

The FMC from a higher-order rewriting perspective

a syntactician's prology

Vincent van Oostrom¹

https://people.bath.ac.uk/vvo21/

¹Supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with sharing and unsharing.

Dialogue

• Q₁: can you say something about my calculus?

Dialogue

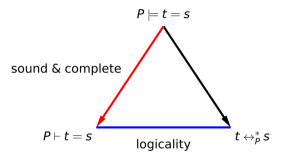
- Q1: can you say something about my calculus?
- Q₂: what are the **objects** *A* and what are the **rules** *P*?

Dialogue

- Q1: can you say something about my calculus?
- Q₂: what are the objects A and what are the rules P?
- A₂: terms over $\{A, 0, S\}$, rules $A(x, 0) \rightarrow x$ and $A(x, S(y)) \rightarrow S(A(x, y))$

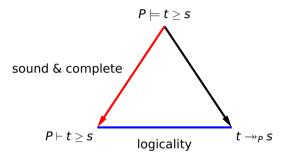
Dialogue

- Q1: can you say something about my calculus?
- Q₂: what are the objects A and what are the rules P?
- A₂: terms over $\{A, 0, S\}$, rules $A(x, 0) \rightarrow x$ and $A(x, S(y)) \rightarrow S(A(x, y))$
- A1: what would you like to know about it?



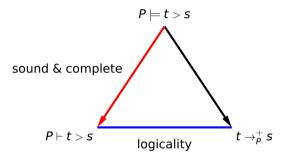
interest in?

equational theory (refl),(sym),(trans),(compatible),(rule) ? (Birkhoff)



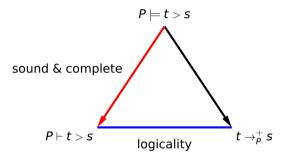
interest in?

rewrite theory (refl),(trans),(compatible),(rule) ? (Meseguer)



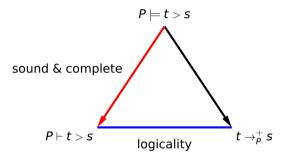
interest in?

termination theory (trans),(compatible),(rule),well-founded? (Lankford,Zantema)



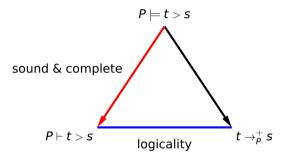
interest in?

any other sub-equational theory \subseteq (*refl*), (*sym*), (*trans*), (*compatible*), (*rule*)?



interest in?

computations? represent as terms; standardisation \Rightarrow (2D; Klop,Melliès)



interest in?

approximation? infinitary terms / rewriting (Klop, Ariola, Blom, Ketema)

the relevance of arbitrary signatures

```
combinatory logic (CL) : term rewrite system (TRS)
```

lambda-calculus (lambda) : higher-order term rewrite system (HRS; Nipkow)

. .

closed under renaming, adding recursion / algebraic rules, etc.

freeness: signature \implies terms, signature + rules \implies steps

- terms: simply typed λ -terms modulo $\alpha\beta\eta$ over typed signature
- steps: simply typed λ -terms modulo $\alpha\beta\eta$ over typed signature & typed rules source (target) by mapping each rule ρ : $\ell \rightarrow r$ in step to lhs ℓ (rhs r)

. .

Example (addition as a HRS)

• signature 0 : o (nullary), S : $o \rightarrow o$ (unary), A : $o \rightarrow o \rightarrow o$ (binary)

Example (addition as a HRS)

- signature 0 : o (nullary), S : $o \rightarrow o$ (unary), A : $o \rightarrow o \rightarrow o$ (binary)
- rules ρ : $o \rightarrow o$ and θ : $o \rightarrow o \rightarrow o$, for variables x, y : o:

 $\rho: \quad \lambda \mathbf{x}.A \times \mathbf{0} \quad \rightarrow \quad \lambda \mathbf{x}.x \\ \theta: \lambda \mathbf{x} \mathbf{y}.A \times (S \mathbf{y}) \quad \rightarrow \quad \lambda \mathbf{x} \mathbf{y}.S (A \times \mathbf{y})$

cf. Frege's shift from $\forall x.t = s$ to $\lambda x.t = \lambda x.s$

Example (addition as a HRS)

- signature 0 : o (nullary), S : $o \rightarrow o$ (unary), A : $o \rightarrow o \rightarrow o$ (binary)
- rules ρ : $o \rightarrow o$ and θ : $o \rightarrow o \rightarrow o$, for variables x, y : o

with syntactic sugar added

Example (untyped lambda-beta-eta calculus as a HRS)

