} z_{1}\left(\underline{2} z_{1} z\right)\right) z_{2} \\
& \text { † } \beta \\
& \lambda \vec{z} . \underline{2} z_{1}\left(\underline{2} z_{1} z_{2}\right) \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda z_{1} z_{2} . Z\left[S z_{1}, S z_{1}\right] z_{2} \\
& \dagger \kappa \\
& \lambda \vec{z} . S z_{1}\left(S z_{1} z_{2}\right)
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} . \underline{2} z_{1}\left(\underline{2} z_{1} z_{2}\right) \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda \vec{z} . S z_{1}\left(S z_{1} z_{2}\right)
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$\underline{2}:=\lambda s z . s(s z)$
$(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$
$\lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime}$
$\lambda \vec{z} \cdot \underline{2} z_{1}\left(\underline{2} z_{1} z_{2}\right)$
${ }_{\dagger}{ }^{\mathrm{f}} \beta$
$\lambda \vec{z} .\left(\lambda z . z_{1}\left(z_{1} z\right)\right)\left(\left(\lambda z . z_{1}\left(z_{1} z\right)\right) z_{2}\right)$ parallel β (weak family)

$$
\begin{gathered}
Z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} Z[z, z]
\end{gathered}
$$

$$
Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime}
$$

$$
S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime}
$$

$\lambda \vec{z} . S z_{1}\left(S z_{1} z_{2}\right)$
$\downarrow \mathrm{f} \kappa$
$\lambda \vec{Z} . Z\left[z_{1}, z_{1}\right]\left(Z\left[z_{1}, z_{1}\right] z_{2}\right)$ parallel κ (family)

contract shared S-redex

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} .\left(\lambda z . z_{1}\left(z_{1} z\right)\right)\left(\left(\lambda z . z_{1}\left(z_{1} z\right)\right) z_{2}\right) \quad \lambda \vec{z} . Z\left[z_{1}, z_{1}\right]\left(Z\left[z_{1}, z_{1}\right] z_{2}\right) \\
& Z[x, y] z \rightarrow_{k} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime}
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} .\left(\lambda z . z_{1}\left(z_{1} z\right)\right)\left(\left(\lambda z . z_{1}\left(z_{1} z\right)\right) z_{2}\right) \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda \vec{z} . Z\left[z_{1}, z_{1}\right]\left(Z\left[z_{1}, z_{1}\right] z_{2}\right) \\
& \text { unshare constructor of redex }
\end{aligned}
$$

λ－calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} .\left(\lambda z \cdot z_{1}\left(z_{1} z\right)\right)\left(\left(\lambda z . z_{1}\left(z_{1} z\right)\right) z_{2}\right) \\
& \text { 〉 }{ }^{\beta} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(\left(\lambda z . z_{1}\left(z_{1} z\right)\right) z_{2}\right)\right) \\
& \begin{array}{c}
Z[x, y] z \rightarrow_{k} x(y z) \\
S z \rightarrow_{k} Z[z, z]
\end{array} \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda \vec{z} . Z\left[z_{1}, z_{1}\right]\left(Z\left[z_{1}, z_{1}\right] z_{2}\right) \\
& \text { 市 } \kappa \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(Z\left[z_{1}, z_{1}\right] z_{2}\right)\right)
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(\left(\lambda z . z_{1}\left(z_{1} z\right)\right) z_{2}\right)\right) \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(Z\left[z_{1}, z_{1}\right] z_{2}\right)\right)
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} \cdot z_{1}\left(z_{1}\left(\left(\lambda z \cdot z_{1}\left(z_{1} z\right)\right) z_{2}\right)\right) \\
& \text { † } \beta \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(z_{1}\left(z_{1} z_{2}\right)\right)\right) \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(Z\left[z_{1}, z_{1}\right] z_{2}\right)\right) \\
& \dagger \kappa \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(z_{1}\left(z_{1} z_{2}\right)\right)\right)
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(z_{1}\left(z_{1} z_{2}\right)\right)\right) \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(z_{1}\left(z_{1} z_{2}\right)\right)\right)
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(z_{1}\left(z_{1} z_{2}\right)\right)\right) \\
& \text { normal form } \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(z_{1}\left(z_{1} z_{2}\right)\right)\right) \\
& \text { normal form } \\
& \text { normal form }
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \text { normal form } \\
& \dagger 4 \\
& \text { normal form }
\end{aligned}
$$

Spine strategy

Definition (spine prefix)

λ-term-nodes ($@, \lambda x, x$) of whnf (recursively; in tree; reachable from root)

