

Greedily Decomposing Proof Terms for String Rewriting into Multistep Derivations by Topological Multisorting

Vincent van Oostrom¹

¹Supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with sharing and unsharing.

Example (Running)

string rewrite system (SRS) $\langle \Sigma, P \rangle$; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

ABAAB

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

 $ABAAB \rightarrow ABBAAB$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

 $ABAAB \rightarrow ABBAAB \rightarrow AAAAB$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

 $ABAAB \rightarrow ABBAAB \rightarrow AAAAB \rightarrow AABAAB$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

 $\textit{ABAAB} \rightarrow \textit{ABBAAB} \rightarrow \textit{AAAAB} \rightarrow \textit{AABAAB} \rightarrow \textit{BAABAAB}$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

ABAAB
ightarrow ABBAAB
ightarrow AAAAB
ightarrow AABAAB
ightarrow BAABAAB
ightarrow BBAABAAB

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

 $\textit{ABAAB} \rightarrow \textit{ABBAAB} \rightarrow \textit{AAAAB} \rightarrow \textit{AABAAB} \rightarrow \textit{BAABAAB} \rightarrow \textit{BBAABAAB} \rightarrow \textit{AAABAAB}$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

 $\textit{ABAAB} \rightarrow \textit{ABBAAB} \rightarrow \textit{AAAAB} \rightarrow \textit{AABAAB} \rightarrow \textit{BAABAAB} \rightarrow \textit{BBAABAAB} \rightarrow \textit{AAABAAB} \rightarrow \textit{ABAABAAB}$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textit{BB} & \rightarrow & \textit{A} \\ \beta & : & \textit{AAB} & \rightarrow & \textit{BAAB} \end{array}$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$ reduction $ABAAB \rightarrow ABAABAAB$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$ reduction $ABAAB \rightarrow ABAABAAB$

observe 2^{nd} - 3^{rd} steps causally independent, and 6^{th} - 7^{th} steps too

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$ reduction $ABAAB \rightarrow ABAABAAB$

ABAAB

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textit{BB} & \rightarrow & \textit{A} \\ \beta & : & \textit{AAB} & \rightarrow & \textit{BAAB} \end{array}$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow B\underline{AAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$ reduction $ABAAB \rightarrow ABAABAAB$

 $ABAAB \rightarrow ABBAAB$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textit{BB} & \rightarrow & \textit{A} \\ \beta & : & \textit{AAB} & \rightarrow & \textit{BAAB} \end{array}$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$ reduction $ABAAB \rightarrow ABAABAAB$

 $ABAAB \rightarrow ABBAAB \implies AABAAB$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textit{BB} & \rightarrow & \textit{A} \\ \beta & : & \textit{AAB} & \rightarrow & \textit{BAAB} \end{array}$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$ reduction $ABAAB \rightarrow ABAABAAB$

 $\textit{ABAAB} \rightarrow \textit{ABBAAB} \twoheadrightarrow \textit{AABAAB} \rightarrow \textit{BAABAAB}$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textit{BB} & \rightarrow & \textit{A} \\ \beta & : & \textit{AAB} & \rightarrow & \textit{BAAB} \end{array}$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$ reduction $ABAAB \rightarrow ABAABAAB$

 $\textit{ABAAB} \rightarrow \textit{ABBAAB} \twoheadrightarrow \textit{AABAAB} \rightarrow \textit{BAABAAB} \rightarrow \textit{BBAABAAB}$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$ reduction $ABAAB \rightarrow ABAABAAB$

 $\textit{ABAAB} \rightarrow \textit{ABBAAB} \twoheadrightarrow \textit{AABAAB} \rightarrow \textit{BAABAAB} \rightarrow \textit{BBAABAAB} \twoheadrightarrow \textit{ABAABAAB}$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textit{BB} & \rightarrow & \textit{A} \\ \beta & : & \textit{AAB} & \rightarrow & \textit{BAAB} \end{array}$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$ reduction $ABAAB \rightarrow ABAABAAB$

