

Commutation, motivation, localisation

Julian Nagele Vincent van Oostrom

University of Innsbruck

SIG

Thursday July 6, 14:00–15:30, ISR 2017

Contents

• Motivation

• Commutation in disguise

Local commutation

Commutation

Commutation

Definition \triangleright commutes with \blacktriangleright if $\blacktriangleleft \cdot \blacktriangleright \subset \triangleright \cdot \blacktriangleleft$

Commutation

 $\mathsf{Is} \to \mathsf{confluent?}$

Is \rightarrow confluent? Yes

Is \rightarrow confluent? Yes

Is \rightarrow confluent? Yes

 correctness of program transformation transformation ▷ commutes with semantics ▶

- correctness of program transformation transformation ▷ commutes with semantics ▶
- optimisation of program transformation transformation ▷ ordered commutes with semantics ▶

- correctness of program transformation transformation ▷ commutes with semantics ▶
- optimisation of program transformation transformation ▷ ordered commutes with semantics ►
- confluence by self-commutation if \rightarrow commutes with $\rightarrow,$ then \rightarrow confluent

- correctness of program transformation transformation ▷ commutes with semantics ▶
- optimisation of program transformation transformation ▷ ordered commutes with semantics ►
- confluence by self-commutation if \rightarrow commutes with \rightarrow , then \rightarrow confluent
- confluence modularly if $\forall i, j \rightarrow_i$ commutes with $\rightarrow_j \implies$, then $\bigcup_k \rightarrow_k$ confluent

- correctness of program transformation transformation ▷ commutes with semantics ▶
- optimisation of program transformation transformation ▷ ordered commutes with semantics ►
- confluence by self-commutation if \rightarrow commutes with \rightarrow , then \rightarrow confluent
- confluence modularly if $\forall i, j \rightarrow_i$ commutes with $\rightarrow_j \implies$, then $\bigcup_k \rightarrow_k$ confluent
- termination modularly
 if ⊲, ► commute lazily then ⊲, ► terminating iff ⊲ ∪ ►
 terminating

- correctness of program transformation transformation ▷ commutes with semantics ▶
- optimisation of program transformation transformation ▷ ordered commutes with semantics ►
- confluence by self-commutation if \rightarrow commutes with \rightarrow , then \rightarrow confluent
- confluence modularly if $\forall i, j \rightarrow_i$ commutes with $\rightarrow_j \implies$, then $\bigcup_k \rightarrow_k$ confluent
- termination modularly
 if ⊲, ► commute lazily then ⊲, ► terminating iff ⊲ ∪ ►
 terminating
- behavioural equivalence (bisimulation-up-to) $\triangleleft \cdot \sim \subset \sim \cdot \triangleleft$ and $\sim \cdot \triangleright \subset \triangleright \cdot \sim (R \text{ vs. } \sim \cdot R \cdot \sim)$

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting transformation

$$a(x,0) \triangleright x$$

rewriting semantics (meaning is closed normal form)

$$\begin{array}{rcl} a(0,y) & \blacktriangleright & y \\ a(s(x),y) & \blacktriangleright & s(a(x,y)) \end{array}$$

rewriting transformation

$$a(x,0) \triangleright x$$

Lemma

transformation is correct

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting transformation

$$a(x,0) \triangleright x$$

Lemma

transformation is correct

Proof.

idea: transformation > commutes with semantics >

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$
$$a(s(x), y) \triangleright s(a(x, y))$$

rewriting transformation

$$a(x,0) \triangleright x$$

Lemma

transformation is correct

Proof.

idea: transformation \triangleright commutes with semantics \blacktriangleright

Exercise

prove this

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting transformation

$$a(a(x,y),z) \triangleright a(x,a(y,z))$$

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

$$a(s(x), y) \triangleright s(a(x, y))$$

rewriting transformation

$$a(a(x,y),z) \triangleright a(x,a(y,z))$$

Lemma

transformation is correct

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting transformation

$$a(a(x,y),z) \triangleright a(x,a(y,z))$$

Lemma

transformation is correct

Proof.

idea: transformation > commutes with semantics >
Correctness of program transformation

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting transformation

$$a(a(x,y),z) \triangleright a(x,a(y,z))$$

Lemma

transformation is correct

Proof.

idea: transformation \triangleright commutes with semantics \blacktriangleright

Exercise

prove this does not hold. what does hold?