(1) leftmost Z is non-green-covered

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

(1) leftmost Z is non-green-covered
(2) top-middle Z is again non-green-covered

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

(1) leftmost Z is non-green-covered
(2) top-middle Z is again non-green-covered
(3) top-right @ is green-covered; its spine has Z-redex $\Longrightarrow \rightarrow_{\text {spk }}$-step

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

(1) leftmost Z is non-green-covered

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

(1) leftmost Z is non-green-covered
(2) top-middle Z is green-covered; unfold $\Longrightarrow \rightarrow_{\alpha}$-step

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

Lemma

- graph G in normal form iff G is spine prefix

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

Lemma

- graph G in normal form iff G is spine prefix
- $\rightarrow_{\text {sp } \gamma}$-step maps back to $\Pi_{\text {fsp } \beta} \beta$-step on λ-term
(parallel β-step contracting family of β-redexes; at least one spine)

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

Lemma

- graph G in normal form iff G is spine prefix
- $\rightarrow_{\text {sp } \gamma}$-step maps back to $\Pi_{\text {fsp } \beta}$-step on λ-term
- \rightarrow_{α}-step maps back to Π_{α}-step on λ-term

Theorem

(1) leftmost-outermost $\rightarrow_{\ell 0 \beta}$ is a spine-strategy $\left(\rightarrow_{\mathrm{sp} \beta}\right.$-strategy) on λ-terms (not other way around)

Theorem

(1) leftmost-outermost is a spine-strategy on λ-terms
(2) $\rightarrow_{\mathrm{sp} \beta}$ is random descent (RD) strategy, so $\prod_{\mathrm{fsp} \beta}$ is hyper-normalising (RD: all maximal reductions yield same nf (if any) and of same length)

Theorem

(1) leftmost-outermost is a spine-strategy on λ-terms
(2) $\rightarrow_{\mathrm{sp} \beta}$ is random descent (RD) strategy, so $\Pi_{H_{\mathrm{fsp} \beta}}$ is hyper-normalising
(3) \#sp $\gamma \leq c \cdot \# \ell \mathrm{o} \beta$ for reduction of M to $n f$, for constant c depending on M (in turn, $\# \rightarrow_{\alpha}$ bounded via $\# \mathrm{sp} \gamma$)

Theorem

(1) leftmost-outermost is a spine-strategy on λ-terms
(2) $\rightarrow_{\mathrm{sp} \beta}$ is random descent (RD) strategy, so $\Pi_{H_{\mathrm{fsp} \beta}}$ is hyper-normalising
(3) $\# \mathrm{sp} \gamma \leq \mathrm{c} \cdot \# \ell \mathrm{o} \beta$ for reduction of M to $n f$, for constant c depending on M
(4) $\rightarrow_{\text {sp } \gamma}$ maps to optimal strategy for $\Pi_{\text {fsp } \kappa}$

Theorem

(1) leftmost-outermost is a spine-strategy on λ-terms
(2) $\rightarrow_{\mathrm{sp} \beta}$ is random descent (RD) strategy, so $\prod_{\mathrm{fsp} \beta}$ is hyper-normalising
(3) $\# \mathrm{sp} \gamma \leq c \cdot \# \ell \mathrm{o} \beta$ for reduction of M to $n f$, for constant c depending on M
(4) $\rightarrow_{\text {sp } \gamma}$ maps to optimal strategy for $\prod_{\mathrm{fsp} \kappa}$

Intermediate conclusions

(1) classical term-graph rewrite techniques to implement $\operatorname{fsp} \beta$; ℓ o β-cost model (natively allows for parallelism; contrast with (Accattoli, Dal Lago))

Theorem

(1) leftmost-outermost is a spine-strategy on λ-terms
(2) $\rightarrow_{\mathrm{sp} \beta}$ is random descent (RD) strategy, so $\prod_{\mathrm{fsp} \beta}$ is hyper-normalising
(3) $\# \mathrm{sp} \gamma \leq c \cdot \# \ell \mathrm{o} \beta$ for reduction of M to $n f$, for constant c depending on M
(4) $\rightarrow_{\text {sp } \gamma}$ maps to optimal strategy for $\rightarrow_{\mathrm{fsp} \kappa}$

Intermediate conclusions

(1) classical term-graph rewrite techniques to implement $\operatorname{fsp} \beta$; ℓ o β-cost model

2 based on weak- β (Balabonski), naïve substitution, explicit α (no need for De Bruijn-indices; no need for machines)

