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Strategy

Definition
Rewrite system is set of objects and steps between them

Example

I λ-terms with β-steps

I λ-terms with βη-steps

I Combinatory logic terms with S/K/I -steps

Definition
Rewrite strategy is subsystem with same set of normal forms

Example

I Leftmost–outermost/spine strategy

I Needed strategy

I Not call by value
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Spine strategy

Definition
Spine: if head normal form recur, else Head Spine.
Head Spine: recur on left.
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Needed strategy

Definition
Needed strategy: contracts needed redexes.
Needed redex: a residual overlapped in reductions to normal form.

Example

K (I I )(II )

Undecidable in general: R Needed in tR?

Lemma
Every term not in normal form has Needed redex

Proof.
Every Spine redex is needed since each spine symbol has unique
descendant until overlapped by contracted redex

False in general: f (f (a, a), f (a, a)) for f (x , a)→ a and f (a, x)→ a
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Ordering Spine above Needed

Lemma
WN(−I)⊆SN(_) if −I,_ are ordered Church–Rosser

~

~∗ ~ ∗

≥

. . .

∗

Corollary

WN(Spine)=SN(Needed) if Spine,Needed ordered Church–Rosser



Ordered diagrams (≥)

ordered?

Definition
Diagram ordered if

∑
counter clockwise ≥

∑
clockwise

Lemma
Ordered diagrams preserved by pasting (along segment)
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Finitely representing infinite reductions (~)

Definition
a _∞ b if a _ a′ _ a′′ . . ..

Order extended with ∞ (top) to measure such steps (µ,ν,. . . )

Allows to finitely represent infinite reductions

Definition
_~ = (_ ∪_∞)∗
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Ordering Spine above Needed

Lemma
WN(−I)⊆SN(_) if −I,_ are ordered Church–Rosser
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Localising Ordered Church–Rosser

⇐
⇒

∗ ~

~ ∗

≥

ordered commutation

∗

∗ ~ ∗ ~

≥

ordered Church–Rosser

⇐⇒

~

~ ∗ ~ ∗

≥

local Dyck

∗~

≥

ordered local commutation

⇐⇒

restricting ∀, widening ∃
(cf. Winkler–Buchberger, Decreasing Diagrams converted)



Local Dyck

≥

n µ

µ′1 n′1

. . .

n′kµ′k

satisfying n +
∑
µ′i >

∑
n′i (Dyck, matching parentheses)

Theorem
Ordered Church–Rosser iff Local Dyck

Proof.
Only–if trivial. If via ordered commutation, see paper

Incomparable to commutation
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Random Descent

Definition
→ has random descent if a n↔~

µ b with a in normal form
implies a ∗n′← b with n = µ+ n′

Corollary

Random Descent iff Local Dyck
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Incomparable to confluence. Implies uniqueness of normal forms.
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History and consequences of Random Descent
Local peak joinable by

I 0 or 1 steps on both sides (Newman 1942)

I n steps on both sides (Toyama 1992)
I n ≥ m steps (van Oostrom 2007)

All special cases of Local Dyck

Definition
Distance d(a) of object a:
length of reduction from a to normal form (∞ otherwise)

Corollary

Distance well-defined if Random Descent, SN(→)=WN(→), UN

→ need not be deterministic

Example

I External steps in orthogonal systems (Huet and Lévy 1978)

I Spine steps in λβ (Barendrecht et.al. 1987)

I Interaction Net reduction (Lafont 1990)
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Spine has Random Descent

Proof.
Two spine steps from the same term either

I have overlap, then the overlap is trivial (0); or

I do not have overlap; then they commute directly (1).

Corollary

SN(Spine)=WN(Spine)=SN(Needed)

Still to show WN(R)=SN(Spine), i.e. that Spine is normalising.



Spine has Random Descent

Proof.
Two spine steps from the same term either

I have overlap, then the overlap is trivial (0); or

I do not have overlap; then they commute directly (1).

Corollary

SN(Spine)=WN(Spine)=SN(Needed)

Still to show WN(R)=SN(Spine), i.e. that Spine is normalising.



Spine has Random Descent

Proof.
Two spine steps from the same term either

I have overlap, then the overlap is trivial (0); or

I do not have overlap; then they commute directly (1).

Corollary

SN(Spine)=WN(Spine)=SN(Needed)

Still to show WN(R)=SN(Spine), i.e. that Spine is normalising.



Normalisation by Compatibility

Lemma
Let −I be strategy for →, having Random Descent and

or

=

=

smaller

Then −I is hyper-normalising and has NF
NF: convertible to normal form implies reducible to normal form
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Spine is Compatible in case of multisteps

Let −I be Needed strategy for →-multisteps, having Random
Descent. Then

or

=

=

multistep

smaller

Corollary

Spine is hyper-normalising.
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Normalisation of Needed

∞(R)

WN(R)=SN(Spine)=WN(Spine)=SN(Needed)



Summary of Methodology

1. Ordering _ (Needed) below −I (Spine) by Local-Dyck(−I,_)

2. Conclude _ is normalising if holds for −I

3. Show −I has via Random Descent by Local-Dyck(−I)

4. Conclude WN(−I)=SN(−I), UN(−I), yields distance-function

5. Show −I is Compatible

6. Conclude −I is normalising, so _ is.

Salient features:

I Clean separation abstract vs. concrete (e.g. also graphs, nets)

I Properties rely on local ‘critical peak’ analysis (automation)

I Paper: normalisation of left–outer strategy for left-normal h-o

I Paper: hyper-normalisation

I No need for finite permutation equivalence (Melliès)

I No need for determinism (Hirokawa, Middeldorp, Moser)
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Conversion Monoid

I Measure steps in well-foundedly ordered monoid (M,+,⊥).

I ⊥ is least element

I + is strictly monotonic in both arguments

I + is cancellative

Theorem
Ordered Church–Rosser iff Local Dyck, w.r.t. measure (distance)

Example

zeros→1 0 : zeros

hd(x : y)→1 x

hd(zeros)→2 0

Critical peak left–outer Dyck, see paper
Left–outer strategy is normalising.
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Future work

I Retrofit known (hyper-)normalisation results in setting
(may require slight generalisation of conversion monoid)

I Extend to other sets of normal forms (head, weak head)
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