• signature abs : $(o \rightarrow o) \rightarrow o$ (higher-order), app : $o \rightarrow o \rightarrow o$

Example (untyped lambda-beta-eta calculus as a HRS)

- signature abs : $(o \rightarrow o) \rightarrow o$ (higher-order), app : $o \rightarrow o \rightarrow o$
- rules eta : $o \rightarrow o$, beta : $(o \rightarrow o) \rightarrow o \rightarrow o$, variables $M : o \rightarrow o$ and N, K : o
 - eta: $\lambda K.abs \lambda x.app K x \rightarrow \lambda K.K$ beta: $\lambda MN.app (abs \lambda x.M x) N \rightarrow \lambda MN.M N$

without syntactic sugar; x is **parameter** to M; K **no** parameters

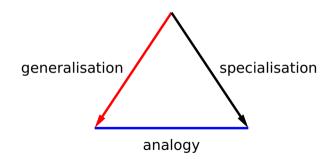
Example (untyped lambda-beta-eta calculus as a HRS)

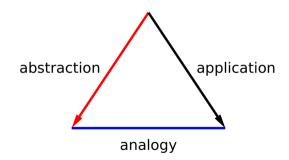
- signature abs : (o
 ightarrow o)
 ightarrow o (higher-order), app : o
 ightarrow o
 ightarrow o
- rules eta : $o \rightarrow o$, beta : $(o \rightarrow o) \rightarrow o \rightarrow o$, variables M : $o \rightarrow o$ and N, K : o

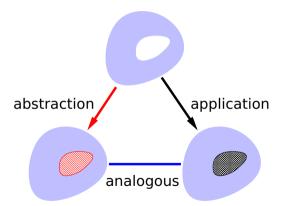
eta:
$$\lambda K.abs(\lambda x.app(K, x)) \rightarrow \lambda K.K$$

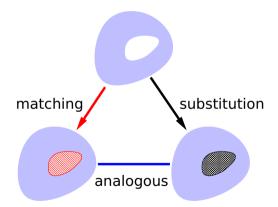
beta: $\lambda MN.app(abs(\lambda x.M(x)), N) \rightarrow \lambda MN.M(N)$

with syntactic sugar

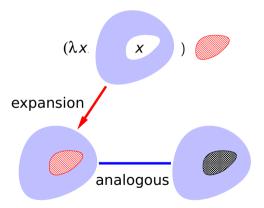




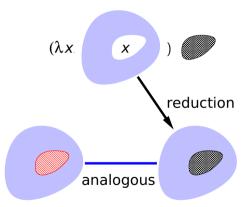


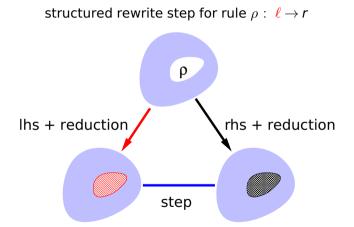


structured rewrite step for rule ρ : $\ell \rightarrow r$



structured rewrite step for rule ρ : $\ell \rightarrow r$





Example (Steps in HRS for addition)

• $S(\rho(0))$ step from $S((\lambda x.A(x,0)) 0) \downarrow = S(A(0,0))$ to $S((\lambda x.x) 0) \downarrow = S(0)$

Example (Steps in HRS for addition)

 $\begin{array}{lll}
 \rho \colon & \lambda \, x. \mathcal{A}(x,0) & \to & \lambda \, x. x \\
 \theta \colon \! \lambda \, xy. \mathcal{A}(x, \mathcal{S}(y)) & \to & \lambda \, xy. \mathcal{S}(\mathcal{A}(x,y))
 \end{array}$

- $S(\rho(0))$ step from $S((\lambda x.A(x,0)) 0) \downarrow = S(A(0,0))$ to $S((\lambda x.x) 0) \downarrow = S(0)$
- $\rho(\theta(0,0))$ multistep from $(\lambda x.A(x,0))((\lambda xy.A(x,S(y))) 0 0) \downarrow = A(A(0,S(0)), 0)$ to $(\lambda x.x)((\lambda xy.S(A(x,y))) 0 0) \downarrow = S(A(0,0))$

Example (Steps in HRS for addition)

 $\begin{array}{lll} \rho : & \lambda \, \textbf{x}. \textbf{A}(\textbf{x}, \textbf{0}) & \rightarrow & \lambda \, \textbf{x}. \textbf{x} \\ \theta : \lambda \, \textbf{x} \textbf{y}. \textbf{A}(\textbf{x}, \textbf{S}(\textbf{y})) & \rightarrow & \lambda \, \textbf{x} \textbf{y}. \textbf{S}(\textbf{A}(\textbf{x}, \textbf{y})) \end{array}$

