feebly not weakly

Vincent van Oostrom

HOR, 11.15-11.45, Saturday July 12, 2014

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

orthogonalisable

feebly orthogonal

orthogonalisable \Leftrightarrow feebly orthogonal

higher-order

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

rewriting: independence of steps

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

term rewriting: rules left-linear and no critical peaks

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

term rewriting: rules left-linear and no critical peaks Examples

• lambda-calculus with β -reduction

 $\mathbb{Q}(\lambda(x.F(x)),G) \rightarrow F(G)$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

term rewriting: rules left-linear and no critical peaks Examples

- lambda-calculus with β -reduction

 $@(\lambda(x.F(x)),G) \rightarrow F(G) \\$

• unary natural numbers with rules for predecessor

$$\begin{array}{rcl} P(0) & \to & 0 \\ P(S(x)) & \to & x \end{array}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

3

term rewriting: rules left-linear and no critical peaks Examples

- lambda-calculus with β -reduction

 $@(\lambda(x.F(x)),G) \rightarrow F(G) \\$

unary natural numbers with rules for predecessor

$$\begin{array}{rcl} P(0) & \to & 0 \\ P(S(x)) & \to & x \end{array}$$

omit parentheses for readability (string rewriting)

$$\begin{array}{rrr} P \ 0 & \rightarrow & 0 \\ P \ S & \rightarrow & \varepsilon \end{array}$$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

independence via closure under union

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

independence via closure under union

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

independence via closure under union

independence via closure under union

Universiteit Utrecht

orthogonalisable

independence via closure under union

Universiteit Utrecht

orthogonalisable

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

independence via closure under union

independence via closure under union

orthogonalisable feebly

orthogonalisable ⇔ feebly orthogonal

higher-orde

independence via closure under union

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

PSPPSSPS

independence via closure under union

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

independence via closure under union

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

independence via closure under union

independence via closure under union

Universiteit Utrecht

orthogonalisable

independence via closure under union

Universiteit Utrecht

orthogonalisable

independence via closure under union

orthogonalisable

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

independence via closure under union

independence via closure under union; multi-step to PSPS

orthogonalisable feebly

orthogonalisable ⇔ feebly orthogonal

higher-order

independence via closure under union

Universiteit Utrecht

orthogonalisable

independence via closure under union

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

independence via closure under union; $\rightarrow \subseteq \longrightarrow \subseteq \twoheadrightarrow$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

independence via closure under union

$PSPPSSPS \rightarrow PS$ full multi-step from PSPPSSPS

orthogonalisable

orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Universiteit Utrecht

 \rightarrow has angle property: $\forall a$

(日) (部) (E) (E) (E)

а

orthogonalisable

Universiteit Utrecht

orthogonalisable

 \rightarrow has angle property: $\forall a, \exists a^{\bullet}$

а

a•

 \rightarrow has angle property: $\forall a, \exists a^{\bullet}$

Universiteit Utrecht

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

3

・ロト ・部ト ・ヨト ・ヨト

 \rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b$

orthogonalisable feebly

orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

5

・ロト ・部ト ・ヨト ・ヨト

3

 \rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b \Rightarrow b \rightarrow a^{\bullet}$

orthogonalisable

orthogonalisable ⇔ feebly orthogonal

higher-order

 \rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b \Rightarrow b \rightarrow a^{\bullet}$

Universiteit Utrecht

orthogonalisable

angle property $\Rightarrow \rightarrow \Rightarrow$ has diamond property

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

angle property $\Rightarrow \rightarrow \rightarrow$ has diamond property

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

a•

angle property $\Rightarrow \rightarrow \rightarrow$ has diamond property

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

angle property $\Rightarrow \rightarrow \rightarrow$ has diamond property

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

angle property \Rightarrow confluence of \rightarrow

rthogonal

orthogonalisable

orthogonalisable ↔ feebly orthogonal

higher-order

5

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

а

angle property $\Rightarrow \forall b, a \twoheadrightarrow b \Rightarrow \exists n, b \twoheadrightarrow a^{\bullet^n}$

angle property $\Rightarrow \forall b, a \twoheadrightarrow b \Rightarrow \exists n, b \twoheadrightarrow a^{\bullet^n}$