Correctness of program transformation

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting transformation

$$a(a(x,y),z) \triangleright a(x,a(y,z))$$

Lemma

transformation is correct

Proof.

idea: transformation $\triangleright \cup \triangleright$ commutes with semantics \triangleright

Exercise

prove this does hold.

JN & VvO (UIBK)

Ordered commutation

Definition

▷ ordered commutes with ▷ if ${}^n \triangleleft \cdot ▷^m \subseteq ▷^{m'} \cdot {}^{n'} \triangleleft$, $n + m' \leqslant m + n'$

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting optimisation

$$a(x,0) \triangleright x$$

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting optimisation

$$a(x,0) \triangleright x$$

Lemma

transformation is optimisation

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$
$$a(s(x), y) \triangleright s(a(x, y))$$

rewriting optimisation

$$a(x,0) \triangleright x$$

Lemma

transformation is optimisation

Proof.

idea: transformation \triangleright ordered commutes with semantics \blacktriangleright

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting optimisation

$$a(x,0) \triangleright x$$

Lemma

transformation is optimisation

Proof.

idea: transformation \triangleright ordered commutes with semantics \blacktriangleright

Exercise

prove this

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting optimisation

$$a(a(x,y),z) \triangleright a(x,a(y,z))$$

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

$$a(s(x), y) \triangleright s(a(x, y))$$

rewriting optimisation

$$a(a(x,y),z) \triangleright a(x,a(y,z))$$

Lemma

optimisation is correct

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting optimisation

$$a(a(x,y),z) \triangleright a(x,a(y,z))$$

Lemma

optimisation is correct

Proof.

idea: optimisation \triangleright ordered commutes with semantics \blacktriangleright

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting optimisation

$$a(a(x,y),z) \triangleright a(x,a(y,z))$$

Lemma

optimisation is correct

Proof.

idea: optimisation \triangleright ordered commutes with semantics \blacktriangleright

Exercise

prove this does not hold. what does hold?

rewriting semantics (meaning is closed normal form)

$$a(0, y) \triangleright y$$

 $a(s(x), y) \triangleright s(a(x, y))$

rewriting optimisation

$$a(a(x,y),z) \triangleright a(x,a(y,z))$$

Lemma

optimisation is correct

Proof.

idea: optimisation $\triangleright \cup \triangleright$ ordered commutes with semantics \triangleright

Exercise

prove this does hold.

JN & VvO (UIBK)

Contents

Motivation

• Commutation in disguise

Local commutation

Factorisation

if $\blacktriangleleft \cdot \triangleright \subseteq \triangleright \cdot \triangleleft$, then \triangleright commutes with \triangleright

Factorisation

if $\bowtie \cdot \bowtie \subseteq \bowtie \cdot \bowtie$, then $\blacktriangleright, \triangleright$ factorisation holds

$\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

$\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (η -postponement)

 η -steps can be postponed until after β -steps

$\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (η -postponement)

$$M \twoheadrightarrow_{\beta\eta} N \implies M \twoheadrightarrow_{\beta} \cdot \twoheadrightarrow_{\eta} N$$

$\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (η -postponement)

$$M \twoheadrightarrow_{\beta\eta} N \implies M \twoheadrightarrow_{\beta} \cdot \twoheadrightarrow_{\eta} N$$

Proof.