Theorem

(1) leftmost-outermost is a spine-strategy on λ-terms
(2) $\rightarrow_{\mathrm{sp} \beta}$ is random descent (RD) strategy, so $\Pi_{\mathrm{fsp} \beta}$ is hyper-normalising
(3) $\# \mathrm{sp} \gamma \leq \mathrm{c} \cdot \# \ell \mathrm{o} \beta$ for reduction of M to $n f$, for constant c depending on M
(4) $\rightarrow_{\text {sp } \gamma}$ maps to optimal strategy for $\Pi_{\text {fsp } \kappa}$

Intermediate conclusions

(1) classical term-graph rewrite techniques to implement $\operatorname{fsp} \beta$; ℓ o β-cost model
(2) based on weak- β, naïve substitution, explicit α
(3) $\rightarrow_{\mathrm{sp} \gamma}$ optimal implementation of combinator system; cbv unproblematic? (since horizontal sharing suffices; cbv for weak values; WiP)

Theorem

(1) leftmost-outermost is a spine-strategy on λ-terms
(2) $\rightarrow_{\mathrm{sp} \beta}$ is random descent (RD) strategy, so $\Pi_{\mathrm{fsp} \beta}$ is hyper-normalising
(3) $\# \mathrm{sp} \gamma \leq \mathrm{c} \cdot \# \ell \mathrm{o} \beta$ for reduction of M to $n f$, for constant c depending on M
(4) $\rightarrow_{\text {sp } \gamma}$ maps to optimal strategy for $\prod_{\mathrm{fsp} \kappa}$

Intermediate conclusions

(1) classical term-graph rewrite techniques to implement $\operatorname{fsp} \beta$; ℓ o β-cost model
(2) based on weak- β, naïve substitution, explicit α
(3) $\rightarrow_{\mathrm{sp} \gamma}$ optimal implementation of combinator system; cbv unproblematic?
(4) amortised analysis: discounting α-steps via β-steps initiating them

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS, weak

 1a sharing graph implementation of β (Wadsworth 71)

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS, weak

optimal (Blanc, Lévy, Maranget 05) for weak- β (Çağman, Hindley 98); weak- β-families

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS, weak

।
optimal for weak- β; weak- β-families
weak- β-families factor through κ-families in combinator systems into γ-steps ($\mathbb{V}^{\mathscr{V}} 05$, Balabonski 12)

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS, $\mathrm{sp} \beta$

optimal for weak β; weak families

$\operatorname{sp} \beta$-families factor through $\mathbf{s p} \kappa$-families in combinator systems into $\mathbf{s p} \gamma$-steps, with explicit- α (this talk)

Amortised complexity

Idea

measure complexity by averaging over reductions (Tarjan) (instead of measuring per step)

Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary $011 \rightarrow_{\text {inc }} 111 \rightarrow_{\text {inc }} 0001 \rightarrow_{\text {inc }} 1001 \rightarrow_{\text {inc }} \ldots$ ($\rightarrow_{\text {inc }}$-steps not unit-time; \#bit-flips unbounded)

Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary $011 \rightarrow_{\text {inc }} 111 \rightarrow_{\text {inc }} 0001 \rightarrow_{\text {inc }} 1001 \rightarrow_{\text {inc }} \ldots$

Example (inc as term rewrite system; $\rightarrow_{\text {inc }}:=\rightarrow_{i} \cdot \rightarrow_{b}^{1}$)

$$
s \rightarrow_{i} i(s) \quad i(0(x)) \rightarrow_{b} 1(x) \quad i(1(x)) \rightarrow_{b} 0(i(x)) \quad i(\bullet) \rightarrow_{b} 1(\bullet)
$$

Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary $011 \rightarrow_{\text {inc }} 111 \rightarrow_{\text {inc }} 0001 \rightarrow_{\text {inc }} 1001 \rightarrow_{\text {inc }} \ldots$
Example (inc as term rewrite system; $\rightarrow_{\text {inc }}:=\rightarrow_{i} \cdot \rightarrow_{b}^{1}$)

$$
s \rightarrow_{i} i(s) \quad i(0(x)) \rightarrow_{b} 1(x) \quad i(1(x)) \rightarrow_{b} 0(i(x)) \quad i(\bullet) \rightarrow_{b} 1(\bullet)
$$

$0(1(1(\bullet))) \rightarrow_{i} i(0(1(1(\bullet)))) \rightarrow_{b} 1(1(1(\bullet))) \rightarrow_{i} i(1(1(1(\bullet)))) \rightarrow_{b} 0(i(1(1(\bullet)))) \rightarrow_{b}$ $\mathrm{O}(\mathrm{O}(\mathrm{i}(1(\bullet)))) \rightarrow_{b} \mathrm{O}(\mathrm{O}(\mathrm{O}(\mathrm{i}(\bullet)))) \rightarrow_{b} \mathrm{O}(\mathrm{O}(\mathrm{O}(1(\bullet)))) \rightarrow_{i} \ldots$

