orthogonalisable feebly
feebly not weakly

Vincent van Oostrom

HOR, 11.15-11.45, Saturday July 12, 2014

orthogonalisable

feebly orthogonal
orthogonalisable
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
orthogonalisable \Leftrightarrow feebly orthogonal
higher-order

orthogonal

rewriting: independence of steps
orthogonalisable feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonal

term rewriting: rules left-linear and no critical peaks
orthogonalisable
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonal

term rewriting: rules left-linear and no critical peaks

Examples

- lambda-calculus with β-reduction

$$
@(\lambda(x . F(x)), G) \rightarrow F(G)
$$

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonal

term rewriting: rules left-linear and no critical peaks

Examples

- lambda-calculus with β-reduction

$$
@(\lambda(x . F(x)), G) \rightarrow F(G)
$$

- unary natural numbers with rules for predecessor

$$
\begin{aligned}
P(0) & \rightarrow 0 \\
P(S(x)) & \rightarrow x
\end{aligned}
$$

orthogonal

term rewriting: rules left-linear and no critical peaks

Examples

- lambda-calculus with β-reduction

$$
@(\lambda(x . F(x)), G) \rightarrow F(G)
$$

- unary natural numbers with rules for predecessor

$$
\begin{aligned}
P(0) & \rightarrow 0 \\
P(S(x)) & \rightarrow x
\end{aligned}
$$

- omit parentheses for readability (string rewriting)

$$
\begin{aligned}
P 0 & \rightarrow 0 \\
P S & \rightarrow \varepsilon
\end{aligned}
$$

orthogonal \Rightarrow space of multi-steps

orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

independence via closure under union

orthogonal \Rightarrow space of multi-steps

orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

independence via closure under union

orthogonal \Rightarrow space of multi-steps

orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

independence via closure under union

orthogonal \Rightarrow space of multi-steps

orthogonalisable feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
independence via closure under union

orthogonal \Rightarrow space of multi－steps

orthogonalisable feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher－order
independence via closure under union

orthogonal \Rightarrow space of multi-steps

orthogonalisable feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
independence via closure under union

orthogonal \Rightarrow space of multi-steps

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
independence via closure under union

orthogonal \Rightarrow space of multi-steps

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
independence via closure under union

orthogonal \Rightarrow space of multi-steps

orthogonalisable

feebly

orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

PSPPSSPS
independence via closure under union

orthogonal \Rightarrow space of multi-steps

```
orthogonalisable
```


feebly

orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

PSPPSSPS
independence via closure under union

orthogonal \Rightarrow space of multi-steps

orthogonalisable

feebly

orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

$$
P S P P S S \underline{P S} \longrightarrow P S P P S S
$$

independence via closure under union

orthogonal \Rightarrow space of multi-steps

orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order
independence via closure under union

orthogonal \Rightarrow space of multi-steps

$P P S S P S$
orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order
independence via closure under union

orthogonal \Rightarrow space of multi-steps

orthogonalisable

feebly

orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order
independence via closure under union

orthogonal \Rightarrow space of multi-steps

independence via closure under union

orthogonal \Rightarrow space of multi-steps

orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order
independence via closure under union; multi-step to $P S P S$

orthogonal \Rightarrow space of multi-steps

PSPPSSPS \longrightarrow PSPPSS
independence via closure under union

orthogonal \Rightarrow space of multi-steps

orthogonalisable
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
independence via closure under union

orthogonal \Rightarrow space of multi-steps


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
independence via closure under union; $\rightarrow \subseteq \longrightarrow \subseteq \rightarrow$

orthogonal \Rightarrow space of multi-steps

orthogonalisable
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
independence via closure under union

orthogonal \Rightarrow space of multi-steps

orthogonalisable
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
$P S P P S S P S \rightarrow P S$ full multi-step from $P S P P S S S S$

space of multi-steps \Rightarrow confluence, cofinality

orthogonalisable
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
\rightarrow has angle property: $\forall a$

space of multi-steps \Rightarrow confluence, cofinality

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
\rightarrow has angle property: $\forall a, \exists a^{\bullet}$

space of multi-steps \Rightarrow confluence, cofinality

```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
\rightarrow has angle property: $\forall a, \exists a^{\bullet}$

space of multi-steps \Rightarrow confluence, cofinality


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
\rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b$

space of multi-steps \Rightarrow confluence, cofinality

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
\rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \longrightarrow b \Rightarrow b \rightarrow a^{\bullet}$

space of multi-steps \Rightarrow confluence, cofinality

```
orthogonalisable
```


feebly

orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order
b

\rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b \Rightarrow b \rightarrow a^{\bullet}$

space of multi-steps \Rightarrow confluence, cofinality

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
b
C

a
angle property $\Rightarrow \rightarrow$ has diamond property

space of multi-steps \Rightarrow confluence, cofinality

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
angle property $\Rightarrow \rightarrow$ has diamond property

space of multi-steps \Rightarrow confluence, cofinality

orthogonalisable

feebly

orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order
b C

a
angle property $\Rightarrow \rightarrow$ has diamond property

space of multi-steps \Rightarrow confluence, cofinality