Universiteit Utrecht

orthogonalisable

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

angle property $\Rightarrow \forall b, a \twoheadrightarrow b \Rightarrow \exists n, b \twoheadrightarrow a^{\bullet^n}$

thogonal

orthogonalisable

orthogonalisable ⇔ feebly orthogonal

higher-order

angle property $\Rightarrow \forall b, a \twoheadrightarrow b \Rightarrow \exists n, b \twoheadrightarrow a^{\bullet^n}$

thogonalisable

orthogonal

orthogonalisable

higher-order

angle property $\Rightarrow \forall b, a \twoheadrightarrow b \Rightarrow \exists n, b \twoheadrightarrow a^{\bullet^n}$

Universiteit Utrecht

orthogonalisable

angle property $\Rightarrow \forall b, a \twoheadrightarrow b \Rightarrow \exists n, b \twoheadrightarrow a^{\bullet^n}$

angle property $\Rightarrow \forall b, a \twoheadrightarrow b \Rightarrow \exists n, b \twoheadrightarrow a^{\bullet^n}$

Universiteit Utrecht

orthogonalisable

angle property \Rightarrow cofinality of full multi-step strategy

Universiteit Utrecht

orthogonalisable

rewriting: simulation by independent steps

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

term rewriting: left-linear and ?

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

term rewriting: left-linear and ?

Examples

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

term rewriting: left-linear and ?

Examples

• lambda-calculus with $\beta\eta$ -reduction

$$\begin{array}{rcl} @(\lambda(x.F(x)),G) & \to & F(G) \\ & \lambda(x.@(F,x)) & \to & F \end{array}$$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

term rewriting: left-linear and ?

Examples

1

• lambda-calculus with $\beta\eta$ -reduction

$$\begin{array}{rcl} @(\lambda(x.F(x)),G) & \to & F(G) \\ & \lambda(x.@(F,x)) & \to & F \end{array}$$

trivial critical peaks

$$\begin{array}{ccc} \mathbb{Q}(F,G) &\leftarrow_{\beta} & \overline{\mathbb{Q}(\underline{\lambda}(x.\mathbb{Q}(F,x)),G)} &\to_{\eta} & \mathbb{Q}(F,G) \\ \lambda(y.F(y)) &\leftarrow_{\eta} & \overline{\lambda(x.\mathbb{Q}(\lambda(y.F(y)),x))} &\to_{\beta} & \lambda(x.F(x)) \end{array}$$

orthogonalisable

term rewriting: left-linear and ?

Examples

- lambda-calculus with $\beta\eta$ -reduction

weakly orthogonal

$$\begin{array}{ccc} \mathbb{Q}(F,G) & \leftarrow_{\beta} & \overline{\mathbb{Q}(\underline{\lambda}(x.\mathbb{Q}(F,x)),G)} & \rightarrow_{\eta} & \mathbb{Q}(F,G) \\ \lambda(y.F(y)) & \leftarrow_{\eta} & \overline{\lambda(x.\mathbb{Q}(\lambda(y.F(y)),x))} & \rightarrow_{\beta} & \lambda(x.F(x)) \end{array}$$

unary integers with rules for successor and predecessor

$$\begin{array}{rcl} S(P(x)) & \to & x \\ P(S(x)) & \to & x \end{array}$$

Universiteit Utrecht

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

term rewriting: left-linear and ?

Examples

- lambda-calculus with $\beta\eta$ -reduction

$$\begin{array}{rcl} @(\lambda(x.F(x)),G) & \to & F(G) \\ & \lambda(x.@(F,x)) & \to & F \end{array}$$

weakly orthogonal

$$\begin{array}{ccc} \mathbb{Q}(F,G) & \leftarrow_{\beta} & \overline{\mathbb{Q}(\underline{\lambda}(x.\mathbb{Q}(F,x)),G)} & \rightarrow_{\eta} & \mathbb{Q}(F,G) \\ \lambda(y.F(y)) & \leftarrow_{\eta} & \overline{\lambda(x.\underline{\mathbb{Q}}(\lambda(y.F(y)),x))} & \rightarrow_{\beta} & \lambda(x.F(x)) \end{array}$$

unary integers with rules for successor and predecessor

$$\begin{array}{rcl} S(P(x)) & \to & x \\ P(S(x)) & \to & x \end{array}$$

trivial criticial peaks

$$\begin{array}{rcl} S &\leftarrow & \overline{SPS} & \rightarrow & S \\ P &\leftarrow & \overline{PSP} & \rightarrow & P \end{array}$$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

term rewriting: left-linear and ?

