

Residuation = Skolemised Confluence

Vincent van Oostrom

Skolemising local confluence

Definition (local confluence)

- \forall peak $b \leftarrow a \rightarrow c$ of steps \exists valley $b \rightarrow d \leftarrow c$ of reductions, for some d
- \forall peak of steps ϕ, ψ , have that $\phi \setminus \psi, \phi / \psi$ is composable valley of reductions

Skolem functions \backslash , / from (co-initial) steps to (co-final) reductions: residuations write $C(\phi, \psi, \phi \setminus \psi, \phi / \psi)$ to denote reductions constitute confluence diagram

Skolemising the diamond property

Definition (local confluence)

- \forall peak $b \leftarrow a \rightarrow c$ of steps \exists valley $b \rightarrow d \leftarrow c$ of steps, for some d
- \forall peak of steps ϕ, ψ , have that $\phi \setminus \psi, \phi / \psi$ is composable valley of steps

Skolem functions \backslash , / from (co-initial) steps to (co-final) steps: residuations write $C(\phi, \psi, \phi \setminus \psi, \phi / \psi)$ to denote reductions constitute confluence diagram

From two residuations \setminus , / to a single symmetric one

Definition

residuations \, / are symmetric if $\phi \setminus \psi = \psi / \phi$

Remark

a priori diamond property / (local) confluence need not entail symmetry

- for ϕ, ψ : $a \to a$, may set $\phi \setminus \psi := \psi \setminus \phi := \phi$ and $\phi / \psi := \psi / \phi := \psi$
- if e.g. ← · → ⊆ → · = ← then confluence typically not symmetric (strong confluence; Huet)
- orthogonal term rewrite system, diamond of multisteps → is symmetric (Rosen, Tait–Martin-Löf, Klop proof)

From two residuations $\backslash, /$ to a single symmetric one

Definition

residuations \, / are symmetric if $\phi \setminus \psi = \psi / \phi$

Question

does a symmetric residuation always exist?

From two residuations $\backslash, /$ to a single symmetric one

Definition

residuations \, / are symmetric if $\phi \setminus \psi = \psi / \phi$

Lemma

residuations may be assumed to be symmetric

Proof.

by symmetrisation given \backslash , /, assuming a total order \leq on (co-initial) steps define $\phi \mid \psi := \phi / \psi$ if $\phi \leq \psi$ and $\psi \setminus \phi$ otherwise.

From two residuations \setminus , / to a single symmetric one

Lemma

residuations may be assumed to be symmetric

Proof.

by symmetrisation given \backslash , /, assuming a total order \leq on (co-initial) steps define $\phi \mid \psi := \phi / \psi$ if $\phi \leq \psi$ and $\psi \setminus \phi$ otherwise. then if $\phi \leq \psi$:

From diamond to confluence (diamond of \rightarrow) by tiling

Theorem (Newman)

$$\textit{if} \leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow \textit{then} \twoheadleftarrow \cdot \twoheadrightarrow \subseteq \twoheadrightarrow \cdot \twoheadleftarrow$$

From diamond to confluence by tiling

Theorem (Newman)

if \rightarrow has diamond property then so does \rightarrow (confluence); results unique

From local confluence to confluence by tiling

Theorem (Newman)

 $if \leftarrow \cdot \rightarrow \subseteq \twoheadrightarrow \cdot \twoheadleftarrow then \twoheadleftarrow \cdot \twoheadrightarrow \subseteq \twoheadrightarrow \cdot \twoheadleftarrow, if \rightarrow terminating$

From local confluence to confluence by tiling

Theorem (Newman)

if ightarrow is locally confluent then confluent, if no infinite blue-red paths

From local confluence to confluence by tiling

Remark (on partiality)

residuation on steps, in general extends to partial residuation on reductions

Idea (Newman, Klop, ...)

try to stepwise transform a peak of reductions into a valley of reductions by replacing local peaks of local confluence / diamond by valley

Idea (Newman, Klop, ...)

try to stepwise transform a peak of reductions into a valley of reductions by replacing local peaks of local confluence / diamond by valley

Questions

what are intermediate stages?