 $\textit{AB}\underline{\textit{AAB}} \rightarrow \textit{A}\underline{\textit{BB}}\underline{\textit{AAB}} \twoheadrightarrow \textit{AAB}\underline{\textit{AAB}} \rightarrow \textit{B}\underline{\textit{AAB}}\underline{\textit{AAB}} \rightarrow \textit{B}\underline{\textit{B}}\underline{\textit{AAB}}\underline{\textit{AAB}} \twoheadrightarrow \textit{ABAABAAB}$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textit{BB} & \rightarrow & \textit{A} \\ \beta & : & \textit{AAB} & \rightarrow & \textit{BAAB} \end{array}$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$ reduction $ABAAB \rightarrow ABAABAAB$

 $\textit{AB}\underline{\textit{AAB}} \dashrightarrow \textit{A}\underline{\textit{BB}}\underline{\textit{AAB}} \dashrightarrow \textit{A}\underline{\textit{AB}}\underline{\textit{AAB}} \dashrightarrow \textit{B}\underline{\textit{AAB}}\underline{\textit{AAB}} \dashrightarrow \textit{B}\underline{\textit{B}}\underline{\textit{AAB}}\underline{\textit{AAB}} \dashrightarrow \textit{ABAABAAB}$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textit{BB} & \rightarrow & \textit{A} \\ \beta & : & \textit{AAB} & \rightarrow & \textit{BAAB} \end{array}$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow B\underline{AAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$ reduction $ABAAB \rightarrow ABAABAAB$

 $AB\underline{AAB} \longrightarrow A\underline{BB}\underline{AAB} \longrightarrow \underline{AAB}AAB \longrightarrow B\underline{AAB}AAB \longrightarrow \underline{BB}\underline{AAB}AAB \longrightarrow ABAABAAB$

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$ reduction $ABAAB \rightarrow ABAABAAB$

 $\textit{AB}\underline{\textit{AAB}} \dashrightarrow \textit{AB}\underline{\textit{B}}\underline{\textit{AAB}} \dashrightarrow \underline{\textit{AAB}}\underline{\textit{AAB}} \dashrightarrow \underline{\textit{B}}\underline{\textit{AAB}}\underline{\textit{AAB}} \dashrightarrow \underline{\textit{B}}\underline{\textit{B}}\underline{\textit{AAB}}\underline{\textit{AAB}} \dashrightarrow \underline{\textit{B}}\underline{\textit{B}}\underline{\textit{AAB}}\underline{\textit{AAB}} \dashrightarrow \underline{\textit{AB}}\underline{\textit{AAB}}\underline{\textit{AAB}} \xrightarrow{} e$

observe both reductions do same amount of work: causally equivalent

Example (Running)

string rewrite system (Σ, P) ; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P:

 $\begin{array}{rcl} \alpha & : & \textbf{BB} & \rightarrow & \textbf{A} \\ \beta & : & \textbf{AAB} & \rightarrow & \textbf{BAAB} \end{array}$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$ reduction $ABAAB \rightarrow ABAABAAB$

 $\textit{AB}\underline{\textit{AAB}} \dashrightarrow \textit{A}\underline{\textit{BB}}\underline{\textit{AAB}} \dashrightarrow \textit{A}\underline{\textit{AB}}\underline{\textit{AAB}} \dashrightarrow \textit{B}\underline{\textit{AAB}}\underline{\textit{AAB}} \dashrightarrow \textit{B}\underline{\textit{B}}\underline{\textit{AAB}}\underline{\textit{AAB}} \dashrightarrow \textit{ABAABAAB}$

this talk: 2nd is unique greedy multistep reduction causally equivalent to 1st

reduction in string rewrite system (Thue 1914)

reduction

oudenadic / monadic embedding

proof term over signature, rule symbols, composition, and src / tgt (Meseguer 1990, Terese v 2003)

causal graph (Wolfram 2002); trace relation / graph (Terese 🕸 2003 / here)

composition of embedding and algebra maps induces equivalence on reductions

composition of maps induces equivalence on reductions (via graph isomorphism)

composition induces equivalence on morphisms, deductions (Guglielmi; paper)

composition induces equivalence on morphisms, deductions

this talk: composition of maps induces equivalence on reductions

Embedding reductions into proof terms ())

Example

string rewrite system $\langle \Sigma, P \rangle$; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P: $\alpha : BB \rightarrow A$ $\beta : AAB \rightarrow BAAB$