Examples

- lambda-calculus with $\beta\eta$ -reduction

$$\begin{array}{rcl} @(\lambda(x.F(x)),G) & \to & F(G) \\ & \lambda(x.@(F,x)) & \to & F \end{array}$$

weakly orthogonal

$$\begin{array}{rcl} \mathbb{Q}(F,G) & \leftarrow_{\beta} & \overline{\mathbb{Q}(\underline{\lambda}(x.\mathbb{Q}(F,x)),G)} & \rightarrow_{\eta} & \mathbb{Q}(F,G) \\ \lambda(y.F(y)) & \leftarrow_{\eta} & \overline{\lambda(x.\underline{\mathbb{Q}}(\lambda(y.F(y)),x))} & \rightarrow_{\beta} & \lambda(x.F(x)) \end{array}$$

unary integers with rules for successor and predecessor

$$\begin{array}{rcl} S(P(x)) & \to & x \\ P(S(x)) & \to & x \end{array}$$

weakly orthogonal

$$\begin{array}{rcl} S & \leftarrow & \overline{SPS} & \rightarrow & S \\ P & \leftarrow & \overline{PSP} & \rightarrow & P \end{array}$$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

for every object a

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

- for every object a
- its set Rdx_a of redexes

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

- for every object a
- its set Rdx_a of redexes
- is the (co)domain of a partial function \perp such that

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

- for every object a
- its set Rdx_a of redexes
- is the (co)domain of a partial function \perp such that
- its range Rdx_a^{\perp} is a multi-redex, and

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

Definition

- for every object a
- its set Rdx_a of redexes
- is the (co)domain of a partial function \perp such that
- its range $\operatorname{Rdx}_a^{\perp}$ is a multi-redex, and
- any multi-step $a \rightarrow U b$ from a

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

Definition

- for every object a
- its set Rdx_a of redexes
- is the (co)domain of a partial function \perp such that
- its range Rdx_a^{\perp} is a multi-redex, and
- any multi-step $a \rightarrow U b$ from a
- is mapped to an equivalent one $a \rightarrow U^{\perp} b$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

PSPPSSPS

Definition

- for every object a
- its set Rdx_a of redexes
- is the (co)domain of a partial function \perp such that
- its range $\operatorname{Rdx}_a^{\perp}$ is a multi-redex, and
- any multi-step $a \rightarrow U b$ from a
- is mapped to an equivalent one $a \rightarrow U^{\perp} b$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

$$\frac{P\frac{2}{S}P}{\frac{1}{1}}\frac{PS}{\frac{3}{3}}\frac{S\frac{5}{P}S}{\frac{5}{4}}$$

Definition

- for every object a
- its set Rdx_a of redexes
- is the (co)domain of a partial function \perp such that
- its range $\operatorname{Rdx}_a^{\perp}$ is a multi-redex, and
- any multi-step $a \rightarrow U b$ from a
- is mapped to an equivalent one $a \rightarrow U^{\perp} b$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

- for every object a
- its set Rdx_a of redexes
- is the (co)domain of a partial function ⊥ such that
- its range Rdx_a^{\perp} is a multi-redex, and
- any multi-step $a \rightarrow U b$ from a
- is mapped to an equivalent one $a \rightarrow U^{\perp} b$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

 $\frac{PS}{1}P\frac{PS}{3}\frac{SP}{4}S$

Definition

- for every object a
- its set Rdx_a of redexes
- is the (co)domain of a partial function \perp such that
- its range Rdx_a^{\perp} is a multi-redex, and
- any multi-step $a \rightarrow U b$ from a
- is mapped to an equivalent one $a \rightarrow U^{\perp} b$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

Definition

- for every object a
- its set Rdx_a of redexes
- is the (co)domain of a partial function \perp such that
- its range Rdx_a^{\perp} is a multi-redex, and
- any multi-step $a \rightarrow U b$ from a
- is mapped to an equivalent one $a \rightarrow U^{\perp} b$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