Idea (Newman, Klop, ...)

try to stepwise transform a peak of reductions into a valley of reductions by replacing local peaks of local confluence / diamond by valley

Questions

what are intermediate stages?
 conversions, compositions (·) of forward and backward (⁻¹) steps

Idea (Newman, Klop, ...)

try to stepwise transform a peak of reductions into a valley of reductions by replacing local peaks of local confluence / diamond by valley

Questions

- what are intermediate stages? conversions, compositions (·) of forward and backward (⁻¹) steps
- what are transformation rules?

Idea (Newman, Klop, ...)

try to stepwise transform a peak of reductions into a valley of reductions by replacing local peaks of local confluence / diamond by valley

Questions

- what are intermediate stages? conversions, compositions (·) of forward and backward (⁻¹) steps
- what are transformation rules?

 $\phi^{-1}\cdot\psi\Rightarrow(\phi\setminus\psi)\cdot(\phi/\psi)^{-1}$ for (co-inital) steps ϕ,ψ

Idea (Newman, Klop, ...)

try to stepwise transform a peak of reductions into a valley of reductions by replacing local peaks of local confluence / diamond by valley

Questions

- what are intermediate stages? conversions, compositions (·) of forward and backward (⁻¹) steps
- what are transformation rules?
 - $\phi^{-1} \cdot \psi \Rightarrow (\phi \setminus \psi) \cdot (\phi / \psi)^{-1}$ for (co-inital) steps ϕ, ψ
- what are $\phi \setminus \psi, \phi / \psi$ for (co-initial) reductions ϕ, ψ ?

Idea (Newman, Klop, ...)

try to stepwise transform a peak of reductions into a valley of reductions by replacing local peaks of local confluence / diamond by valley

Questions

- what are intermediate stages? conversions, compositions (·) of forward and backward (⁻¹) steps
- what are transformation rules?

 $\phi^{-1}\cdot\psi\Rightarrow(\phi\setminus\psi)\cdot(\phi/\psi)^{-1}$ for (co-inital) steps ϕ,ψ

• what are $\phi \setminus \psi, \phi / \psi$ for (co-initial) reductions ϕ, ψ ? left, right reduction of \Rightarrow -normal form (valley) of $\phi^{-1} \cdot \psi$

Well-behavedness of extending residuation by tiling

Lemma

 extensions of \, / to reductions are functions (partial if ⇒ non-terminating) by ⇒-reductions to normal form having same length (random descent [®])

Well-behavedness of extending residuation by tiling

Lemma

- extensions of \, / to reductions are functions (partial if ⇒ non-terminating) by ⇒-reductions to normal form having same length (random descent %)
- extension preserves being symmetric by ⁻¹ being an involution on conversions and ⇒-steps

Well-behavedness of extending residuation by tiling

Lemma

- extensions of \, / to reductions are functions (partial if ⇒ non-terminating) by ⇒-reductions to normal form having same length (random descent [®])
- extension preserves being symmetric by ⁻¹ being an involution on conversions and ⇒-steps
- for any (countable) confluent rewrite system there exist residuations on peaks of steps that extend by tiling to residuations on peaks of reductions by completeness of decreasing diagrams (Ken Mano, [™])

Laws for residuation of reductions by tiling

Lemma $\phi / \varepsilon = \phi$ $\varepsilon \setminus \phi = \phi$ $\phi \setminus \varepsilon = \varepsilon$ $\varepsilon / \phi = \varepsilon$ $\phi / (\psi \cdot \chi) \simeq (\phi / \psi) / \chi$ $(\phi \cdot \psi) \setminus \chi \simeq \psi \setminus (\phi \setminus \chi)$ $\phi \setminus (\psi \cdot \chi) \simeq (\phi \setminus \psi) \cdot ((\phi / \psi) \setminus \chi)$ $(\phi \cdot \psi) / \chi \simeq (\phi / \chi) \cdot (\psi / (\phi \setminus \chi))$

Proof by appropriate tiling.