```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
angle property $\Rightarrow \rightarrow$ has diamond property

space of multi-steps \Rightarrow confluence, cofinality

```
orthogonalisable
```

feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order
b

a
angle property \Rightarrow confluence of \rightarrow

space of multi-steps \Rightarrow confluence, cofinality

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
angle property $\Rightarrow \forall b, a \rightarrow b \Rightarrow \exists n, b \rightarrow a^{\bullet^{n}}$

space of multi-steps \Rightarrow confluence, cofinality

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
b

a
angle property $\Rightarrow \forall b, a \rightarrow b \Rightarrow \exists n, b \rightarrow a^{\bullet n}$

space of multi-steps \Rightarrow confluence, cofinality

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal

angle property $\Rightarrow \forall b, a \rightarrow b \Rightarrow \exists n, b \rightarrow a^{\bullet n}$

space of multi-steps \Rightarrow confluence, cofinality

orthogonalisable

feebly

orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal

higher-order
angle property $\Rightarrow \forall b, a \rightarrow b \Rightarrow \exists n, b \rightarrow a^{\bullet n}$

space of multi-steps \Rightarrow confluence, cofinality

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
angle property $\Rightarrow \forall b, a \rightarrow b \Rightarrow \exists n, b \rightarrow a^{\bullet^{n}}$

space of multi-steps \Rightarrow confluence, cofinality


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
angle property $\Rightarrow \forall b, a \rightarrow b \Rightarrow \exists n, b \rightarrow a^{\bullet n}$

space of multi-steps \Rightarrow confluence, cofinality


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
angle property $\Rightarrow \forall b, a \rightarrow b \Rightarrow \exists n, b \rightarrow a^{\bullet^{n}}$

space of multi-steps \Rightarrow confluence, cofinality


```
orthogonalisable
```

feebly
orthogonal
angle property \Rightarrow cofinality of full multi-step strategy

orthogonalisable

rewriting: simulation by independent steps
orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

orthogonalisable

term rewriting: left-linear and ?
orthogonalisable
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonalisable

term rewriting: left-linear and ?

Examples

```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonalisable

term rewriting: left-linear and ?

Examples

- lambda-calculus with $\beta \eta$-reduction

$$
\begin{aligned}
@(\lambda(x . F(x)), G) & \rightarrow F(G) \\
\lambda(x \cdot @(F, x)) & \rightarrow F
\end{aligned}
$$

orthogonalisable
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonalisable

term rewriting: left-linear and ?

Examples

- lambda-calculus with $\beta \eta$-reduction

$$
\begin{aligned}
@(\lambda(x \cdot F(x)), G) & \rightarrow F(G) \\
\lambda(x \cdot @(F, x)) & \rightarrow F
\end{aligned}
$$

orthogonalisable
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

- trivial critical peaks

$$
\begin{aligned}
@(F, G) & \leftarrow_{\beta} \\
\lambda(y . F(y)) & \leftarrow_{\eta}
\end{aligned} \frac{\overline{@(\lambda(x \cdot @(F, x)), G)}}{\overline{\lambda(x \cdot @(\lambda(y \cdot F(y)), x))}} \rightarrow_{\eta} \quad @(F, G)
$$

orthogonalisable

term rewriting: left-linear and ?

Examples

- lambda-calculus with $\beta \eta$-reduction

$$
\begin{aligned}
@(\lambda(x \cdot F(x)), G) & \rightarrow F(G) \\
\lambda(x \cdot @(F, x)) & \rightarrow F
\end{aligned}
$$

- weakly orthogonal

$$
\left.\begin{array}{rlll}
@(F, G) & \leftarrow_{\beta} & \frac{\overline{@(\lambda(x \cdot @(F, x)), G)}}{} \rightarrow_{\eta} & @(F, G) \\
\lambda(y \cdot F(y)) & \leftarrow_{\eta} & \overline{\lambda(x \cdot @(\lambda(y \cdot F(y)), x))} & \rightarrow_{\beta}
\end{array}\right\rangle \lambda(x \cdot F(x))
$$

- unary integers with rules for successor and predecessor

$$
\begin{aligned}
& S(P(x)) \rightarrow x \\
& P(S(x)) \rightarrow x
\end{aligned}
$$

orthogonalisable

term rewriting: left-linear and ?

Examples

- lambda-calculus with $\beta \eta$-reduction

$$
\begin{aligned}
@(\lambda(x \cdot F(x)), G) & \rightarrow F(G) \\
\lambda(x \cdot @(F, x)) & \rightarrow F
\end{aligned}
$$

- weakly orthogonal

$$
\begin{aligned}
@(F, G) & \leftarrow_{\beta} \\
\lambda(y . F(y)) & \leftarrow_{\eta}
\end{aligned} \frac{\overline{@(\lambda(x \cdot @(F, x)), G)}}{\lambda(x \cdot @(\lambda(y \cdot F(y)), x))} \rightarrow_{\eta} \quad \begin{aligned}
& @(F, G) \\
& \rightarrow_{\beta}
\end{aligned}
$$

- unary integers with rules for successor and predecessor

$$
\begin{aligned}
& S(P(x)) \rightarrow x \\
& P(S(x)) \rightarrow x
\end{aligned}
$$

- trivial criticial peaks

$$
\begin{aligned}
& S \leftarrow \overline{S P S} \rightarrow S \\
& P \leftarrow \overline{P S P} \rightarrow P
\end{aligned}
$$

orthogonalisable

term rewriting: left-linear and ?

Examples

- lambda-calculus with $\beta \eta$-reduction

$$
\begin{aligned}
@(\lambda(x \cdot F(x)), G) & \rightarrow F(G) \\
\lambda(x \cdot @(F, x)) & \rightarrow F
\end{aligned}
$$

- weakly orthogonal

$$
\begin{aligned}
@(F, G) & \leftarrow_{\beta} \\
\lambda(y . F(y)) & \leftarrow_{\eta}
\end{aligned} \frac{\overline{@(\lambda(x \cdot @(F, x)), G)}}{\lambda(x \cdot @(\lambda(y \cdot F(y)), x))} \rightarrow_{\eta} \quad \begin{aligned}
& @(F, G) \\
& \rightarrow_{\beta}
\end{aligned}
$$

- unary integers with rules for successor and predecessor

$$
\begin{aligned}
& S(P(x)) \rightarrow x \\
& P(S(x)) \rightarrow x
\end{aligned}
$$

- weakly orthogonal

$$
\begin{aligned}
& S \leftarrow \overline{S P} \rightarrow \\
& P \leftarrow \bar{P} \rightarrow S \\
& \hline \underline{S P} \rightarrow P
\end{aligned}
$$

orthogonalisation