- for every object a
- its set Rdx_a of redexes
- is the (co)domain of a partial function \perp such that
- its range Rdx_a^{\perp} is a multi-redex, and
- any multi-step $a \rightarrow U b$ from a
- is mapped to an equivalent one $a \rightarrow U^{\perp} b$

Universiteit Utrecht

orthogonalisable

Universiteit Utrecht

а

 \rightarrow has angle property: $\forall a$

(日) (部) (E) (E) (E)

 \rightarrow has angle property: $\forall a, \exists a^{\bullet}$

Universiteit Utrecht

orthogonalisable

 \rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b,$

Universiteit Utrecht

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

 \rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b$

Universiteit Utrecht

orthogonalisable

 \rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b$

Universiteit Utrecht

orthogonalisable ⇔ feebly orthogonal

orthogonalisable

・ロト ・部ト ・ヨト ・ヨト

 \rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b$

2

feebly orthogonal

orthogonalisable

orthogonalisable ⇔ feebly orthogonal

higher-order

8

・ロト ・部ト ・ヨト ・ヨト

 \rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b$

3

hogonal

higher-order

orthogonalisable

 \rightarrow has angle property: $\forall a, \exists a^{\bullet}, \forall b, a \rightarrow b \Rightarrow b \rightarrow a^{\bullet}$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

angle property \Rightarrow confluence, cofinality

Universiteit Utrecht

orthogonalisable

▲ロ▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

trivial rules: everywhere undefined

orthogonalisable

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains

$$\frac{P\frac{2}{S}P\frac{4}{S}PS}{1\frac{3}{3}\frac{P}{5}}$$

e.g. (11335) or (55311)

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above in forks undefined

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
 - in forks undefined

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
 - in forks undefined

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
 - in forks undefined

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
 - in forks undefined

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

trivial rules: everywhere undefined

1

- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains

1

- weakly orthogonal systems: redex clusters in chains as above
 - in forks undefined

Universiteit Utrecht

orthogonalisable

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
 - in forks undefined

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
 - in forks undefined

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
 - in forks undefined

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

trivial rules: everywhere undefined

11

- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above
 - in forks undefined

orthogonalisable

trivial rules: everywhere undefined

11

- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains

1

- weakly orthogonal systems: redex clusters in chains as above
 - in forks undefined

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above in forks undefined
- critically trivial redexes undefined in

$$g(f(a,a)) \rightarrow b$$

$$f(x,y) \rightarrow f(y,x)$$

$$b \leftarrow \overline{g(f(a,a))} \rightarrow g(f(a,a))$$

trivial step as part of a critical peak

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- trivial rules: everywhere undefined
- orthogonal rewrite systems: the identity
- unary integers and $\lambda\beta\eta$: in/onto odd redexes in chains
- weakly orthogonal systems: redex clusters in chains as above in forks undefined
- critically trivial redexes undefined in

$$g(f(a,a)) \rightarrow b$$

$$f(x,y) \rightarrow f(y,x)$$

$$b \leftarrow \overline{g(f(a,a))} \rightarrow g(f(a,a))$$

trivial step as part of a critical peak

characterise orthogonalisability exactly/decidably?

Universiteit Utrecht

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is $f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is $f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$ Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \le 2$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is $f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$ Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \le 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is $f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$ Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \le 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble

all examples above

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is $f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$ Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \le 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble

all examples above ... but also

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is $f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$ Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \le 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble

all examples above ... but also

$$a \rightarrow b$$
 $f(a) \rightarrow f(b)$
 $f(x) \rightarrow g(x)$ $f(a) \rightarrow g(a)$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is $f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$ Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \le 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble

all examples above ... but also

$$a \rightarrow b$$
 $f(a) \rightarrow f(b)$
 $f(x) \rightarrow g(x)$ $f(a) \rightarrow g(a)$

(non-feeble critical peak(s):

 $g(a) \leftarrow f(a) \rightarrow f(b)$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is $f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$ Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \le 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble

all examples above ... but also

$$a \rightarrow b$$
 $f(a) \rightarrow f(b)$
 $f(x) \rightarrow g(x)$ $f(a) \rightarrow g(a)$