• $S(\rho(0))$ step from $S((\lambda x.A(x,0)) 0) \downarrow = S(A(0,0))$ to $S((\lambda x.x) 0) \downarrow = S(0)$

• $\rho(\theta(0,0))$ multistep from $(\lambda x.A(x,0))((\lambda xy.A(x,S(y))) 0 0) \downarrow = A(A(0,S(0)), 0)$ to $(\lambda x.x)((\lambda xy.S(A(x,y))) 0 0) \downarrow = S(A(0,0))$

Remark (steps as terms non-standard still)

simply typed λ -calculus modulo $\alpha\beta\eta$ for binding / matching / substitution adaptable to strings, graphs, ...; can also be replaced by proof nets, ...

semantics of addition HRS?

$$\begin{array}{rcl} \lambda \, x.A \, x \, \mathbf{0} & \rightarrow_{\rho} & \lambda \, x.x \\ \lambda \, xy.A \, x \, (S \, y) & \rightarrow_{\theta} & \lambda \, xy.S \, (A \, x \, y) \end{array}$$

semantics of addition HRS?

$$\begin{array}{rcl} \lambda \, x.A \, x \, \mathbf{0} & \rightarrow_{\rho} & \lambda \, x.x \\ \lambda \, xy.A \, x \, (S \, y) & \rightarrow_{\theta} & \lambda \, xy.S \, (A \, x \, y) \end{array}$$

factorise through semantics of substitution; simply typed $\lambda\beta\eta$

• interpret base type o as \mathbb{N} ($\llbracket o \rrbracket := \mathbb{N}$), $\tau \to \sigma$ as set $\llbracket \tau \rrbracket \Rightarrow \llbracket \sigma \rrbracket$ of functions from $\llbracket \tau \rrbracket$ to $\llbracket \sigma \rrbracket$, function application / abstraction according to their name

semantics of addition HRS?

$$\begin{array}{rcl} \lambda \mathbf{x}.A \, \mathbf{x} \, \mathbf{0} & \rightarrow_{\rho} & \lambda \, \mathbf{x}.\mathbf{x} \\ \lambda \, \mathbf{x} \mathbf{y}.A \, \mathbf{x} \, (S \, \mathbf{y}) & \rightarrow_{\theta} & \lambda \, \mathbf{x} \mathbf{y}.S \, (A \, \mathbf{x} \, \mathbf{y}) \end{array}$$

factorise through semantics of substitution; simply typed $\lambda\beta\eta$

interpret each symbol *f* : *τ* as an element of its type [[*τ*]], say 0 as 37 ∈ N, S as id ∈ N ⇒ N, A as first projection *π*₁ ∈ N ⇒ N ⇒ N

semantics of addition HRS?

$$\begin{array}{rcl} \lambda \, x.A \, x \, \mathbf{0} & \rightarrow_{\rho} & \lambda \, x.x \\ \lambda \, xy.A \, x \, (S \, y) & \rightarrow_{\theta} & \lambda \, xy.S \, (A \, x \, y) \end{array}$$

factorise through semantics of substitution; simply typed $\lambda eta \eta$

- interpret each symbol f : τ as an element of its type [[τ]], say 0 as 37 ∈ N, S as id ∈ N ⇒ N, A as first projection π₁ ∈ N ⇒ N ⇒ N
- interpret rules ρ and θ as equalities

$$(n \mapsto n) = (n \mapsto n)$$

 $(n, m \mapsto n) = (n, m \mapsto n)$

semantics of addition HRS?

$$\begin{array}{rcl} \lambda \, x.A \, x \, 0 & \rightarrow_{\rho} & \lambda \, x.x \\ \lambda \, xy.A \, x \, (S \, y) & \rightarrow_{\theta} & \lambda \, xy.S \, (A \, x \, y) \end{array}$$

factorise through semantics of substitution; simply typed $\lambda eta \eta$

- interpret each symbol f : τ as an element of its type [[τ]], say 0 as 37 ∈ N, S as id ∈ N ⇒ N, A as first projection π₁ ∈ N ⇒ N ⇒ N
- interpret rules ρ and θ as equalities

$$(n \mapsto n) = (n \mapsto n)$$

 $n, m \mapsto n) = (n, m \mapsto n)$

of course interpreting as zero, successor, and addition also works

semantics of addition HRS?