```
orthogonalisable
```

feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal

Definition

higher-order

- for every object a

orthogonalisation

orthogonalisable feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal

Definition

higher-order

- for every object a
- its set $\mathrm{Rdx} \mathrm{a}_{\mathrm{a}}$ of redexes

orthogonalisation


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher－order
－for every object a
－its set $\mathrm{Rdx} \mathrm{a}_{a}$ of redexes
－is the（co）domain of a partial function \perp such that

orthogonalisation


```
orthogonalisable
```

- for every object a
- its set Rdx ${ }_{a}$ of redexes
- is the (co)domain of a partial function \perp such that
- its range Rdx_{a}^{\perp} is a multi-redex, and

orthogonalisation

Definition

```
orthogonalisable
```

- for every object a
- its set Rdx ${ }_{a}$ of redexes
- is the (co)domain of a partial function \perp such that
- its range $R d x_{a}^{\perp}$ is a multi-redex, and
- any multi-step $a \rightarrow u b$ from a

orthogonalisation

orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher－order
－for every object a
－its set $R d x_{a}$ of redexes
－is the（co）domain of a partial function \perp such that
－its range $R d x_{a}^{\perp}$ is a multi－redex，and
－any multi－step $a \rightarrow u b$ from a
－is mapped to an equivalent one $a \rightarrow U_{\perp} b$

orthogonalisation

PSPPSSPS

Definition

- for every object a
- its set $\mathrm{Rdx} \mathrm{a}_{\text {a }}$ of redexes
- is the (co)domain of a partial function \perp such that
- its range $R d x_{a}^{\perp}$ is a multi-redex, and
- any multi-step $a \rightarrow u b$ from a
- is mapped to an equivalent one $a \rightarrow U^{\perp} b$

feebly

orthogonal
orthogonalisable

orthogonalisation

$$
\frac{P^{\frac{2}{S P}}}{1} \frac{P S}{3} \frac{S^{\frac{5}{P S}}}{4}
$$

Definition

```
orthogonalisable
```


feebly

orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

- for every object a
- its set $R d x_{a}$ of redexes
- is the (co)domain of a partial function \perp such that
- its range $R d x_{a}^{\perp}$ is a multi-redex, and
- any multi-step $a \rightarrow u b$ from a
- is mapped to an equivalent one $a \rightarrow U_{\perp} b$

orthogonalisation

Definition

```
orthogonalisable
```


feebly

orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

- for every object a
- its set $R d x_{a}$ of redexes
- is the (co)domain of a partial function \perp such that
- its range $R d x_{a}^{\perp}$ is a multi-redex, and
- any multi-step $a \rightarrow u b$ from a
- is mapped to an equivalent one $a \rightarrow U_{\perp} b$

orthogonalisation

$$
\frac{P S P P S S P S}{1} \frac{1}{4}
$$

Definition