(non-feeble critical peak(s):

 $g(a) \leftarrow f(a) \rightarrow f(b)$ but redundant)

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is $f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$ Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \le 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble

all examples above ... but also

$$a \rightarrow b$$
 $f(a) \rightarrow f(b)$
 $f(x) \rightarrow g(x)$ $f(a) \rightarrow g(a)$

(non-feeble critical peak(s):

 $g(a) \leftarrow f(a) \rightarrow f(b)$ but redundant

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

rule is redundant if a specialisation of another rule peak is (ir)redundant if (n)either of its rules is $f(g(a)) \rightarrow f(a)$ is redundant in presence of $g(x) \rightarrow x$ Definition

peak $b \leftarrow a \rightarrow c$ is feeble if $|\{b, a, c\}| \le 2$

Definition

rewrite system is feebly orthogonal if left-linear with all irredundant critical peaks feeble

all examples above ... but also

$$a \rightarrow b$$
 $f(a) \rightarrow f(b)$
 $f(x) \rightarrow g(x)$ $f(a) \rightarrow g(a)$

(non-feeble critical peak(s):

 $g(a) \leftarrow f(a) \rightarrow f(b)$ but redundant

, no coincidencel

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

orthogonalisable \Leftrightarrow feebly orthogonal

Proof.

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

orthogonalisable \Leftrightarrow feebly orthogonal

Proof.

only if: show every irredundant critical peak feeble

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

orthogonalisable ⇔ feebly orthogonal

Proof.

 only if: show every irredundant critical peak feeble induction on size of source of peak b ←_u a →_v c orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

orthogonalisable ⇔ feebly orthogonal

Proof.

 only if: show every irredundant critical peak feeble induction on size of source of peak b ←_u a →_v c interesting orthogonalisation case: {u, v} ↦ {u[⊥], v[⊥]} orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak b ←_u a →_v c interesting orthogonalisation case: {u, v} ↦ {u[⊥], v[⊥]}
- if: reduce to the weakly orthogonal case

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak b ←_u a →_v c interesting orthogonalisation case: {u, v} ↦ {u[⊥], v[⊥]}
- if: reduce to the weakly orthogonal case
 - 1. omit redundant redexes from consideration (obvious)

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak b ←_u a →_v c interesting orthogonalisation case: {u, v} ↦ {u[⊥], v[⊥]}
- if: reduce to the weakly orthogonal case
 - 1. omit redundant redexes from consideration
 - 2. map critically trivial redexes to undefined (interesting)

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak b ←_u a →_v c interesting orthogonalisation case: {u, v} ↦ {u[⊥], v[⊥]}
- if: reduce to the weakly orthogonal case
 - 1. omit redundant redexes from consideration
 - map critically trivial redexes to undefined only weakly orthogonal clusters (of trivial peaks) remain;

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak b ←_u a →_v c interesting orthogonalisation case: {u, v} ↦ {u[⊥], v[⊥]}
- if: reduce to the weakly orthogonal case
 - 1. omit redundant redexes from consideration
 - map critically trivial redexes to undefined only weakly orthogonal clusters (of trivial peaks) remain;
 - 3. map redexes in forks to undefined (as before)

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak b ←_u a →_v c interesting orthogonalisation case: {u, v} ↦ {u[⊥], v[⊥]}
- if: reduce to the weakly orthogonal case
 - 1. omit redundant redexes from consideration
 - map critically trivial redexes to undefined only weakly orthogonal clusters (of trivial peaks) remain;
 - 3. map redexes in forks to undefined
 - 4. map redexes in chains to odd ones (as before)

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

Proof.