Embedding reductions into proof terms

Example

string rewrite system $\langle \Sigma, P \rangle$; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P: $\alpha : BB \rightarrow A$

$$eta$$
 : AAB $ightarrow$ BAAB

 $\textit{AB}\underline{\textit{AAB}} \rightarrow \textit{A}\underline{\textit{B}}\underline{\textit{B}}\textit{AAB} \rightarrow \textit{AA}\underline{\textit{AAB}} \rightarrow \underline{\textit{AA}}\underline{\textit{B}}\textit{AAB} \rightarrow \underline{\textit{B}}\underline{\textit{B}}\textit{AAB}\textit{AAB} \rightarrow \textit{A}\underline{\textit{A}}\underline{\textit{A}}\underline{\textit{B}}\textit{AAB} \rightarrow \textit{AB}\underline{\textit{AAB}}\textit{AAB}$

Embedding reductions into proof terms

Example

string rewrite system $\langle \Sigma, P \rangle$; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P: $\alpha : BB \rightarrow A$ $\beta : AAB \rightarrow BAAB$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$

 $\textbf{AB}\beta \cdot \textbf{A}\alpha \textbf{AAB} \cdot \textbf{AA}\beta \cdot \beta \textbf{AAB} \cdot \textbf{B}\beta \textbf{AAB} \cdot \alpha \textbf{AABAAB} \cdot \textbf{A}\beta \textbf{AAB}$

replace redex-patterns by rule symbols α,β and arrows by composition symbol \cdot

Embedding reductions into proof terms

Example

string rewrite system $\langle \Sigma, P \rangle$; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P: $\alpha : BB \rightarrow A$ $\beta : AAB \rightarrow BAAB$

 $AB\underline{AAB} \rightarrow A\underline{BB}AAB \rightarrow AA\underline{AAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow A\underline{AAB}AAB \rightarrow ABAABAAB$

 $\boldsymbol{AB}\boldsymbol{\beta} \cdot \boldsymbol{A}\boldsymbol{\alpha}\boldsymbol{AAB} \cdot \boldsymbol{AA}\boldsymbol{\beta} \cdot \boldsymbol{\beta}\boldsymbol{AAB} \cdot \boldsymbol{B}\boldsymbol{\beta}\boldsymbol{AAB} \cdot \boldsymbol{\alpha}\boldsymbol{AABAAB} \cdot \boldsymbol{A}\boldsymbol{\beta}\boldsymbol{AAB}$

 $\textit{AB}\underline{\textit{AAB}} \dashrightarrow \textit{A}\underline{\textit{BB}}\underline{\textit{AAB}} \dashrightarrow \textit{A}\underline{\textit{AB}}\underline{\textit{AAB}} \dashrightarrow \textit{B}\underline{\textit{AAB}}\underline{\textit{AAB}} \dashrightarrow \textit{B}\underline{\textit{B}}\underline{\textit{AAB}}\underline{\textit{AAB}} \dashrightarrow \textit{ABAABAAB}$

Example

string rewrite system $\langle \Sigma, P \rangle$; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P: $\alpha : BB \rightarrow A$ $\beta : AAB \rightarrow BAAB$

 $AB\underline{AAB} \rightarrow \underline{ABB}AAB \rightarrow \underline{AAAB} \rightarrow \underline{AAB}AAB \rightarrow \underline{BAAB}AAB \rightarrow \underline{BB}AABAAB \rightarrow \underline{AAAB}AAB \rightarrow \underline{ABAAB}AAB \rightarrow \underline{AAB}AAB \rightarrow \underline{AA}AB \rightarrow \underline{AA}AA \rightarrow \underline{AA}AA \rightarrow \underline{AA}AA \rightarrow \underline{AA}AA \rightarrow \underline{AA}AA \rightarrow \underline{AA}AA \rightarrow \underline{AA}A \rightarrow \underline{AA} \rightarrow \underline{AA}A \rightarrow \underline{AA} \rightarrow \underline{AA}$

multisteps may have multiple rule symbols; concurrent / parallel contraction

Example

string rewrite system $\langle \Sigma, P \rangle$; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P: $\alpha : BB \rightarrow A$ $\beta : AAB \rightarrow BAAB$