Banker's / accounting method in TRSs

Idea

distinguish between charge \hat{c} and cost c of steps. i-steps add charge to pay for cost of subsequent b-steps; labelled (\mathbb{N}) symbols as saving-account for charges

Banker's / accounting method in TRSs

Idea

distinguish between charge \hat{c} and cost c of steps. i-steps add charge to pay for cost of subsequent b-steps; labelled (\mathbb{N}) symbols as saving-account for charges

Example

$s \rightarrow_{\hat{3}, 1} i^{\hat{2}}(s) \quad i^{\hat{2}}(0(x)) \rightarrow_{\hat{0}, 1} 1^{\hat{1}}(x) \quad i^{\hat{2}}\left(1^{\hat{1}}(x)\right) \rightarrow_{\hat{0}, 1} O\left(i^{\hat{2}}(x)\right) \quad i^{\hat{2}}(\bullet) \rightarrow_{\hat{0}, 1} 1^{\hat{1}}(\bullet)$ (no need to label 0's or \bullet 's)

Banker's / accounting method in TRSs

Idea

distinguish between charge \hat{c} and cost c of steps. i-steps add charge to pay for cost of subsequent b-steps; labelled (\mathbb{N}) symbols as saving-account for charges

Example

$s \rightarrow_{\hat{3}, 1} i^{\hat{2}}(s) \quad i^{\hat{2}}(0(x)) \rightarrow_{\hat{0}, 1} 1^{\hat{1}}(x) \quad i^{\hat{2}}\left(1^{\hat{1}}(x)\right) \rightarrow_{\hat{0}, 1} 0\left(i^{\hat{2}}(x)\right) \quad i^{\hat{2}}(\bullet) \rightarrow_{\hat{0}, 1} 1^{\hat{1}}(\bullet)$

- $\hat{\imath}$ initially labels (closed): charge i with $\hat{2}$ and 1 with $\hat{1}$; preserved by steps

Banker's / accounting method in TRSs

Idea

distinguish between charge \hat{c} and cost c of steps. i-steps add charge to pay for cost of subsequent b-steps; labelled (\mathbb{N}) symbols as saving-account for charges

Example

$s \rightarrow_{\hat{3}, 1} i^{\hat{2}}(s) \quad i^{\hat{2}}(0(x)) \rightarrow_{\hat{0}, 1} 1^{\hat{1}}(x) \quad i^{\hat{2}}\left(1^{\hat{1}}(x)\right) \rightarrow_{\hat{0}, 1} O\left(i^{\hat{2}}(x)\right) \quad i^{\hat{2}}(\bullet) \rightarrow_{\hat{0}, 1} 1^{\hat{1}}(\bullet)$

- $\hat{\imath}$ initially labels: charge i with $\hat{2}$ and 1 with $\hat{1}$; preserved by steps
- is a labelling: if $t \rightarrow s$, then $t^{\hat{\imath}} \rightarrow s^{\hat{\imath}}$

Banker's / accounting method in TRSs

Idea

distinguish between charge \hat{c} and cost c of steps. i-steps add charge to pay for cost of subsequent b-steps; labelled (\mathbb{N}) symbols as saving-account for charges

Example

$s \rightarrow_{\hat{3}, 1} i^{\hat{2}}(s) \quad i^{\hat{2}}(0(x)) \rightarrow_{\hat{0}, 1} 1^{\hat{1}}(x) \quad i^{\hat{2}}\left(1^{\hat{1}}(x)\right) \rightarrow_{\hat{0}, 1} 0\left(i^{\hat{2}}(x)\right) \quad i^{\hat{2}}(\bullet) \rightarrow_{\hat{0}, 1} 1^{\hat{1}}(\bullet)$

- $\hat{\imath}$ initially labels: charge i with $\hat{2}$ and 1 with $\hat{1} ;$ preserved by steps
- is a labelling: if $t \rightarrow s$, then $t^{\hat{\imath}} \rightarrow s^{\hat{\imath}}$ (in general: cost subtracted; charges must remain non-negative, cover costs of steps; $\hat{c}+\sum \ell \geq c+\sum r$ for each (linear) rule $\ell \rightarrow_{\hat{c}, c} r$)