- only if: show every irredundant critical peak feeble induction on size of source of peak b ←_u a →_v c interesting orthogonalisation case: {u, v} ↦ {u[⊥], v[⊥]}
- if: reduce to the weakly orthogonal case
 - 1. omit redundant redexes from consideration
 - map critically trivial redexes to undefined only weakly orthogonal clusters (of trivial peaks) remain;
 - 3. map redexes in forks to undefined
 - 4. map redexes in chains to odd ones

novel (higher-order) insights analysing item 2; rest of talk

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

$$\begin{array}{rcl} f(x,y) & \to & f(y,x) \\ a & \to & b \end{array}$$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

$$\begin{array}{rcl} f(x,y) & \to & f(y,x) \\ a & \to & b \end{array}$$

orthogonal basis for reduction space from f(a, a):

$$\frac{f(a,a)}{f(\overline{a},a)} \xrightarrow{\rightarrow_{u}} f(a,a)$$

$$\frac{f(a,a)}{f(a,\overline{a})} \xrightarrow{\rightarrow_{w}} f(b,a)$$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

$$\begin{array}{rcl} f(x,y) & \to & f(y,x) \\ a & \to & b \end{array}$$

orthogonal basis for reduction space from f(a, a):

$$\frac{f(a,a)}{f(\overline{a},a)} \xrightarrow{\rightarrow_{u}} f(a,a)$$

$$\frac{f(a,a)}{f(\overline{a},a)} \xrightarrow{\rightarrow_{v}} f(b,a)$$

$$f(a,\overline{a}) \xrightarrow{\rightarrow_{w}} f(a,b)$$

u extensionally trivial (may map to undefined, in principle)

$$\frac{f(a,a)}{f(a,a)} \xrightarrow{\rightarrow_u} f(a,a)$$
$$\xrightarrow{\rightarrow_{\varnothing}} f(a,a)$$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

$$\begin{array}{rcl} f(x,y) & \to & f(y,x) \\ a & \to & b \end{array}$$

orthogonal basis for reduction space from f(a, a):

$$\frac{f(a,a)}{f(\overline{a},a)} \xrightarrow{\rightarrow_{u}} f(a,a)$$

$$\frac{f(a,a)}{\rightarrow_{v}} f(b,a)$$

$$f(a,\overline{a}) \xrightarrow{\rightarrow_{w}} f(a,b)$$

u extensionally trivial (may map to undefined, in principle)

$$\frac{f(a,a)}{f(a,a)} \xrightarrow{\rightarrow_u} f(a,a)$$
$$\xrightarrow{\rightarrow_{\varnothing}} f(a,a)$$

u not intensionally trivial (rules out map to undefined)

$$\frac{f(\overline{a},a)}{f(\overline{a},a)} \xrightarrow{\leftrightarrow}_{\{u,v\}} \frac{f(a,b)}{f(b,a)}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

$$f(u, x, y, v) \rightarrow f(u, y, x, v)$$

$$f(g(u'), a, a, h(v')) \rightarrow i(u', v')$$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

$$f(u, x, y, v) \rightarrow f(u, y, x, v)$$

$$f(g(u'), a, a, h(v')) \rightarrow i(u', v')$$

feeble critical peak

$$f(g(u'), a, a, h(v'')) \leftarrow f(g(u'), a, a, h(v')) \rightarrow i(u', v')$$

via substitution

$$\sigma = \left[u \mapsto g(u'), x \mapsto a, y \mapsto a, v \mapsto h(v') \right]$$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

$$f(u, x, y, v) \rightarrow f(u, y, x, v)$$

$$f(g(u'), a, a, h(v')) \rightarrow i(u', v')$$

feeble critical peak

$$f(g(u'), a, a, h(v'')) \leftarrow f(g(u'), a, a, h(v')) \rightarrow i(u', v')$$

via substitution

$$\sigma = \left[u \mapsto g(u'), x \mapsto a, y \mapsto a, v \mapsto h(v') \right]$$

critically trivial step action trivial on open variables u, v
 f(u, a, a, v) ← f(u, a, a, v)

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

$$f(u, x, y, v) \rightarrow f(u, y, x, v)$$

$$f(g(u'), a, a, h(v')) \rightarrow i(u', v')$$

feeble critical peak

$$f(g(u'), a, a, h(v'')) \leftarrow f(g(u'), a, a, h(v')) \rightarrow i(u', v')$$

via substitution

$$\sigma = \left[u \mapsto g(u'), x \mapsto a, y \mapsto a, v \mapsto h(v') \right]$$

- ► critically trivial step action trivial on open variables u, v $f(u, a, a, v) \leftarrow f(u, a, a, v)$
- other steps' action trivial on closed variables x, y, e.g.