Idea: repeatedly replace $M \rightarrow_{\eta} P \rightarrow_{\beta} N$ by $M \twoheadrightarrow_{\beta} Q \twoheadrightarrow_{\eta} N$

$\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (η -postponement)

$$M \twoheadrightarrow_{\beta\eta} N \implies M \twoheadrightarrow_{\beta} \cdot \twoheadrightarrow_{\eta} N$$

Proof.

Idea: repeatedly replace $M o_\eta P o_\beta N$ by $M o_\beta Q o_\eta N$

Exercise

Would this idea be sufficient to prove postponement? Rephrased: is this process terminating/normalising in general/here?

 $\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (η -postponement)

$$M\twoheadrightarrow_{\beta\eta}N\implies M\twoheadrightarrow_{\beta}\cdot\twoheadrightarrow_{\eta}N$$

Proof.

Idea: repeatedly replace $M \rightarrow_{\eta} P \rightarrow_{\beta} N$ by $M \twoheadrightarrow_{\beta} Q \twoheadrightarrow_{\eta} N$

Exercise

Would this idea be sufficient to prove postponement? Rephrased: is this process terminating/normalising in general/here?

Answer

No, e.g. $01 \Rightarrow 1100$ is not terminating

 $\underline{01}1 \Rightarrow 110\underline{01} \Rightarrow 111\underline{011}00 \Rightarrow \dots$

 $\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (η -postponement) $M \twoheadrightarrow_{\beta\eta} N \implies M \twoheadrightarrow_{\beta} \cdot \twoheadrightarrow_{\eta} N$

Proof.

 $C[\lambda x.Mx] \rightarrow_{\eta} C[M] \rightarrow_{\beta} N$, distinguish on where β -step is

- if $M \rightarrow_{\beta} P$, then $C[\lambda x.Mx] \rightarrow_{\beta} C[\lambda x.Px] \rightarrow_{\eta} C[P]$
- if $C \rightarrow_{\beta} D$, then $C[\lambda x.Mx] \rightarrow_{\beta} D[\lambda x.Px] \twoheadrightarrow_{\eta} C[P]$
- if overlaps both C,M, $C[\lambda x.Mx] \rightarrow_{\beta} P \rightarrow_{\beta} N$

$\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (η -postponement)

$$M \twoheadrightarrow_{\beta\eta} N \implies M \twoheadrightarrow_{\beta} \cdot \twoheadrightarrow_{\eta} N$$

Proof.

Idea: repeatedly replace $M \xrightarrow{}_{\eta} P \xrightarrow{}_{\beta} N$ by $M \xrightarrow{}_{\beta}^{+} Q \xrightarrow{}_{\eta} N$

$\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

$\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (β -preponement)

 β -steps can be preponed before β -steps

 $\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (β -preponement)

 $M \twoheadrightarrow_{\beta\eta} N \implies M \twoheadrightarrow_{\beta} \cdot \twoheadrightarrow_{\eta} N$ so termination of $\beta\eta$ follows from termination of β,η

$\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (β -preponement)

 $M \twoheadrightarrow_{\beta\eta} N \implies M \twoheadrightarrow_{\beta} \cdot \twoheadrightarrow_{\eta} N$ so termination of $\beta\eta$ follows from termination of β,η

Proof.

Idea: replace leftmost $M \rightarrow_{\eta} P \rightarrow_{\beta} N$ by $M \twoheadrightarrow_{\beta} Q \twoheadrightarrow_{\eta} N$

$\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (β -preponement)

 $M \twoheadrightarrow_{\beta\eta} N \implies M \twoheadrightarrow_{\beta} \cdot \twoheadrightarrow_{\eta} N$ so termination of $\beta\eta$ follows from termination of β,η

Proof.

Idea: replace leftmost $M \rightarrow_{\eta} P \rightarrow_{\beta} N$ by $M \twoheadrightarrow_{\beta} Q \twoheadrightarrow_{\eta} N$

Exercise

Would idea be sufficient to prove preponement, in general/here?