Banker's / accounting method in TRSs

Idea

distinguish between charge \hat{c} and cost c of steps. i-steps add charge to pay for cost of subsequent b-steps; labelled (\mathbb{N}) symbols as saving-account for charges

Example

$s \rightarrow_{\hat{3}, 1} i^{\hat{2}}(s) \quad i^{\hat{2}}(0(x)) \rightarrow_{\hat{0}, 1} 1^{\hat{1}}(x) \quad i^{\hat{2}}\left(1^{\hat{1}}(x)\right) \rightarrow_{\hat{0}, 1} 0\left(i^{\hat{2}}(x)\right) \quad i^{\hat{2}}(\bullet) \rightarrow_{\hat{0}, 1} 1^{\hat{1}}(\bullet)$

- $\hat{\imath}$ initially labels: charge i with $\hat{2}$ and 1 with $\hat{1}$; preserved by steps
- is a labelling: if $t \rightarrow s$, then $t^{\hat{\imath}} \rightarrow s^{\hat{\imath}}$
- cost of reduction from t bounded by amortized cost, $\leq 3 \cdot \# i+\sum t^{\hat{\imath}}$

Notions from TRS theory for Banker's account

Idea 1 (Toyama, ${ }^{\mathbb{V}}$ 16, 22)

measure steps; assign appropriate weights in derivation monoid $\langle\mathbb{N}, 0,+, \leq\rangle$

Notions from TRS theory for Banker's account

Idea 1 (Toyama, ${ }^{\bullet}$ 16, 22)

measure steps; assign appropriate weights in derivation monoid $\langle\mathbb{N}, 0,+, \leq\rangle$

Definition

$\langle M, \perp,+, \leq\rangle$ derivation monoid if

- $\langle M, \perp,+\rangle$ a monoid;

Notions from TRS theory for Banker's account

Idea 1 (Toyama, ${ }^{\bullet}$ 16, 22)

measure steps; assign appropriate weights in derivation monoid $\langle\mathbb{N}, 0,+, \leq\rangle$

Definition

$\langle M, \perp,+, \leq\rangle$ derivation monoid if

- $\langle M, \perp,+\rangle$ a monoid;
- \leq well-founded order with \perp least;

Notions from TRS theory for Banker's account

Idea 1 (Toyama, ${ }^{\bullet}$ 16, 22)

measure steps; assign appropriate weights in derivation monoid $\langle\mathbb{N}, 0,+, \leq\rangle$

Definition

$\langle M, \perp,+, \leq\rangle$ derivation monoid if

- $\langle M, \perp,+\rangle$ a monoid;
- \leq well-founded order with \perp least;

Notions from TRS theory for Banker's account

Idea 1 (Toyama, ${ }^{\bullet}$ 16, 22)

measure steps; assign appropriate weights in derivation monoid $\langle\mathbb{N}, 0,+, \leq\rangle$

Definition

$\langle M, \perp,+, \leq\rangle$ derivation monoid if

- $\langle M, \perp,+\rangle$ a monoid;
- \leq well-founded order with \perp least;
- + is $\leq-$ monotonic in both arguments; strictly in $2^{\text {nd }}$.
main example: ordinals with zero, addition, less-than-or-equal

Notions from TRS theory for Banker's account

Idea 1 (Toyama, ${ }^{\mathscr{y}}$ 16, 22)

measure steps; assign appropriate weights in derivation monoid $\langle\mathbb{N}, 0,+, \leq\rangle$

Definition

$\langle M, \perp,+, \leq\rangle$ derivation monoid

- measure on \rightarrow maps steps to $M-\{\perp\}$;

Notions from TRS theory for Banker's account

Idea 1 (Toyama, ${ }^{\bullet}$ 16, 22)

measure steps; assign appropriate weights in derivation monoid $\langle\mathbb{N}, 0,+, \leq\rangle$

Definition

$\langle M, \perp,+, \leq\rangle$ derivation monoid

- measure on \rightarrow maps steps to $M-\{\perp\}$;
- measure of finite reduction is sum (+; tail to head) of steps (starting with \perp);

Notions from TRS theory for Banker's account

Idea 1 (Toyama, ${ }^{\bullet}$ 16, 22)

measure steps; assign appropriate weights in derivation monoid $\langle\mathbb{N}, 0,+, \leq\rangle$

Definition

$\langle M, \perp,+, \leq\rangle$ derivation monoid

- measure on \rightarrow maps steps to $M-\{\perp\}$;
- measure of finite reduction is sum of steps;
- measure of infinite reduction is \top (fresh top greater than all $m \in M$);