```
orthogonalisable
```


feebly
 orthogonal

orthogonalisable
\Leftrightarrow feebly
orthogonal
higher－order
－for every object a
－its set $\mathrm{Rdx} x_{a}$ of redexes
－is the（co）domain of a partial function \perp such that
－its range $R d x{ }_{a}^{\perp}$ is a multi－redex，and
－any multi－step $a \rightarrow u b$ from a
－is mapped to an equivalent one $a \rightarrow U_{\perp} b$

orthogonalisation

Definition
orthogonalisable

feebly

orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

- for every object a
- its set $R d x_{a}$ of redexes
- is the (co)domain of a partial function \perp such that
- its range $R d x_{a}^{\perp}$ is a multi-redex, and
- any multi-step $a \rightarrow u b$ from a
- is mapped to an equivalent one $a \rightarrow U_{\perp} b$

orthogonalisation

Definition
orthogonalisable

feebly

orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

- for every object a
- its set Rdx ${ }_{a}$ of redexes
- is the (co)domain of a partial function \perp such that
- its range $R d x_{a}^{\perp}$ is a multi-redex, and
- any multi-step $a \rightarrow u b$ from a
- is mapped to an equivalent one $a \rightarrow U_{\perp} b$

orthogonalisable \Rightarrow confluence, cofinality

```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
\rightarrow has angle property: $\forall a$

orthogonalisable \Rightarrow confluence, cofinality

```
orthogonalisable
```

feebly
orthogonal

\rightarrow has angle property: $\forall a, \exists a^{\bullet}$

orthogonalisable \Rightarrow confluence, cofinality


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
\rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b$,

orthogonalisable \Rightarrow confluence, cofinality


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
\rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b$

orthogonalisable \Rightarrow confluence, cofinality

```
orthogonalisable
```


feebly

orthogonal

\rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b$

orthogonalisable \Rightarrow confluence, cofinality


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
\rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b$

orthogonalisable \Rightarrow confluence, cofinality


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
\rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b$

orthogonalisable \Rightarrow confluence, cofinality

```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
b

\rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b \Rightarrow b \rightarrow a^{\bullet}$

orthogonalisable \Rightarrow confluence, cofinality

```
orthogonalisable
```


feebly

orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order
b

angle property \Rightarrow confluence, cofinality

orthogonalisation maps

- trivial rules: everywhere undefined

```
orthogonalisable
```

feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
orthogonalisable feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains

$$
\frac{P \frac{2}{S} \frac{4}{1} \frac{4}{3} \frac{P}{5}}{5}
$$

e.g. (11335) or (55311)

```
orthogonalisable
```


orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order in forks undefined

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
in forks undefined


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
in forks undefined

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
in forks undefined

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
in forks undefined


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters
in chains as above
in forks undefined

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
in forks undefined


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above in forks undefined

```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
in forks undefined


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
in forks undefined

```
orthogonalisable
```


feebly
 orthogonal

orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
in forks undefined


```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order in forks undefined

- critically trivial redexes undefined in

$$
\begin{aligned}
g(f(a, a)) & \rightarrow b \\
f(x, y) & \rightarrow f(y, x) \\
b \leftarrow \overline{g(\underline{f(a, a)})} & \rightarrow g(f(a, a))
\end{aligned}
$$

trivial step as part of a critical peak

orthogonalisation maps

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda \beta \eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
orthogonalisable in forks undefined
- critically trivial redexes undefined in

$$
\begin{aligned}
& g(f(a, a)) \rightarrow b \\
& f(x, y) \rightarrow f(y, x) \\
& b \leftarrow \overline{g(\underline{f(a, a)})} \rightarrow g(f(a, a))
\end{aligned}
$$

trivial step as part of a critical peak

- characterise orthogonalisability exactly/decidably?

feebly orthogonal

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is
orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

feebly orthogonal

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is
$f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$
orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

feebly orthogonal

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is
$f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$
Definition
peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \leq 2$
orthogonalisable
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

feebly orthogonal

Definition

 rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is$f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$

Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \leq 2$
Definition
rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble
orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

feebly orthogonal

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is
$f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$

Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \leq 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble
all examples above

feebly orthogonal

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is
$f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$

Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \leq 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble
all examples above ... but also
orthogonalisable

feebly orthogonal

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is
$f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$

Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \leq 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble all examples above ... but also

$$
\begin{array}{rllll}
a & \rightarrow b & f(a) & \rightarrow f(b) \\
f(x) & \rightarrow g(x) & f(a) & \rightarrow g(a)
\end{array}
$$

feebly orthogonal

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is
$f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$

Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \leq 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble
all examples above ... but also

$$
\begin{array}{rllll}
a & \rightarrow b & f(a) & \rightarrow f(b) \\
f(x) & \rightarrow g(x) & f(a) & \rightarrow g(a)
\end{array}
$$

(non-feeble critical peak(s):

$$
g(a) \leftarrow f(a) \rightarrow f(b)
$$

feebly orthogonal

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is
$f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$

Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \leq 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble all examples above ... but also

$$
\begin{array}{rllll}
a & \rightarrow b & f(a) & \rightarrow f(b) \\
f(x) & \rightarrow g(x) & f(a) & \rightarrow g(a)
\end{array}
$$

(non-feeble critical peak(s):

$$
g(a) \leftarrow f(a) \rightarrow f(b) \quad \text { but redundant } \quad)
$$

feebly orthogonal

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is
$f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$

Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \leq 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble all examples above ... but also

$$
\begin{array}{rllll}
a & \rightarrow b & f(a) & \rightarrow f(b) \\
f(x) & \rightarrow g(x) & f(a) & \rightarrow g(a)
\end{array}
$$

(non-feeble critical peak(s):

$$
g(a) \leftarrow f(a) \rightarrow f(b) \quad \text { but redundant } \quad)
$$

feebly orthogonal

Definition

rule is redundant if a specialisation of another rule peak is（ir）redundant if（ n ）either of its rules is
$f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$

Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \leq 2$

Definition

rewrite system is feebly orthogonal if left－linear with all irredundant critical peaks feeble
all examples above ．．．but also

$$
\begin{array}{rllll}
a & \rightarrow b & f(a) & \rightarrow f(b) \\
f(x) & \rightarrow g(x) & f(a) & \rightarrow g(a)
\end{array}
$$

（ non－feeble critical peak（s）：

$$
g(a) \leftarrow f(a) \rightarrow f(b) \quad \text { but redundant } \quad)
$$

orthogonalisable \Leftrightarrow feebly orthogonal

Proof.