$$\begin{array}{rcl} \lambda \, x.A \, x \, \mathbf{0} & \rightarrow_{\rho} & \lambda \, x.x \\ \lambda \, xy.A \, x \, (S \, y) & \rightarrow_{\theta} & \lambda \, xy.S \, (A \, x \, y) \end{array}$$

factorise through semantics of substitution; simply typed $\lambda eta \eta$

- interpret each symbol f : τ as an element of its type [[τ]], say 0 as 37 ∈ N, S as id ∈ N ⇒ N, A as first projection π₁ ∈ N ⇒ N ⇒ N
- interpret rules ρ and θ as equalities

$$(n \mapsto n) = (n \mapsto n)$$

 $n, m \mapsto n) = (n, m \mapsto n)$

two, successor, and multiplication gives inequalities > on $\mathbb{N}_{\geq 2}$ (termination)

semantics of untyped lambda-beta-eta HRS?

$$\begin{array}{ll} \lambda \left(\mathcal{K} \right) . \mathsf{abs} \, \lambda x . \mathsf{app} \, \mathcal{K} \, x & \to_{\mathsf{eta}} & \lambda \left(\mathcal{K} \right) . \mathcal{K} \\ \lambda \left(\mathcal{M} \mathcal{N} \right) . \mathsf{app} \left(\mathsf{abs} \, \lambda x . \mathcal{M} \, x \right) \mathcal{N} & \to_{\mathsf{beta}} & \lambda \left(\mathcal{M} \mathcal{N} \right) . \mathcal{M} \, \mathcal{N} \end{array}$$

Semantics of / via higher-order term rewriting?

semantics of untyped lambda-beta-eta HRS?

$$\lambda (K).$$
abs $\lambda x.$ app $Kx \rightarrow_{eta} \lambda (K).K$
 $\lambda (MN).$ app (abs $\lambda x.Mx)N \rightarrow_{beta} \lambda (MN).MN$

factorise through semantics of substitution; simply typed $\lambda\beta\eta$; CCC

• interpret beta and eta-rules in CCC (cf. Koymans):

$$@ \circ \langle \llbracket abs \rrbracket \circ \langle \rangle, @ \circ \langle \llbracket app \rrbracket \circ \langle \rangle, id \rangle \rangle = id$$

$$@ \circ \langle \llbracket \mathsf{app} \rrbracket \circ \langle \, \rangle, @ \circ \langle \llbracket \mathsf{abs} \rrbracket \circ \langle \, \rangle, \mathsf{id} \rangle \rangle = \mathsf{id}$$

Semantics of / via higher-order term rewriting?

semantics of untyped lambda-beta-eta HRS?

$$\lambda (K).$$
abs $\lambda x.$ app $Kx \rightarrow_{eta} \lambda (K).K$
 $\lambda (MN).$ app (abs $\lambda x.Mx)N \rightarrow_{beta} \lambda (MN).MN$

factorise through semantics of substitution; simply typed $\lambda\beta\eta$; CCC

• interpret beta and eta-rules in CCC (cf. Koymans):

• for set / functions: $[abs] \circ [app] = id \text{ on } D \text{ and } [app] \circ [abs] = id \text{ on } D \Rightarrow D$

Definition (the FMC)

• terms

$$M, N, P$$
 ::= $\star \mid x.M \mid [N]a.M \mid a\langle x \rangle.M$

Definition (the FMC)

terms

$$M, N, P$$
 ::= $\star \mid x.M \mid [N]a.M \mid a\langle x \rangle.M$

• rule

 $[N]a. H. a\langle x \rangle. M \rightarrow H. \{N/x\}M$

Definition (the FMC)

• terms

$$M, N, P$$
 ::= $\star \mid x.M \mid [N]a.M \mid a\langle x \rangle.M$

• rule

$$[N]a. H. a\langle x\rangle. M \rightarrow H. \{N/x\}M$$

Defects of standard presentation from a HRS perspective

• terms given by grammar, with external notion of binding

Definition (the FMC)

• terms

$$M, N, P$$
 ::= $\star \mid x. M \mid [N]a. M \mid a\langle x \rangle. M$

• rule

$$[N]a. H. a\langle x\rangle. M \rightarrow H. \{N/x\}M$$

Defects of standard presentation from a HRS perspective

- terms given by grammar, with external notion of binding
- rule schema: *H* sequences of abs/apps at $b \neq a$ and $\{N/x\}M$ meta-level

Definition (the FMC)

• terms

$$M, N, P$$
 ::= $\star \mid x. M \mid [N]a. M \mid a\langle x \rangle. M$

rule

$$[N]a. H. a\langle x\rangle. M \rightarrow H. \{N/x\}M$$

Defects of standard presentation from a HRS perspective

- terms given by grammar, with external notion of binding
- rule schema: *H* sequences of abs/apps at $b \neq a$ and $\{N/x\}M$ meta-level
- steps allow rule applications in any context; how defined exactly?