$$a \rightarrow b$$

would yield a non-feeble critical peak with other rule

$$f(g(u'), \mathbf{b}, \mathbf{a}, h(v'')) \leftarrow f(g(u'), \mathbf{a}, \mathbf{a}, h(v'))$$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

Definition

 π is discriminator if each term has unique variable (in range)

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

Definition

 π is discriminator if each term has unique variable (in range)

Lemma

if $\ell^{\pi} \rightarrow r^{\pi}$ critically trivial (via overlap with $g \rightarrow d$)

Definition

 π is discriminator if each term has unique variable (in range)

Lemma

if $\ell^{\pi} \rightarrow r^{\pi}$ critically trivial

• π factors as $\overline{\pi} \circ \underline{\pi}$ (obvious) with $\overline{\pi}/\underline{\pi}$ the restriction of π to open/closed terms

Definition

 π is discriminator if each term has unique variable (in range)

Lemma

if $\ell^{\pi} \rightarrow r^{\pi}$ critically trivial

- π factors as $\overline{\pi} \circ \underline{\pi}$ with $\overline{\pi}/\underline{\pi}$ the restriction of π to open/closed terms
- $\overline{\pi}$ is a discriminator (by left-linearity)

Definition

 π is discriminator if each term has unique variable (in range)

Lemma

if $\ell^{\pi} \rightarrow r^{\pi}$ critically trivial

- π factors as $\overline{\pi} \circ \underline{\pi}$ with $\overline{\pi}/\underline{\pi}$ the restriction of π to open/closed terms
- $\overline{\pi}$ is a discriminator
- $\ell^{\underline{\pi}} = r^{\underline{\pi}}$ (by previous item)

Definition

 π is discriminator if each term has unique variable (in range)

Lemma

if $\ell^{\pi} \rightarrow r^{\pi}$ critically trivial

- π factors as $\overline{\pi} \circ \underline{\pi}$ with $\overline{\pi}/\underline{\pi}$ the restriction of π to open/closed terms
- $\overline{\pi}$ is a discriminator
- $\ell^{\underline{\pi}} = r^{\underline{\pi}}$

from 2nd to 3rd item based on discrimination lemma

discrimination lemma

substituting a discriminator is reversible

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

discrimination lemma

substituting a discriminator is reversible

Lemma

for every left-linear rule $\ell \rightarrow r$ and discriminator π on the free variables, if $\ell^{\pi} = r^{\pi}$, then $\ell = r$.

Universiteit Utrecht

orthogonalisable ⇔ feebly

orthogonal

discrimination lemma fails (project vs. imitate)

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

discrimination lemma fails, e.g. for $\pi(F) = x.f(G, x(a))$

 $(x.F(\mathbf{x}))^{\pi} = x.f(G, \mathbf{x}(\mathbf{a})) = (x.F(\mathbf{y}.\mathbf{x}(\mathbf{a})))^{\pi}$

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

discrimination lemma fails, e.g. for $\pi(F) = x.f(G, x(a))$

 $(x.F(\mathbf{x}))^{\pi} = x.f(G, \mathbf{x}(a)) = (x.F(\mathbf{y}.\mathbf{x}(a)))^{\pi}$

lhs, π pattern (free variables applied to bound ones)

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

discrimination lemma fails, e.g. for $\pi(F) = x.f(G, x(a))$

 $(x.F(\mathbf{x}))^{\pi} = x.f(G, x(a)) = (x.F(\mathbf{y}.x(a)))^{\pi}$

Ihs, π pattern, but active occurrence of bound variable x bad: patterns may fall apart when substituting for those

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

discrimination lemma fails, e.g. for $\pi(F) = x.f(G, x(a))$

$$(x.F(x))^{\pi} = x.f(G, x(a)) = (x.F(y.x(a)))^{\pi}$$

Definition

convex if pattern and no active bound variables geometric if linear and convex

no variables on path between function symbols in Böhm tree

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

discrimination lemma fails, e.g. for $\pi(F) = x.f(G, x(a))$

$$(x.F(x))^{\pi} = x.f(G, x(a)) = (x.F(y.x(a)))^{\pi}$$

Definition

convex if pattern and no active bound variables geometric if linear and convex

Lemma (discrimination)