$\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (β -preponement)

 $M \twoheadrightarrow_{\beta\eta} N \implies M \twoheadrightarrow_{\beta} \cdot \twoheadrightarrow_{\eta} N$ so termination of $\beta\eta$ follows from termination of β,η

Proof.

Idea: replace leftmost
$$M \rightarrow_{\eta} P \rightarrow_{\beta} N$$
 by $M \twoheadrightarrow_{\beta} Q \twoheadrightarrow_{\eta} N$

Exercise

Would idea be sufficient to prove preponement, in general/here?

Answer

No, e.g. $b \rightarrow^0 a \rightarrow^{0,1} a' \rightarrow^1 c \ (01 \Rightarrow 00,01 \Rightarrow 11 \text{ not terminating})$

 $\underline{01}1 \rightarrow 0\underline{01} \rightarrow \underline{011} \rightarrow \dots$

$\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (β -preponement)

 $M \twoheadrightarrow_{\beta\eta} N \implies M \twoheadrightarrow_{\beta} \cdot \twoheadrightarrow_{\eta} N$ so termination of $\beta\eta$ follows from termination of β,η

Proof.

$$C[\lambda x.Mx] \rightarrow_{\eta} C[M] \rightarrow_{\beta} N$$

- if $M \rightarrow_{\beta} P$, then $C[\lambda x.Mx] \rightarrow_{\beta} C[\lambda x.Px] \rightarrow_{\eta} C[P]$
- if $C \rightarrow_{\beta} D$, then $C[\lambda x.Mx] \rightarrow_{\beta} C[\lambda x.Px] \rightarrow_{\eta} C[P]$
- if overlaps both $C, M, C[\lambda x.Mx] \rightarrow_{\beta} P \rightarrow_{\beta} N$

$\lambda\text{-calculus}$ with β and $\eta\text{-reduction}$

Theorem (β -preponement)

 $M \twoheadrightarrow_{\beta\eta} N \implies M \twoheadrightarrow_{\beta} \cdot \twoheadrightarrow_{\eta} N$ so termination of $\beta\eta$ follows from termination of β,η

Proof.

$$C[\lambda x.Mx] \rightarrow_{\eta} C[M] \rightarrow_{\beta} N$$

- if $M \rightarrow_{\beta} P$, then $C[\lambda x.Mx] \rightarrow_{\beta} C[\lambda x.Px] \rightarrow_{\eta} C[P]$
- if $C \rightarrow_{\beta} D$, then $C[\lambda x.Mx] \rightarrow_{\beta} C[\lambda x.Px] \rightarrow_{\eta} C[P]$
- if overlaps both $C, M, C[\lambda x.Mx] \rightarrow_{\beta} P \rightarrow_{\beta} N$

Idea: repeatedly replace $M \rightarrow_{\eta} P \rightarrow_{\beta} N$ by $M \rightarrow_{\beta} Q \twoheadrightarrow_{\beta\eta} N$

Contents

Motivation

• Commutation in disguise

• Local commutation

Commuting version of Newman's Lemma

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \triangleright$ terminating

Commuting version of Newman's Lemma

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \triangleright$ terminating

Proof.

negative: infinite tiling impossible positive: $\forall a, \triangleleft a \models \subseteq \blacktriangleright \cdot \triangleleft$ by induction on *a*, ordered by \rightarrow^+ \Box

Commuting version of Newman's Lemma

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \triangleright$ terminating

Exercise

show that without termination commutation need not hold
Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \blacktriangleright$ terminating

Exercise

show that without termination commutation need not hold

Theorem

local commutation implies commutation, if $\rightarrow = \triangleright \cup \triangleright$ terminating

Exercise

show that without termination commutation need not hold exercise: does commutation hold if $\triangleright^+ \cdot \triangleright^+$ terminating?