Definition (the FMC)

• terms

$$M, N, P$$
 ::= $\star \mid x. M \mid [N]a. M \mid a\langle x \rangle. M$

rule

$$[N]a. H. a\langle x\rangle. M \rightarrow H. \{N/x\}M$$

Desiderata to embed in higher-order term rewrite system

- simply typed $\lambda\beta\eta\alpha$ -terms freely generated from typed signature; λ -binding
- rule schema: *H* sequences of abs/apps at $b \neq a$ and $\{N/x\}M$ meta-level
- steps allow rule applications in any context; how defined exactly?

Definition (the FMC)

• terms

$$M, N, P$$
 ::= $\star \mid x. M \mid [N]a. M \mid a\langle x \rangle. M$

rule

$$[N]a. H. a\langle x\rangle. M \rightarrow H. \{N/x\}M$$

Desiderata to embed in higher-order term rewrite system

- simply typed $\lambda\beta\eta\alpha$ -terms freely generated from typed signature; λ -binding
- typed, closed rules; variables and substitutions at object-level
- steps allow rule applications in any context; how defined exactly?

Definition (the FMC)

• terms

$$M, N, P$$
 ::= $\star \mid x. M \mid [N]a. M \mid a\langle x \rangle. M$

rule

$$[N]a. H. a\langle x\rangle. M \rightarrow H. \{N/x\}M$$

Desiderata to embed in higher-order term rewrite system

- simply typed $\lambda\beta\eta\alpha$ -terms freely generated from typed signature; λ -binding
- typed, closed rules; variables and substitutions at object-level
- steps freely generated from signature extended with rules

FMC in a standard presentation: substitution

Definition (substitution $\{M/x\}N$ **)**

is capture-avoiding, uses composition *N*;*M* (also capture avoiding):

FMC in a standard presentation: substitution

Definition (substitution $\{M/x\}N$ **)**

is capture-avoiding, uses composition *N*;*M* (also capture avoiding):

how to deal with composition in HRS?

mark tip of **P** by bound variable $\chi \implies$ composition is substitution for χ

FMC as a (third-order) HRS

Definition (\mathcal{FMC})

• signature: lam_a : $((o \rightarrow o) \rightarrow o) \rightarrow o$ and app_a : $o \rightarrow (o \rightarrow o) \rightarrow o$ for every a

FMC as a HRS

Definition (\mathcal{FMC})

- signature: Iam_a : $((o \to o) \to o) \to o$ and app_a : $o \to (o \to o) \to o$ for every a
- rules: for variables \vec{K} free in *H*, and \vec{x} bound there, $x, \vec{x} : o \rightarrow o$

 $\mathsf{beta}_{H,a} \colon \lambda \, \vec{\mathsf{K}} \mathsf{MN}.\mathsf{app}_a(\mathsf{H}[\mathsf{Iam}_a(\lambda \, x.\mathsf{M}(\vec{x}, x))], \lambda \, \chi.\mathsf{N}(\chi)) \rightarrow \lambda \, \vec{\mathsf{K}} \mathsf{MN}.\mathsf{H}[\mathsf{M}(\vec{x}, \lambda \, \chi.\mathsf{N}(\chi))]$

FMC as a HRS

Definition (\mathcal{FMC})

- signature: lam_a : $((o \rightarrow o) \rightarrow o) \rightarrow o$ and app_a : $o \rightarrow (o \rightarrow o) \rightarrow o$ for every a
- rules: for variables \vec{K} free in H, and \vec{x} bound there, $x, \vec{x} : o \to o$ beta_{H a}: $\lambda \vec{K}MN$.app_a(H[lam_a($\lambda x.M(\vec{x}, x)$)], $\lambda \chi.N(\chi)$) $\to \lambda \vec{K}MN.H[M(\vec{x}, \lambda \chi.N(\chi))]$

Lemma (FMC embedding $\langle \rangle$)

in fragment $\lambda \chi$.S with S ::= $\chi | x S | app_a(S, \lambda \chi.S) | lam_a(\lambda x.S)$

- \star maps to χ
- **x**. **M** maps to $x\langle M \rangle$
- [N]a. M maps to $\operatorname{app}_a(\langle M \rangle, \lambda \chi. \langle N \rangle)$

