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Critical-pair-closing systems

Oyamaguchi and Hirokawa, IWC 2014



Confluence criterion based on termination

Oyamaguchi and Hirokawa, 2nd confluence criterion
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Proof

each peak of R-multisteps completed into decreasing diagram
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▸ C-multisteps labelled by source, ordered by →+
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▸ non-C-multisteps labelled by 1, ordered above others

by well-founded induction #overlap 1st, #clusters 2nd
by cases on #clusters 1st, relative positions of patterns 2nd
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Inner split

innermost inner critical peak
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inner critical peak condition
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Inner join

recompose orthogonal multisteps



Inner join

induction hypothesis (overlap); join preserves decreasingness



Case 3: overlay critical-cluster peak

overlay critical peak condition (doubleton cluster)



Case 3: overlay critical-cluster peak

decreasing join
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Definition
Labelling of PRSs R,S is HOT if for terminating C ⊆R ∪ S

▸ C-multisteps labelled by source; →+
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▸ non-C-multisteps labelled by maximum of N-value of rules; >

▸ sources (terms) are ordered below N (rules); ⊐

Theorem
left-linear PRSs R,S commute if critical peaks are HOT-decreasing
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HOT (non-)applications

1. Higher-Order Termination-based criterion
set R = S; (non-C) R,S ↦ 1;

2. Hirokawa, Oyamaguchi Termination-based criterion
as in previous item; parallel steps are multisteps

3. Huet, van Oostrom, Toyama criterion
set R = S; C empty; (non-C) R↦ 1, S ↦ 2

4. wHole lOt of oTher examples, probably . . .

5. However nOt implemenTed yet . . .

6. HOT from the oven (yesterday), so hopefully correct . . .

7. self-distributivity not covered (different notion of multistep)
can it be?
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