Notions from TRS theory for Banker's account

Idea 1 (Toyama, ${ }^{〔}$ 16, 22)

measure steps; assign appropriate weights in derivation monoid $\langle\mathbb{N}, 0,+, \leq\rangle$

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

Notions from TRS theory for Banker's account

Idea 1 (Toyama, ${ }^{\mathbb{V}}$ 16, 22)

measure steps; assign appropriate weights in derivation monoid $\langle\mathbb{N}, 0,+, \leq\rangle$

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

- ARS: initial labelling of objects such that every step lifts uniquely (reductions lifts uniquely)

Notions from TRS theory for Banker's account

Idea 1 (Toyama, 『 16, 22)

measure steps; assign appropriate weights in derivation monoid $\langle\mathbb{N}, 0,+, \leq\rangle$

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

- ARS: initial labelling of objects such that every step lifts uniquely
- TRSs: label symbols and rules such that steps lift (local update; cf. Lévy, Hyland-Wadsworth etc.)

Notions from TRS theory for Banker's account

Idea 1 (Toyama, 『 16, 22)

measure steps; assign appropriate weights in derivation monoid $\langle\mathbb{N}, 0,+, \leq\rangle$

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

- ARS: initial labelling of objects such that every step lifts uniquely
- TRSs: label symbols and rules such that steps lift
- amortised: natural numbers to store charges locally (locality of TRS rules accounts for distributed nature of accounts)

Notions from TRS theory for Banker's account

Idea 1 (Toyama, 『 16, 22)

measure steps; assign appropriate weights in derivation monoid $\langle\mathbb{N}, 0,+, \leq\rangle$

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

- ARS: initial labelling of objects such that every step lifts uniquely
- TRSs: label symbols and rules such that steps lift
- amortised: natural numbers to store charges locally
here: charging β-steps suffices to account for α-steps

Unit-time steps in structured rewrite systems?

Structured rewriting

step $C[\varrho]$ from s to t (three structures) for (closed) rule $\varrho: \ell \rightarrow r$ if

$$
s \leftrightarrow_{\mathcal{S C}}^{*} C[\ell] \rightarrow_{\varrho} C[r] \leftrightarrow_{\mathcal{S C}}^{*} t
$$

with s, t unique $\mathcal{S C}$-normal forms of $C[\ell], C[r]$ (®94, van Raamsdonk 96)

Unit-time steps in structured rewrite systems?

Structured rewriting

step $C[\varrho]$ from s to t for rule $\varrho: \ell \rightarrow r$ if

$$
s_{\mathcal{S C}^{*}} C[\ell] \rightarrow_{\varrho} C[r] \rightarrow_{\mathcal{S C}} t
$$

$\mathcal{S C}$ substitution calculus; $s_{\mathcal{S C}} \nless C[\ell]$ matching of $\ell ; C[r] \rightarrow \mathcal{S C} t$ substitution of r

Unit-time steps in structured rewrite systems?

Structured rewriting

step $C[\varrho]$ from s to t for rule $\varrho: \ell \rightarrow r$ if $s \mathcal{S C}^{\sharp} C[\ell] \rightarrow{ }_{\varrho} C[r] \rightarrow \mathcal{S C} t$
(string) rule $\varrho: b c \rightarrow e$, step

$$
\text { a@d }: \text { abcd } \rightarrow \text { aed }
$$

Unit-time steps in structured rewrite systems?

Structured rewriting

step $C[\varrho]$ from stor for rule $\varrho: \ell \rightarrow r$ if $s \mathcal{S C}^{\sharp} C[\ell] \rightarrow{ }_{\varrho} C[r] \rightarrow \mathcal{S C} t$
(string) rule $\varrho: b c \rightarrow e$, step $a \varrho d:$ abcd \rightarrow aed
(first-order term) rule $x . \varrho[x]: x . g[x, x] \rightarrow x . i$, step

$$
f[\varrho[h[a]]]: f[g[h[a], h[a]]] \rightarrow f[i]
$$

where $\mathcal{S C}$ has rules $(x . x) t \rightarrow t,(x . y) t \rightarrow y$ if $x \neq y,(x . f[\vec{s}]) t \rightarrow f\left[\overrightarrow{\left(x . s_{i}\right) t}\right]$

Unit-time steps in structured rewrite systems?