Potentially interesting questions

1 is $>_{\beta}$ well-founded (termination model)? yes, for typed FMC by Gandy-proof

- 1 is $>_{\beta}$ well-founded (termination model)? yes, for typed FMC by Gandy-proof
- 2 is FMC computation $\twoheadrightarrow_{\beta}$ a (partial) function? yes, confluence by Okui's multi-one critical pair criterion

- **1** is $>_{\beta}$ well-founded (termination model)? yes, for typed FMC by Gandy-proof
- 2 is FMC computation $\twoheadrightarrow_{\beta}$ a (partial) function? yes, confluence by Okui's multi–one critical pair criterion
- is equational theory =_{beta} consistent (non-trivial model)?
 yes, because Church–Rosser and distinct normal forms (Church–Rosser)

- **1** is $>_{\beta}$ well-founded (termination model)? yes, for typed FMC by Gandy-proof
- 2 is FMC computation $\twoheadrightarrow_{\beta}$ a (partial) function? yes, confluence by Okui's multi–one critical pair criterion
- is equational theory =_{beta} consistent (non-trivial model)?
 yes, because Church–Rosser and distinct normal forms (Church–Rosser)
- do we have good strategies?
 - yes, spine reduction is hyper-normalising by random descent

- **1** is $>_{\beta}$ well-founded (termination model)? yes, for typed FMC by Gandy-proof
- 2 is FMC computation $\twoheadrightarrow_{\beta}$ a (partial) function? yes, confluence by Okui's multi–one critical pair criterion
- is equational theory =_{beta} consistent (non-trivial model)?
 yes, because Church–Rosser and distinct normal forms (Church–Rosser)
- do we have good strategies? yes, spine reduction is hyper-normalising by random descent
- is the combination with eta well-behaved?
 yes, commutes with beta by critical pair criterion

- **1** is $>_{\beta}$ well-founded (termination model)? yes, for typed FMC by Gandy-proof
- 2 is FMC computation $\twoheadrightarrow_{\beta}$ a (partial) function? yes, confluence by Okui's multi–one critical pair criterion
- is equational theory =_{beta} consistent (non-trivial model)?
 yes, because Church–Rosser and distinct normal forms (Church–Rosser)
- do we have good strategies?
 yes, spine reduction is hyper-normalising by random descent
- is the combination with eta well-behaved? yes, commutes with beta by critical pair criterion
- G reductions modulo permutation equivalence a computation category? yes, because multisteps →_{beta} constitute residual system (CTS; Stark)

Theorem

 $\rightarrow_{\text{beta}}$ is confluent

Definition

• rewrite system $\rightarrow := \langle A, \Phi, src, tgt \rangle$

 ϕ : $a \rightarrow b$ or $a \rightarrow_{\phi} b$ denotes step ϕ with source src(ϕ) = a, target tgt(ϕ) = b (rewrite systems have same data as multigraphs, quivers, pre-categories)

Theorem

 $\rightarrow_{\text{beta}}$ is confluent

Definition

- rewrite system $\rightarrow := \langle A, \Phi, src, tgt \rangle$
- has diamond property if \forall peak $b \leftarrow a \rightarrow c$, \exists valley $b \rightarrow d \leftarrow c$ Skolemisation: $\forall \phi, \psi \operatorname{src}(\phi) = \operatorname{src}(\psi) \Longrightarrow \operatorname{tgt}(\psi/\phi) = \operatorname{tgt}(\phi/\psi)$ (residuation)

Theorem

 $\rightarrow_{\mathsf{beta}}$ is confluent

Definition

- rewrite system $\rightarrow := \langle A, \Phi, src, tgt \rangle$
- has diamond property if \forall peak $b \leftarrow a \rightarrow c$, \exists valley $b \rightarrow d \leftarrow c$

Theorem

 $ightarrow_{ ext{beta}}$ is confluent

Difference between beta in \mathcal{FMC} and lambda-calculus

- beta rule in lambda-calculus is orthogonal; all occurrences concurrent
- beta rule in \mathcal{FMC} is non-orthogonal; (schematic) self-overlaps:

app_a-app_b-lam_b-lam_a

app_b-app_a-lam_b-lam_a

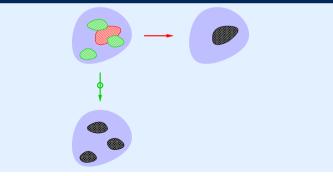
these are harmless; idea: beta does not change *H*; then use:

• \rightarrow confluent if $\rightarrow \subseteq \rightarrow \subseteq \twoheadrightarrow$ and \forall peaks $b \leftrightarrow a \rightarrow c$, \exists valley $b \twoheadrightarrow d \leftrightarrow c$