Theorem

local commutation implies commutation, if $\triangleright^+ \cdot \triangleright^+$ terminating

Proof.

idea: use decreasing diagrams with self-labelling

- label $a \triangleright b$ as $a \triangleright_{a \triangleright b} b$
- label a ► b as a ►_{a►b} b
- order ≻ generated by 'reachability':

$$(a \triangleright b) \succ (c \triangleright d)$$
, if $b \twoheadrightarrow c$

$$(a \triangleright b) \succ (c \triangleright d)$$
, if $b \twoheadrightarrow c$

with $\rightarrow = \triangleright \cup \triangleright$, well-founded because of assumption

Theorem

local commutation implies commutation, if $\triangleright^+ \cdot \triangleright^+$ terminating

Theorem

local commutation implies commutation, if $\triangleright^+ \cdot \flat^+$ terminating

Theorem

local commutation implies commutation, if $\triangleright^+ \cdot \triangleright^+$ terminating

Proof.

Theorem (Hindley 1964) strong commutation implies commutation

Proof.

intuition: tiling terminates since only > steps are split

Proof.

intuition: tiling terminates since only \triangleright steps are split

Proof.

intuition: tiling terminates since only > steps are split

Proof.

intuition: tiling terminates since only > steps are split

Proof.

intuition: tiling terminates since only > steps are split

Proof.

intuition: tiling terminates since only > steps are split

Proof.

intuition: tiling terminates since only > steps are split

Proof.

intuition: tiling terminates since only > steps are split

Proof.

intuition: tiling terminates since only > steps are split

Proof.

intuition: tiling terminates since only > steps are split

Proof.

intuition: tiling terminates since only > steps are split

Proof.

intuition: tiling terminates since only > steps are split

Proof.

intuition: tiling terminates since only > steps are split

Proof.

intuition: tiling terminates since only > steps are split

must stop: each > stripe is eventualy filled

Local decreasingness

Exercise

Exercise find 4 different labellings; how many labels needed? b a 100 100 100 100 99 99 99 a 98 h 98 6 96 Hans' labelling: top-bottom, high as possible

Exercise find 4 different labellings; how many labels needed? 0 d h a h а $b \succ d \succ c \succ f \succ g \succ h \succ e \succ a \succ j \succ i$ (topological sort)

Exercise find 4 different labellings; how many labels needed? d е а a $b \succ d \succ c \succ f \succ g \succ h \succ e \succ a \succ j \succ i$ (topological sort)

Exercise find 4 different labellings; how many labels needed? b 0 а 0 0 6 0 0 two labels: 1 > 0

Exercise

Exercise

• find suitable labelling to prove Newman's Lemma

Exercise

find suitable labelling to prove Newman's Lemma
 Answer: label steps by source, order by →⁺ with → = ▷ ∪ ▶

Exercise

find suitable labelling to prove Newman's Lemma
 Answer: label steps by source, order by →⁺ with → = ▷ ∪ ▶

Exercise

find suitable labelling to prove Newman's Lemma
 Answer: label steps by source, order by →⁺ with → = ▷ ∪ ▶

Exercise

• find suitable labelling to prove Hindley's Lemma

Exercise

 find suitable labelling to prove Hindley's Lemma Answer: order ►-steps above ▷-steps

Exercise

 find suitable labelling to prove Hindley's Lemma Answer: order ►-steps above ▷-steps

Exercise

 find suitable labelling to prove Hindley's Lemma Answer: order ►-steps above ▷-steps

Proof. local peak may not be base case

Proof.

idea: combine label with labels it still has to commute with

Proof.

idea: combine label with labels it still has to commute with

i still has to commute with j; j still has to commute with i

Proof.

idea: combine label with labels it still has to commute with

Proof. idea: combine label with labels it still has to commute with

- i has to commute with $\prec j$
- *j* does not have to commute anymore
- $\prec i, j$ have to commute among themselves

Proof.