Structured rewriting

step $C[\varrho]$ from s to t for rule $\varrho: \ell \rightarrow r$ if $s \mathcal{S C} \nleftarrow C[\ell] \rightarrow{ }_{\varrho} C[r] \rightarrow \mathcal{S C} t$
(string) rule $\varrho: b c \rightarrow e$, step a $\varrho d:$ abcd \rightarrow aed (first-order term) rule $x . \varrho[x]: x . g[x, x] \rightarrow x . i$, step $f[\varrho[h[a]]]: f[g[h[a], h[a]]] \rightarrow f[i]$ (higher-order term) rule $\xi: P, Q . \forall x . P \wedge(Q x) \rightarrow P, Q . P \wedge \forall x . Q x$, step
$(y=0) \vee(\xi(y \leq 6)(x \cdot y \leq x)):(y=0) \vee \forall x .(y \leq 6) \wedge(y \leq x) \rightarrow(y=0) \vee((y \leq 6) \wedge \forall x .(y \leq x))$ where $\mathcal{S C}$ is $\lambda_{\alpha \beta \bar{\eta}}$ (writing $x . M$ for abstraction)

Unit-time steps in structured rewrite systems?

Structured rewriting

step $C[\varrho]$ from s to t for rule $\varrho: \ell \rightarrow r$ if $s \mathcal{S C}^{*} C[\ell] \rightarrow{ }_{\varrho} C[r] \rightarrow \mathcal{S C} t$
(string) rule $\varrho: b c \rightarrow e$, step a $\varrho d:$ abcd \rightarrow aed
(first-order term) rule $x . \varrho[x]: x . g[x, x] \rightarrow x . i$, step $f[\varrho[h[a]]]: f[g[h[a], h[a]]] \rightarrow f[i]$
(higher-order term) rule $\xi: P, Q . \forall x . P \wedge(Q x) \rightarrow P, Q . P \wedge \forall x . Q x$, step
$(y=0) \vee(\xi(y \leq 6)(x . y \leq x)):(y=0) \vee \forall x .(y \leq 6) \wedge(y \leq x) \rightarrow(y=0) \vee((y \leq 6) \wedge \forall x .(y \leq x))$
(term-graph)
rule

, step

Unit-time steps in structured rewrite systems?

Structured rewriting

step $C[\varrho]$ from s to t for rule $\varrho: \ell \rightarrow r$ if $s \mathcal{S C}^{*} C[\ell] \rightarrow{ }_{\varrho} C[r] \rightarrow \mathcal{S C} t$
(string) rule $\varrho: b c \rightarrow e$, step a $\varrho d:$ abcd \rightarrow aed (first-order term) rule $x . \varrho[x]: x . g[x, x] \rightarrow x . i$, step $f[\varrho[h[a]]]: f[g[h[a], h[a]]] \rightarrow f[i]$ (higher-order term) rule $\xi: P, Q . \forall x . P \wedge(Q x) \rightarrow P, Q . P \wedge \forall x . Q x$, step $(y=0) \vee(\xi(y \leq 6)(x . y \leq x)):(y=0) \vee \forall x .(y \leq 6) \wedge(y \leq x) \rightarrow(y=0) \vee((y \leq 6) \wedge \forall x .(y \leq x))$ (term-graph)

$\mathcal{S C}$ is ж-calculus for indirection nodes (\bullet) with gc and maximal sharing

Unit-time steps in structured rewrite systems?

Structured rewriting

step $C[\varrho]$ from s to t for rule $\varrho: \ell \rightarrow r$ if $s \mathcal{S C} \nleftarrow C[\ell] \rightarrow{ }_{\varrho} C[r] \rightarrow \mathcal{S C} t$
(string) rule $\varrho: b c \rightarrow e$, step a $\varrho d:$ abcd \rightarrow aed
(first-order term) rule $x . \varrho[x]: x . g[x, x] \rightarrow x . i$, step $f[\varrho[h[a]]]: f[g[h[a], h[a]]] \rightarrow f[i]$
(higher-order term) rule $\xi: P, Q . \forall x . P \wedge(Q x) \rightarrow P, Q . P \wedge \forall x . Q x$, step
$(y=0) \vee(\xi(y \leq 6)(x . y \leq x)):(y=0) \vee \forall x .(y \leq 6) \wedge(y \leq x) \rightarrow(y=0) \vee((y \leq 6) \wedge \forall x .(y \leq x))$
(term-graph)

Observation

$\mathcal{S C}$ complex; unit-time steps a priori unreasonable for structured rewriting

Conclusions

- rewriting useful both for simple description and efficient implementation (no intermediate abstract machines (Krivine))

Conclusions

- rewriting useful both for simple description and efficient implementation
- higher-order rewriting useful to bridge λ-calculus \Longleftrightarrow supercombinators (rid of binders, no intermediate let-calculus; combinator system novel?)