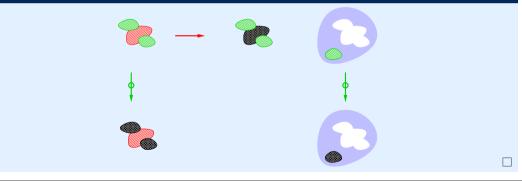
Theorem

 \rightarrow is confluent if \forall critical $b \leftrightarrow a \rightarrow c$, $\exists b \twoheadrightarrow d \leftrightarrow c$

Proof by potatoes of Okui's criterion (for $\twoheadrightarrow_{beta}$ and \rightarrow_{beta}).



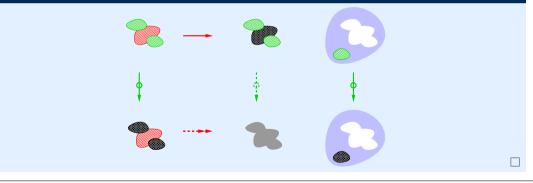
 \rightarrow is confluent if \forall critical $b \leftrightarrow a \rightarrow c$, $\exists b \twoheadrightarrow d \leftrightarrow c$



Theorem

 \rightarrow is confluent if \forall critical $b \leftrightarrow a \rightarrow c$, $\exists b \twoheadrightarrow d \leftrightarrow c$

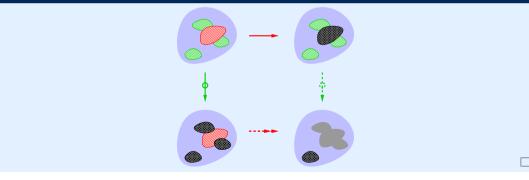
Proof by potatoes of Okui's criterion (for \rightarrow_{beta} and \rightarrow_{beta}).



Theorem

 \rightarrow is confluent if \forall critical $b \leftrightarrow a \rightarrow c$, $\exists b \twoheadrightarrow d \leftrightarrow c$

Proof by potatoes of Okui's criterion (for $\twoheadrightarrow_{beta}$ and \rightarrow_{beta}).



Theorem

 \rightarrow is confluent if \forall critical $b \leftrightarrow a \rightarrow c$, $\exists b \twoheadrightarrow d \leftrightarrow c$

Main challenge : formalise this

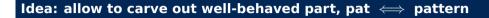
- any overlapping multi–one peak $t \longleftrightarrow s
 ightarrow r$
- decomposes as $(\lambda x.D)\hat{t} \leftrightarrow (\lambda x.C)\hat{s} \rightarrow (\lambda x.C)\hat{r}$ for multi-one critical peak $\hat{t} \leftarrow \hat{s} \rightarrow \hat{r}$ and multistep $D \leftarrow C$
- for multi–one critical peak $\hat{t} \leftrightarrow \hat{s} \rightarrow \hat{r}$ exists many–multi valley $\hat{t} \twoheadrightarrow \hat{u} \leftarrow \hat{r}$
- recomposing with multistep $D \leftrightarrow C$ yields many–multi valley $(\lambda x.D) \hat{t} \rightarrow (\lambda x.D) \hat{u} \leftrightarrow (\lambda x.C) \hat{r}$

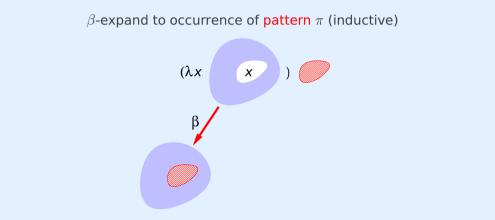
Idea: allow to carve out well-behaved part, pat \iff pattern

given a term

Idea: allow to carve out well-behaved part, pat \iff pattern

select convex set of edges and nodes, a pat P (geometric)





Definition (pat; geometric)

non-empty convex set P of node and edge positions in tree of a λ -term

Definition (pat; geometric)

non-empty convex set *P* of node and edge positions in tree of a λ -term

• if an @ is in P so is left child, and that is not a λ -abstraction (passive params)

Definition (pat; geometric)

non-empty convex set P of node and edge positions in tree of a λ -term

- if an @ is in P so is left child, and that is not a λ -abstraction
- taking *n* left childs of @s from root yields head symbol $f : \tau^n \rightarrow o$