Implementing residuation for reductions by recursion

Recursive implementation

for steps ϕ,χ and (non-empty) reductions ψ,ω

Implementing residuation for reductions by recursion

Recursive implementation

$$\begin{array}{lll} \left(\phi \cdot \psi\right) / \left(\chi \cdot \omega\right) &:= & \left(\left(\phi / \chi\right) \cdot \left(\psi / \left(\phi \setminus \chi\right)\right)\right) / \omega \\ \left(\phi \cdot \psi\right) \setminus \left(\chi \cdot \omega\right) &:= & \psi \setminus \left(\left(\phi \setminus \chi\right) \cdot \left(\left(\phi / \chi\right) \setminus \omega\right)\right) \end{array}$$

for steps ϕ,χ and (non-empty) reductions ψ,ω

Remark

for symmetric residuation | single clause suffices:

$$(\phi \cdot \psi) \mid (\chi \cdot \omega) \quad := \quad ((\phi \mid \chi) \cdot (\psi \mid (\chi \mid \phi))) \mid \omega$$

 residuation = function obtained by skolemising confluence allows algebraic reasoning, just like having composition (categories) does

I residuation = function obtained by skolemising confluence

residuation : composition (steps) = monus : addition (natural numbers)

- I residuation = function obtained by skolemising confluence
- residuation : composition = monus : addition
- residuation may be total where composition partial e.g. on (multi-/parallel)steps; allows equational reasoning

- residuation = function obtained by skolemising confluence
- residuation : composition = monus : addition
- I residuation may be total where composition partial
- **4** "Tait–Martin-Löf proof of confluence for $\lambda\beta$ is easier than with residuals" nonsense; can't have one without the other; also concretely false for $\lambda\beta$:

ζ	ξ	$\zeta \mid \xi$
$app(abs(\lambda x.\phi(x)),\psi)$	$eta(\lambda x.\chi(x),\omega)$	$(\lambda x.\phi(x) \mid \chi(x)) (\psi \mid \omega)$
$eta(\lambda x. \phi(x), \psi)$	$eta(\lambda x.\chi(x),\omega)$	$(\lambda x.\phi(x) \mid \chi(x)) (\psi \mid \omega)$
$eta(\lambda x. \phi(x), \psi)$	$app(abs(\lambda x.\chi(x)),\omega)$	$\beta(\lambda \mathbf{x}.(\phi(\mathbf{x}) \mid \chi(\mathbf{x})), \psi \mid \omega)$

- residuation = function obtained by skolemising confluence
- residuation : composition = monus : addition
- I residuation may be total where composition partial
- Image: "TML is more easily expressed and shown using residuation on multisteps"
- Iinks to many areas: residuated lattices, pushouts and fractions in categories, linguistics (Lambek's \ and /), groupoid theory (Dehornoy et al.), probability theory (conditional probability | is a residuation), ...

- residuation = function obtained by skolemising confluence
- residuation : composition = monus : addition
- residuation may be total where composition partial
- Image: "TML is more easily expressed and shown using residuation on multisteps"
- Iinks to many areas

diamond property for symmetric residuation |

rewrite system: objects event spaces, steps A | B (A given B; restricting B to A)

restriction is a residuation

Theorem (Bayes)

$$P(A) \cdot P(B \mid A) = P(A \cap B) = P(B \cap A) = P(B) \cdot P(A \mid B)$$

P((A | B) | (C | B)) = P((A | C) | (B | C)) makes sense (and is true)

From residuation to residual system

Idea

From residuation to residual system

Idea

- confluence = existence of upper bounds = having a residuation
- orthogonality = existence of lubs = residual system (residuation + laws) (Newman, Plotkin, Stark, Melliès, ♥ and de Vrijer,...)