```
orthogonalisable
```


feebly

orthogonal
orthogonalisable \Leftrightarrow feebly orthogonal
higher-order

orthogonalisable \Leftrightarrow feebly orthogonal

Proof.

- only if: show every irredundant critical peak feeble

```
orthogonalisable
```

```
feebly
orthogonal
```

orthogonalisable \Leftrightarrow feebly orthogonal
higher-order

orthogonalisable \Leftrightarrow feebly orthogonal

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak $b \leftarrow_{u} a \rightarrow_{v} c$

```
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
```

higher-order

orthogonalisable \Leftrightarrow feebly orthogonal

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak $b \leftarrow_{u} a \rightarrow_{v} c$ interesting orthogonalisation case: $\{u, v\} \mapsto\left\{u^{\perp}, v^{\perp}\right\}$

```
feebly
orthogonal
```

orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

orthogonalisable \Leftrightarrow feebly orthogonal

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak $b \leftarrow_{u} a \rightarrow_{v} c$ interesting orthogonalisation case: $\{u, v\} \mapsto\left\{u^{\perp}, v^{\perp}\right\}$
- if: reduce to the weakly orthogonal case

```
feebly
orthogonal
```

orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

orthogonalisable \Leftrightarrow feebly orthogonal

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak $b \leftarrow_{u} a \rightarrow_{v} c$ interesting orthogonalisation case: $\{u, v\} \mapsto\left\{u^{\perp}, v^{\perp}\right\}$
- if: reduce to the weakly orthogonal case

1. omit redundant redexes from consideration (obvious)

orthogonalisable \Leftrightarrow feebly orthogonal

Proof．

－only if：show every irredundant critical peak feeble induction on size of source of peak $b \leftarrow_{u} a \rightarrow_{v} c$ interesting orthogonalisation case：$\{u, v\} \mapsto\left\{u^{\perp}, v^{\perp}\right\}$
－if：reduce to the weakly orthogonal case

1．omit redundant redexes from consideration
2．map critically trivial redexes to undefined（interesting）

orthogonalisable \Leftrightarrow feebly orthogonal

Proof．

－only if：show every irredundant critical peak feeble induction on size of source of peak $b \leftarrow_{u} a \rightarrow_{v} c$ interesting orthogonalisation case：$\{u, v\} \mapsto\left\{u^{\perp}, v^{\perp}\right\}$
－if：reduce to the weakly orthogonal case

1．omit redundant redexes from consideration
2．map critically trivial redexes to undefined only weakly orthogonal clusters（of trivial peaks）remain；

orthogonalisable \Leftrightarrow feebly orthogonal

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak $b \leftarrow_{u} a \rightarrow_{v} c$ interesting orthogonalisation case: $\{u, v\} \mapsto\left\{u^{\perp}, v^{\perp}\right\}$
- if: reduce to the weakly orthogonal case
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

1. omit redundant redexes from consideration
2. map critically trivial redexes to undefined only weakly orthogonal clusters (of trivial peaks) remain;
3. map redexes in forks to undefined (as before)

orthogonalisable \Leftrightarrow feebly orthogonal

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak $b \leftarrow_{u} a \rightarrow_{v} c$ interesting orthogonalisation case: $\{u, v\} \mapsto\left\{u^{\perp}, v^{\perp}\right\}$
- if: reduce to the weakly orthogonal case

1. omit redundant redexes from consideration
2. map critically trivial redexes to undefined only weakly orthogonal clusters (of trivial peaks) remain;
3. map redexes in forks to undefined
4. map redexes in chains to odd ones (as before)

orthogonalisable \Leftrightarrow feebly orthogonal

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak $b \leftarrow_{u} a \rightarrow_{v} c$ interesting orthogonalisation case: $\{u, v\} \mapsto\left\{u^{\perp}, v^{\perp}\right\}$
- if: reduce to the weakly orthogonal case

1. omit redundant redexes from consideration
2. map critically trivial redexes to undefined only weakly orthogonal clusters (of trivial peaks) remain;
3. map redexes in forks to undefined
4. map redexes in chains to odd ones
novel (higher-order) insights analysing item 2; rest of talk

trivial steps cannot be mapped to undefined

 TRS$$
\begin{aligned}
f(x, y) & \rightarrow f(y, x) \\
a & \rightarrow b
\end{aligned}
$$