Definition (pat; geometric)

non-empty convex set P of node and edge positions in tree of a λ -term

- if an @ is in P so is left child, and that is not a λ -abstraction
- taking *n* left childs of @s from root yields head symbol $f : \tau^n \rightarrow o$
- if variable position is in *P* then also its binder position (closed)

Definition (pat; geometric)

non-empty convex set P of node and edge positions in tree of a $\lambda\text{-term}$

Definition (pattern occurrence; inductive)

Definition (pat; geometric)

non-empty convex set P of node and edge positions in tree of a λ -term

Definition (pattern occurrence; inductive)

 $(\lambda x.t) \pi$ occurrence of π in $(\lambda x.t) \pi \downarrow_{\beta}$ if x once in t with π :

• closed simply typed λ -term

Definition (pat; geometric)

non-empty convex set P of node and edge positions in tree of a $\lambda\text{-term}$

Definition (pattern occurrence; inductive)

- closed simply typed $\lambda\text{-term}$
- in long- β -normal form (type can be read-off from term)

Definition (pat; geometric)

non-empty convex set P of node and edge positions in tree of a $\lambda\text{-term}$

Definition (pattern occurrence; inductive)

- closed simply typed $\lambda\text{-term}$
- in long- β -normal form
- has function symbol as head

Definition (pat; geometric)

non-empty convex set P of node and edge positions in tree of a $\lambda\text{-term}$

Definition (pattern occurrence; inductive)

- closed simply typed $\lambda\text{-term}$
- in long- β -normal form
- has function symbol as head
- if shape $\lambda \vec{F}.s$, then parameters \vec{F} occur in that order in t

Definition (pat; geometric)

non-empty convex set P of node and edge positions in tree of a $\lambda\text{-term}$

Definition (pattern occurrence; inductive)

- closed simply typed $\lambda\text{-term}$
- in long- β -normal form
- has function symbol as head
- if shape $\lambda \vec{F}.s$, then parameters \vec{F} occur in that order in t
- each F_i in it has variables $(\neq \vec{F})$ bound above as arguments in that order

Definition (pat; geometric)

non-empty convex set P of node and edge positions in tree of a λ -term

Definition (pattern occurrence; inductive)

 $(\lambda x.t) \pi$ occurrence of π in $(\lambda x.t) \pi \downarrow_{\beta}$ if x once in t with π :

Theorem

bijection between pats and pattern-occurrences in a term

Definition (pat; geometric)

non-empty convex set P of node and edge positions in tree of a λ -term

Definition (pattern occurrence; inductive)

 $(\lambda x.t) \pi$ occurrence of π in $(\lambda x.t) \pi \downarrow_{\beta}$ if x once in t with π :

Theorem

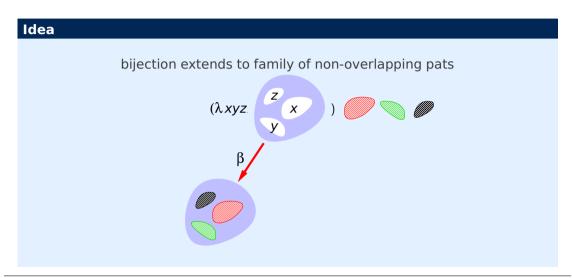
bijection between pats and pattern-occurrences in a term

Example

Ihs λ *FS*.app(abs($\lambda x.F(x)$), *S*) of rule beta of \mathcal{FMC} is a pattern

Theorem (distributive lattice)

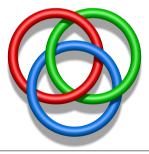
- sets of pats wrt subset (of union)
- occurrences of vectors of patterns wrt refinement



Theorem (distributive lattice)

- sets of pats wrt subset (of union)
- occurrences of vectors of patterns wrt refinement

in particular no Borromean rings situation



• we have said something (FMC meta-theory via HRS results for \mathcal{FMC})

- we have said something (FMC meta-theory via HRS results for \mathcal{FMC})
- can we say more?

- we have said something (FMC meta-theory via HRS results for \mathcal{FMC})
- can we say more?
- FMC semantics via \mathcal{FMC} ? surely coding of stacks too coarse; linear types?

- we have said something (FMC meta-theory via HRS results for \mathcal{FMC})
- can we say more?
- FMC semantics via *FMC*? surely coding of stacks too coarse; linear types?
- rule instead of rule schema? rule pattern is regular language

- we have said something (FMC meta-theory via HRS results for \mathcal{FMC})
- can we say more?
- FMC semantics via \mathcal{FMC} ? surely coding of stacks too coarse; linear types?
- rule instead of rule schema? rule pattern is regular language
- work modulo permutation to make beta, eta local? (almost no HRS modulo)