From residuation to residual system

Idea

- confluence = existence of upper bounds = having a residuation
- orthogonality = existence of lubs = residual system (residuation + laws)

Definition (residual system (typed) laws for (symmetric) residuation |)

$$\phi \mid \varepsilon = \phi$$

$$\varepsilon \mid \phi = \varepsilon$$

$$\phi \mid \phi = \varepsilon$$

$$f(\phi \mid \psi) \mid (\chi \mid \psi) = (\phi \mid \chi) \mid (\psi \mid \chi)$$

Visualising the residual laws

 $(\phi \mid \psi) \mid (\chi \mid \psi) = (\phi \mid \chi) \mid (\psi \mid \chi)$ is cube law (Lévy); involves 3-peak ϕ, ψ, χ

Failure of cube property by tiling with local confluences

Example (for an orthogonal (duplicating) TRS)

3-peak from f(f(a)) in OTRS with rules $f(x) \rightarrow g(x, x)$ and $a \rightarrow b$

g(g(b,b),g(b,b))

- $g(g(a,a),g(a,a)) \twoheadrightarrow g(g(b,b),g(a,a)) \twoheadrightarrow g(g(b,b),g(b,b))$, tiling front-right
- $g(g(a,a),g(a,a)) \twoheadrightarrow g(g(b,a),g(b,a)) \twoheadrightarrow g(g(b,b),g(b,b))$, tiling left-back

From local cubes to bricks by bricklaying

Question

if have cubes for 3-peaks of steps, can any 3-peak of reductions be completed into cube of reductions (3-confluence) do residual systems extend from steps to reductions?

From local cubes to bricks by bricklaying

Question

if have cubes for 3-peaks of steps, can any 3-peak of reductions be completed into cube of reductions (3-confluence) do residual systems extend from steps to reductions?

Answer

- if all faces of cubes are diamonds, then yes by stacking cubes the 3D version of confluence by tiling
- if faces can be (local) confluences, then bricklaying may not terminate ...

From local cubes to bricks by bricklaying

Question

if have cubes for 3-peaks of steps, can any 3-peak of reductions be completed into cube of reductions (3-confluence) do residual systems extend from steps to reductions?

Answer

- if all faces of cubes are diamonds, then yes by stacking cubes the 3D version of confluence by tiling
- if faces can be (local) confluences, then bricklaying may not terminate decreasing diagrams to the rescue

Definition (family $(\rightarrow_i)_{i \in I}$ of rewrite systems, < well-founded order on /)

 \forall co-initial steps ϕ, ψ, \exists co-final reductions, giving decreasing diagram

Definition (family $(\rightarrow_i)_{i \in I}$ of rewrite systems, < well-founded order on /)

 \forall co-initial steps ϕ, ψ, \exists co-final reductions, giving decreasing diagram

Definition ($\rightarrow := \bigcup_{i \in I} \rightarrow_i$ for decreasing family)

idea: steps (strictly) decrease along (dashed) traces

Theorem (based on Newman, Huet, Hindley, De Bruijn)

if \rightarrow has decreasing family then confluent

Theorem (based on Newman, Winkler & Buchberger, Pous)

if \rightarrow has decreasing family then confluent

Cube property by 3-decreasing cubes

Lemma

local 3-decreasingness entails 3-decreasingness

Proof.

Mediate conclusion

- skolemisation of confluence into residuation makes it algebraic
- diamond : tiling = cube : bricklaying (in paper) tiling ⇒ transforms conversions; bricklaying ⇒ transforms bed-graphs planar graph rewriting (non-trivial; cf. 4-colour theorem by Gonthier)
- both confluence / upper bounds / residuation and orthogonality / least upper bounds / residual systems of interest