```
orthogonalisable
```

```
feebly
orthogonal
orthogonalisable
& feebly
orthogonal
```

higher-order

trivial steps cannot be mapped to undefined

 TRS$$
\begin{aligned}
f(x, y) & \rightarrow f(y, x) \\
a & \rightarrow b
\end{aligned}
$$

orthogonal basis for reduction space from $f(a, a)$:

$$
\begin{array}{lll}
\frac{f(a, a)}{f(\bar{a}, a)} & \rightarrow_{u} & f(a, a) \\
f(a, \bar{a}) & \rightarrow_{w} & f(b, a) \\
f(a, b)
\end{array}
$$

feebly
orthogona
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

trivial steps cannot be mapped to undefined

 TRS$$
\begin{aligned}
f(x, y) & \rightarrow f(y, x) \\
a & \rightarrow b
\end{aligned}
$$

orthogonal basis for reduction space from $f(a, a)$:

$$
\begin{array}{lll}
\frac{f(a, a)}{f(\bar{a}, a)} & \rightarrow_{u} & f(a, a) \\
f(a, \bar{a}) & \rightarrow_{w} & f(b, a) \\
f(a, b)
\end{array}
$$

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
u extensionally trivial (may map to undefined, in principle)

$$
\frac{f(a, a)}{f(a, a)} \rightarrow_{u} f(a, a), ~ f(a, a)
$$

trivial steps cannot be mapped to undefined

 TRS$$
\begin{aligned}
f(x, y) & \rightarrow f(y, x) \\
a & \rightarrow b
\end{aligned}
$$

orthogonal basis for reduction space from $f(a, a)$:

$$
\begin{array}{lll}
\frac{f(a, a)}{f(\bar{a}, a)} & \rightarrow_{u} & f(a, a) \\
f(a, \bar{a}) & \rightarrow_{w} & f(b, a) \\
f(a, b)
\end{array}
$$

u extensionally trivial (may map to undefined, in principle)

$$
\frac{f(a, a)}{f(a, a)} \rightarrow_{u} f(a, a)
$$

u not intensionally trivial (rules out map to undefined)

$$
\begin{array}{lll}
\frac{f(\bar{a}, a)}{f(\bar{a}, a)} & \rightarrow_{\{u, v\}} & f(a, b) \\
\rightarrow\{v\} & f(b, a)
\end{array}
$$

critically trivial steps can be mapped to undefined

 TRS$$
\begin{aligned}
f(u, x, y, v) & \rightarrow f(u, y, x, v) \\
f\left(g\left(u^{\prime}\right), a, a, h\left(v^{\prime}\right)\right) & \rightarrow i\left(u^{\prime}, v^{\prime}\right)
\end{aligned}
$$

```
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
```

higher-order

critically trivial steps can be mapped to undefined

 TRS$$
\begin{aligned}
f(u, x, y, v) & \rightarrow f(u, y, x, v) \\
f\left(g\left(u^{\prime}\right), a, a, h\left(v^{\prime}\right)\right) & \rightarrow i\left(u^{\prime}, v^{\prime}\right)
\end{aligned}
$$

feeble critical peak

$$
f\left(g\left(u^{\prime}\right), a, a, h\left(v^{\prime \prime}\right)\right) \leftarrow f\left(g\left(u^{\prime}\right), a, a, h\left(v^{\prime}\right)\right) \rightarrow i\left(u^{\prime}, v^{\prime}\right)
$$

via substitution

$$
\sigma=\left[u \mapsto g\left(u^{\prime}\right), x \mapsto a, y \mapsto a, v \mapsto h\left(v^{\prime}\right)\right]
$$

critically trivial steps can be mapped to undefined TRS

$$
\begin{aligned}
f(u, x, y, v) & \rightarrow f(u, y, x, v) \\
f\left(g\left(u^{\prime}\right), a, a, h\left(v^{\prime}\right)\right) & \rightarrow i\left(u^{\prime}, v^{\prime}\right)
\end{aligned}
$$

feeble critical peak

$$
f\left(g\left(u^{\prime}\right), a, a, h\left(v^{\prime \prime}\right)\right) \leftarrow f\left(g\left(u^{\prime}\right), a, a, h\left(v^{\prime}\right)\right) \rightarrow i\left(u^{\prime}, v^{\prime}\right)
$$

via substitution

$$
\sigma=\left[u \mapsto g\left(u^{\prime}\right), x \mapsto a, y \mapsto a, v \mapsto h\left(v^{\prime}\right)\right]
$$

- critically trivial step action trivial on open variables u, v

$$
f(u, a, a, v) \leftarrow f(u, a, a, v)
$$

critically trivial steps can be mapped to undefined

 TRS$$
\begin{aligned}
f(u, x, y, v) & \rightarrow f(u, y, x, v) \\
f\left(g\left(u^{\prime}\right), a, a, h\left(v^{\prime}\right)\right) & \rightarrow i\left(u^{\prime}, v^{\prime}\right)
\end{aligned}
$$

feeble critical peak

$$
f\left(g\left(u^{\prime}\right), a, a, h\left(v^{\prime \prime}\right)\right) \leftarrow f\left(g\left(u^{\prime}\right), a, a, h\left(v^{\prime}\right)\right) \rightarrow i\left(u^{\prime}, v^{\prime}\right)
$$

via substitution

$$
\sigma=\left[u \mapsto g\left(u^{\prime}\right), x \mapsto a, y \mapsto a, v \mapsto h\left(v^{\prime}\right)\right]
$$

- critically trivial step action trivial on open variables u, v

$$
f(u, a, a, v) \leftarrow f(u, a, a, v)
$$

- other steps' action trivial on closed variables x, y, e.g.

$$
a \rightarrow b
$$

would yield a non-feeble critical peak with other rule

$$
f\left(g\left(u^{\prime}\right), b, a, h\left(v^{\prime \prime}\right)\right) \leftarrow f\left(g\left(u^{\prime}\right), a, a, h\left(v^{\prime}\right)\right)
$$

critically trivial steps can be mapped to undefined

Definition
π is discriminator if each term has unique variable (in range)