formally: compare label strings of conversions by $s \gg_{\bullet} t$ with

$$s \gg_{ullet} t$$
 if $\langle s
angle^f ((\succ,\gg_{ullet})_{\mathit{mul}} \langle t
angle^f$

- $\langle s \rangle^f = [(\ell, q) \mid s = p\ell q] \cup [(\ell, p) \mid s = p\ell q]$ collects acute/grave letters together with suffix/prefix
- \gg_{mul} the multiset extension of \gg
- $(\gg_1,\gg_2)_{lex}$ the lexicographic product of \gg_1,\gg_2

Proof.

formally: compare label strings of conversions by $s \gg_{\bullet} t$ with

$$s \gg_{ullet} t$$
 if $\langle s
angle^f ((\succ,\gg_{ullet})_{\mathit{hex}})_{\mathit{mul}} \langle t
angle^f$

- $\langle s \rangle^f = [(\ell, q) \mid s = p\ell q] \cup [(\ell, p) \mid s = p\ell q]$ collects acute/grave letters together with suffix/prefix
- \gg_{mul} the multiset extension of \gg
- $(\gg_1,\gg_2)_{lex}$ the lexicographic product of \gg_1 , \gg_2
- \gg_{ullet} well-founded prooforder

Locally decreasing for self

Theorem

locally decreasing \Rightarrow confluence

Locally decreasing for self

Theorem

locally decreasing \Rightarrow confluence

 $\rightarrow = \bigcup_{i \in I} \rightarrow_i$, \prec well-founded order on I

complete for countable systems

(In)completeness of decreasing diagrams

Theorem

if a countable rewrite relation is confluent, then it can be proven so by decreasing diagrams. only 2 labels are needed

(In)completeness of decreasing diagrams

decreasing diagrams is incomplete for commutation

Example

$$d \blacktriangleleft b \triangleleft a_1 \blacklozenge a_2 \blacktriangleright c \triangleright d$$

Proof by contradiction.

consider triples of shape $b \triangleleft_i a_1 \bowtie_j a_2 \triangleright_k c$ with labels [i, j, k]. suppose w.l.o.g. $a_1 \triangleright_j a_2$. then $b \triangleleft_i a_1 \triangleright_j a_2$ can only be closed by $b \triangleleft_{i'} a_1 \triangleleft_{j'} a_2$. distinguish cases on the origin of the label j':

- if j' < j, then consider the triple with labels [i, j', k].
- suppose j' = i. if i' < i consider the triple with labels [i', j, k], else i' < j and consider the triple with labels [i', i, k].

(In)completeness of decreasing diagrams

decreasing diagrams is incomplete for commutation

Example

$$d \blacktriangleleft b \triangleleft a_1 \blacklozenge a_2 \blacktriangleright c \triangleright d$$

Proof by contradiction.

consider triples of shape $b \triangleleft_i a_1 \bowtie_j a_2 \triangleright_k c$ with labels [i, j, k]. suppose w.l.o.g. $a_1 \triangleright_j a_2$. then $b \triangleleft_i a_1 \triangleright_j a_2$ can only be closed by $b \triangleleft_{i'} a_1 \triangleleft_{j'} a_2$. distinguish cases on the origin of the label j':

- if j' < j, then consider the triple with labels [i, j', k].
- suppose j' = i. if i' < i consider the triple with labels [i', j, k], else i' < j and consider the triple with labels [i', i, k].

even if works, arbitrarily many labels may be needed.

Ordered commutation

Theorem

ordered local commutation \implies ordered commutation

how to read: either joinable, or the longer side is infinite

Ordered commutation

Theorem

ordered local commutation \implies \triangleright is better than \blacktriangleright

how to read: either joinable, or the longer side is infinite

Lazy commutation

Theorem

if \triangleright , \triangleright are TRSs, \triangleright is right-linear, \triangleright is left-linear and no overlap $\triangleright \cup \triangleright$ is terminating iff \triangleright , \triangleright terminating

Proof.

by lazy commutation