Conclusions

- rewriting useful both for simple description and efficient implementation
- higher-order rewriting useful to bridge λ-calculus \Longleftrightarrow supercombinators
- substitution calculus (®y, van Raamsdonk) useful to modularise TGR (ж makes matching and substitution explicit; see paper)

Conclusions

- rewriting useful both for simple description and efficient implementation
- higher-order rewriting useful to bridge λ-calculus \Longleftrightarrow supercombinators
- substitution calculus (®y, van Raamsdonk) useful to modularise TGR
- classical techniques (Schönfinkel, Wadsworth, Hughes,...) for complexity

Conclusions

- rewriting useful both for simple description and efficient implementation
- higher-order rewriting useful to bridge λ-calculus \Longleftrightarrow supercombinators
- substitution calculus (®y, van Raamsdonk) useful to modularise TGR
- classical techniques (Schönfinkel, Wadsworth, Hughes,...) for complexity
- labelling (Terese) and derivation monoids, random descent (Toyama, © techniques give smooth theoretical basis for complexity analysis

Conclusions

- rewriting useful both for simple description and efficient implementation
- higher-order rewriting useful to bridge λ-calculus \Longleftrightarrow supercombinators
- substitution calculus (®y, van Raamsdonk) useful to modularise TGR
- classical techniques (Schönfinkel, Wadsworth, Hughes,....) for complexity
- labelling (Terese) and derivation monoids, random descent (Toyama, © techniques give smooth theoretical basis for complexity analysis
- Gödel not convinced by $\lambda \beta$ / TRS; me neither because no unit-time steps (abstract from replication; cf. Java abstracting from garbage collection)

Conclusions

- rewriting useful both for simple description and efficient implementation
- higher-order rewriting useful to bridge λ-calculus \Longleftrightarrow supercombinators
- substitution calculus (®y, van Raamsdonk) useful to modularise TGR
- classical techniques (Schönfinkel, Wadsworth, Hughes,....) for complexity
- Iabelling (Terese) and derivation monoids, random descent (Toyama, © techniques give smooth theoretical basis for complexity analysis
- Gödel not convinced by $\lambda \beta$ / TRS; me neither because no unit-time steps full paper in preparation (with Clemens Grabmayer)

Conclusions

- rewriting useful both for simple description and efficient implementation
- higher-order rewriting useful to bridge λ-calculus \Longleftrightarrow supercombinators
- substitution calculus (®y, van Raamsdonk) useful to modularise TGR
- classical techniques (Schönfinkel, Wadsworth, Hughes,....) for complexity
- Iabelling (Terese) and derivation monoids, random descent (Toyama, © techniques give smooth theoretical basis for complexity analysis
- Gödel not convinced by $\lambda \beta$ / TRS; me neither because no unit-time steps full paper in preparation (with Clemens Grabmayer) thanks: students, co-workers (Zwitserlood, Hendriks, Heijltjes,. . .)

Reduction to (wh)nf in $\lambda \beta$, naïvely, in Haskell

```
data Lam = Lam Head [Lam] deriving (Show)
data Head = Var String | Abs String Lam deriving (Show)
subst x s (Lam h l) = let
    (Lam h' l') = case h of
        (Var y) | x == y -> s
        (Abs y u) | x /= y ->> Lam (Abs y (subst x s u)) []
        -> Lam h [] in (Lam h' (l'++(map (subst x s) l)))
whnf (Lam (Abs x t) (u:l)) = let Lam h s = subst x u t in whnf (Lam h (s++l))
whnf t = t
nf = rnf (\x -> 1)
rnf f t = let
    (Lam h l) = whnf t
    f' x = \y -> f y + (if (x==y) then 1 else 0)
    v x = x++"_"++show (f x) in case h of
        (Abs x _) -> Lam (Abs (v x) (rnf (f' x) (Lam h [Lam (Var (v x)) []]))) []
                        -> Lam h (map (rnf f) l)
```


λ-calculus \Longleftrightarrow interaction nets (Lafont 90), strong

characterisation of optimal β (Lévy 78); families

λ-calculus \Longleftrightarrow interaction nets (Lafont 90), strong

sharing graph implementation of β families (Lamping 90)

A puzzle to ponder on α-conversion

- give an upperbound on the $\# \alpha$-renamings needed to β-reduce $((\underline{2} \underline{8})(\underline{4} \underline{9}))(\underline{5} \underline{7})(\underline{4} \underline{2})$ to normal form?
- note 1: application of Church-numerals is exponentiation; $\underline{k} \underline{n} \rightarrow \beta \underline{n^{k}}$
- note 2: whether α-conversion is needed in a β-reduction is undecidable