for every left-geometric rule $\ell \rightarrow r$ and geometric discriminator π on the free variables, if $\ell^{\pi} = r^{\pi}$, then $\ell^{\rho} = r^{\rho}$ for some renaming ρ and geometric substitution $\overline{\pi}$, such that π factors as $\overline{\pi} \circ \rho$ orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

discrimination lemma fails, e.g. for $\pi(F) = x.f(G, x(a))$

$$(x.F(x))^{\pi} = x.f(G, x(a)) = (x.F(y.x(a)))^{\pi}$$

Definition

convex if pattern and no active bound variables geometric if linear and convex

Lemma (discrimination)

for every left-geometric rule $\ell \to r$ and geometric discriminator π on the free variables, if $\ell^{\pi} = r^{\pi}$, then $\ell^{\rho} = r^{\rho}$ for some renaming ρ and geometric substitution $\overline{\pi}$, such that π factors as $\overline{\pi} \circ \rho$

Lemma (critically trivial)

目

if $\ell^{\pi} \rightarrow r^{\pi}$ critically trivial, with ℓ, π geometric

- π factors as $\overline{\pi} \circ \rho \circ \underline{\pi}$ with $\overline{\pi}/\underline{\pi}$ the restriction of π to open/closed terms
- $\overline{\pi}$ is a geometric discriminator, ρ a renaming

 $\ell^{\rho \circ \underline{\pi}} = r^{\rho \circ \underline{\pi}}$

orth		

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

14

orthogonalisable as extensional orthogonality

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- orthogonalisable as extensional orthogonality
- orthogonalisable ⇒ angle/Z-property ⇒ Okui angle/Z-property ⇒ confluence and hyper-cofinal strategy

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- orthogonalisable as extensional orthogonality
- orthogonalisable \Rightarrow angle/Z-property \Rightarrow Okui
- orthogonalisable ⇔ feebly orthogonal decidable

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- orthogonalisable as extensional orthogonality
- orthogonalisable \Rightarrow angle/Z-property \Rightarrow Okui
- ▶ orthogonalisable ⇔ feebly orthogonal
- for geometric HRSs (GHRSs); covers extant HRS examples left-linear TRS ⊂ left-linear CRS ⊂ GHRS ⊂ left-linear HRS second-order matching and higher-order parameters

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

- orthogonalisable as extensional orthogonality
- orthogonalisable \Rightarrow angle/Z-property \Rightarrow Okui
- ▶ orthogonalisable ⇔ feebly orthogonal
- left-linear TRS \subset left-linear CRS \subset GHRS \subset left-linear HRS
- geometric terms well-behaved; closed under
 - substitution
 - application
 - meet
 - join (computed via unification yielding geometric unifier)
 - discrimination

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

further work

 allow orthogonalisation to map to multi-redexes; characterise

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

 allow orthogonalisation to map to multi-redexes; characterise

Definition (orthogonalisation)

function \perp mapping each object *a* and redex in *a*, to multi-redex in *a*, such that $\operatorname{Rdx}_a^{\perp}$ is multi-redex, and any multi-step $a \longrightarrow U b$ is mapped to equivalent one $a \longrightarrow U^{\perp} b$. orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

further work

 allow orthogonalisation to map to multi-redexes; characterise

Definition (orthogonalisation)

function \perp mapping each object *a* and redex in *a*, to multi-redex in *a*, such that $\operatorname{Rdx}_a^{\perp}$ is multi-redex, and any multi-step $a \longrightarrow_U b$ is mapped to equivalent one $a \longrightarrow_{U^{\perp}} b$.

orthogonalisable \Rightarrow angle/Z-property \Rightarrow Okui,cofinal

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

- allow orthogonalisation to map to multi-redexes; characterise
- axiomatize geometricity (GeoRS) allowing geometric proof?

orthogonalisable

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

convex

left 2 convex; left-hand sides of β - and η -rules right 2 not convex; x between $f_{,a}$; x active, applied to a

feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

convex

left 2 convex; left-hand sides of β - and η -rules right 2 not convex; x between f,a; x active, applied to a left-linear PRSs in literature convex feebly orthogonal

orthogonalisable ⇔ feebly orthogonal

higher-order