```
feebly
orthogonal
orthogonalisable
& feebly
orthogonal
higher-order
```


critically trivial steps can be mapped to undefined

Definition

π is discriminator if each term has unique variable (in range)

Lemma
if $\ell^{\pi} \rightarrow r^{\pi}$ critically trivial (via overlap with $g \rightarrow d$)

critically trivial steps can be mapped to undefined

Definition

π is discriminator if each term has unique variable (in range)

Lemma
if $\ell^{\pi} \rightarrow r^{\pi}$ critically trivial

- π factors as $\bar{\pi} \circ \underline{\pi}$ (obvious) with $\bar{\pi} / \underline{\pi}$ the restriction of π to open/closed terms

critically trivial steps can be mapped to undefined

Definition

π is discriminator if each term has unique variable (in range)

Lemma
if $\ell^{\pi} \rightarrow r^{\pi}$ critically trivial

- π factors as $\bar{\pi} \circ \underline{\pi}$
with $\bar{\pi}$ / $\underline{\text { t }}$ the restriction of π to open/closed terms
- $\bar{\pi}$ is a discriminator (by left-linearity)

critically trivial steps can be mapped to undefined

Definition

π is discriminator if each term has unique variable (in range)

Lemma
if $\ell^{\pi} \rightarrow r^{\pi}$ critically trivial

- π factors as $\bar{\pi} \circ \underline{\pi}$ with $\bar{\pi} / \underline{\pi}$ the restriction of π to open/closed terms
- $\bar{\pi}$ is a discriminator
- $\ell^{\underline{\pi}}=r^{\underline{\pi}}$ (by previous item)

critically trivial steps can be mapped to undefined

Definition

π is discriminator if each term has unique variable (in range)

Lemma
if $\ell^{\pi} \rightarrow r^{\pi}$ critically trivial

- π factors as $\bar{\pi} \circ \underline{\pi}$ with $\bar{\pi}$ / $\underline{\text { t }}$ the restriction of π to open/closed terms
- $\bar{\pi}$ is a discriminator
- $\ell^{\underline{\pi}}=r^{\underline{\pi}}$
from 2nd to 3rd item based on discrimination lemma

discrimination lemma

substituting a discriminator is reversible

feebly
 orthogonal

orthogonalisable \Leftrightarrow feebly orthogonal
higher-order

discrimination lemma

substituting a discriminator is reversible
orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

Lemma

for every left-linear rule $\ell \rightarrow r$ and discriminator π on the free variables, if $\ell^{\pi}=r^{\pi}$, then $\ell=r$.

higher-order
 discrimination lemma fails (project vs. imitate)

orthogonalisable

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

higher-order

discrimination lemma fails, e.g. for $\pi(F)=x . f(G, x(a))$

$$
(x \cdot F(x))^{\pi}=x \cdot f(G, x(a))=(x . F(y \cdot x(a)))^{\pi}
$$

feebly

orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

higher-order

discrimination lemma fails, e.g. for $\pi(F)=x . f(G, x(a))$

$$
(x \cdot F(x))^{\pi}=x \cdot f(G, x(a))=(x \cdot F(y \cdot x(a)))^{\pi}
$$

lhs, π pattern (free variables applied to bound ones)
orthogonalisable
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

higher-order

discrimination lemma fails, e.g. for $\pi(F)=x . f(G, x(a))$

$$
(x \cdot F(x))^{\pi}=x \cdot f(G, x(a))=(x \cdot F(y \cdot x(a)))^{\pi}
$$

Ihs, π pattern, but active occurrence of bound variable x bad: patterns may fall apart when substituting for those
orthogonalisable
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

higher-order

discrimination lemma fails, e.g. for $\pi(F)=x . f(G, x(a))$

$$
(x \cdot F(x))^{\pi}=x \cdot f(G, x(a))=(x \cdot F(y \cdot x(a)))^{\pi}
$$

Definition

convex if pattern and no active bound variables geometric if linear and convex no variables on path between function symbols in Böhm tree
orthogonalisable

higher-order

discrimination lemma fails, e.g. for $\pi(F)=x . f(G, x(a))$

$$
(x \cdot F(x))^{\pi}=x \cdot f(G, x(a))=(x \cdot F(y \cdot x(a)))^{\pi}
$$

Definition

convex if pattern and no active bound variables geometric if linear and convex
Lemma (discrimination)
orthogonalisable
for every left-geometric rule $\ell \rightarrow r$ and geometric discriminator π on the free variables, if $\ell^{\pi}=r^{\pi}$, then $\ell^{\rho}=r^{\rho}$ for some renaming ρ and geometric substitution $\bar{\pi}$, such that π factors as $\bar{\pi} \circ \rho$

higher－order

discrimination lemma fails，e．g．for $\pi(F)=x . f(G, x(a))$

$$
(x \cdot F(x))^{\pi}=x \cdot f(G, x(a))=(x \cdot F(y \cdot x(a)))^{\pi}
$$

Definition

convex if pattern and no active bound variables geometric if linear and convex

Lemma（discrimination）

for every left－geometric rule $\ell \rightarrow r$ and geometric discriminator π on the free variables，if $\ell^{\pi}=r^{\pi}$ ，then $\ell^{\rho}=r^{\rho}$ for some renaming ρ and geometric substitution $\bar{\pi}$ ，such that π factors as $\bar{\pi} \circ \rho$
Lemma（critically trivial）
if $\ell^{\pi} \rightarrow r^{\pi}$ critically trivial，with ℓ, π geometric
－π factors as $\bar{\pi} \circ \rho \circ \underline{\pi}$ with $\bar{\pi}$／$\underline{\text { t }}$ the restriction of π to open／closed terms
－ $\bar{\pi}$ is a geometric discriminator，ρ a renaming
－$\ell^{\rho \circ \underline{\pi}}=r^{\rho \circ \underline{\pi}}$

conclusion

```
orthogonalisable
```

- orthogonalisable as extensional orthogonality
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

conclusion

- orthogonalisable as extensional orthogonality
- orthogonalisable \Rightarrow angle/Z-property \Rightarrow Okui angle/Z-property \Rightarrow confluence and hyper-cofinal strategy
orthogonalisable
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order

conclusion

－orthogonalisable as extensional orthogonality
－orthogonalisable \Rightarrow angle／Z－property \Rightarrow Okui
－orthogonalisable \Leftrightarrow feebly orthogonal decidable
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher－order

conclusion

- orthogonalisable as extensional orthogonality
- orthogonalisable \Rightarrow angle/Z-property \Rightarrow Okui
- orthogonalisable \Leftrightarrow feebly orthogonal
- for geometric HRSs (GHRSs); covers extant HRS examples left-linear TRS \subset left-linear CRS \subset GHRS \subset left-linear HRS second-order matching and higher-order parameters
orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order

conclusion

- orthogonalisable as extensional orthogonality
- orthogonalisable \Rightarrow angle/Z-property \Rightarrow Okui
- orthogonalisable \Leftrightarrow feebly orthogonal
- left-linear TRS \subset left-linear $\mathrm{CRS} \subset$ GHRS \subset left-linear HRS
orthogonalisable
- geometric terms well-behaved; closed under
- substitution
- application
- meet
- join (computed via unification yielding geometric unifier)
- discrimination

further work

- allow orthogonalisation to map to multi-redexes; characterise

further work

- allow orthogonalisation to map to multi-redexes; characterise

Definition (orthogonalisation)

orthogonalisable
function \perp mapping each object a and redex in a, to multi-redex in a, such that $R d x_{a}^{\perp}$ is multi-redex, and any multi-step $a \rightarrow u b$ is mapped to equivalent one $a \rightarrow U^{\perp} b$.

further work

- allow orthogonalisation to map to multi-redexes; characterise

Definition (orthogonalisation)

function \perp mapping each object a and redex in a, to multi-redex in a, such that $R d x_{a}^{\perp}$ is multi-redex, and any multi-step
$a \rightarrow U_{U} b$ is mapped to equivalent one $a \rightarrow U^{\perp} b$.
orthogonalisable \Rightarrow angle/Z-property \Rightarrow Okui,cofinal

further work

- allow orthogonalisation to map to multi-redexes; characterise
orthogonalisable
feebly
orthogonal
orthogonalisable
\Leftrightarrow feebly
orthogonal
higher-order
- axiomatize geometricity (GeoRS) allowing geometric proof?

convex

orthogonalisable
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
left 2 convex; left-hand sides of β - and η-rules right 2 not convex; x between $f, a ; x$ active, applied to a

convex

orthogonalisable
feebly
orthogonal
orthogonalisable \Leftrightarrow feebly
orthogonal
higher-order
left 2 convex; left-hand sides of β - and η-rules right 2 not convex; x between $f, a ; x$ active, applied to a left-linear PRSs in literature convex