- $\gamma := AB\beta \cdot A\alpha AAB \cdot AA\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha AABAAB \cdot A\beta AAB$
- $\gamma' := \mathbf{A}\mathbf{B}\beta \cdot \mathbf{A}\alpha\beta \cdot \beta\mathbf{A}\mathbf{A}\mathbf{B} \cdot \mathbf{B}\beta\mathbf{A}\mathbf{A}\mathbf{B} \cdot \alpha\beta\mathbf{A}\mathbf{A}\mathbf{B}$

Example

string rewrite system $\langle \Sigma, P \rangle$; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P: $\alpha : BB \rightarrow A$

 β : **AAB** \rightarrow **BAAB**

• $\gamma := AB\beta \cdot A\alpha AAB \cdot AA\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha AABAAB \cdot A\beta AAB$

• $\gamma' := AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha\beta AAB$

Definition (multistep and proof term)

Example

string rewrite system $\langle \Sigma, P \rangle$; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P: $\alpha : BB \rightarrow A$

 β : **AAB** \rightarrow **BAAB**

• $\gamma := AB\beta \cdot A\alpha AAB \cdot AA\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha AABAAB \cdot A\beta AAB$

• $\operatorname{src}(\gamma) := \operatorname{src}(AB\beta) := AB\operatorname{src}(\beta) := ABAAB$

Definition (multistep and proof term)

Example

string rewrite system $\langle \Sigma, P \rangle$; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P: $\alpha : BB \rightarrow A$ $\beta : AAB \rightarrow BAAB$

• $\gamma := AB\beta \cdot A\alpha AAB \cdot AA\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha AABAAB \cdot A\beta AAB$

• $\operatorname{src}(\gamma) := \operatorname{src}(AB\beta) := ABAAB$ and $\operatorname{tgt}(\gamma) := \operatorname{tgt}(A\beta AAB) := ABAABAAB$

Definition (multistep and proof term)

Example

string rewrite system $\langle \Sigma, P \rangle$; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P: $\alpha : BB \rightarrow A$ $\beta : AAB \rightarrow BAAB$

• γ : **ABAAB** \geq **ABAABAAB**, target string *P***-reachable** from source string

• $\gamma' := AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha\beta AAB$

Definition (multistep and proof term)

Example

string rewrite system $\langle \Sigma, P \rangle$; alphabet $\Sigma = \{A, B\}$ with letters A, B; rules P: $\alpha : BB \rightarrow A$

- β : **AAB** \rightarrow **BAAB**
- γ : **ABAAB** \geq **ABAABAAB**
- γ' : ABAAB \geqslant ABAABAAB

Definition (multistep and proof term)

Lemma (multistep reductions as proof terms)

• is injective (obvious);

Lemma (multistep reductions as proof terms)

- is injective;
- maps reductions to compositions of steps

Lemma (multistep reductions as proof terms)

- is injective;
- maps reductions to compositions of steps
- maps multistep reductions to compositions of multisteps

Lemma (multistep reductions as proof terms)

- is injective;
- maps reductions to compositions of steps
- maps multistep reductions to compositions of multisteps
- unique modulo associativity of composition ·

Lemma (multistep reductions as proof terms)

- *is injective;*
- maps reductions to compositions of steps
- maps multistep reductions to compositions of multisteps
- unique modulo associativity of composition ·

Upshot

harmless to speak of (multistep) reductions to refer to the corresponding proof term modulo associativity

Evolution: visualisation of reduction γ (Wolfram 2002)

Evolution: visualisation of proof term γ

 $A \mapsto \Box$, $B \mapsto \blacksquare$, $\alpha \mapsto \blacksquare$, and $\beta \mapsto \blacksquare$, itraces show causality (Terese 2003)

Evolution: visualisation of proof terms

 $A \mapsto \Box$, $B \mapsto \blacksquare$, $\alpha \mapsto \blacksquare$, and $\beta \mapsto \blacksquare$; traces show causality (Terese 2003)

Causal graph of reduction γ (Wolfram 2002)

causal graph: rules as nodes with src and tgt symbols as edges

Trace relation of proof term γ (Terese \circledast 2003)

trace relation: rule and symbol positions with tracing as relation

Trace relation of proof term γ

trace relation: rule positions with tracing as relation

Trace graph of proof term γ

trace graph: rule positions with tracing as graph

Tragr of proof terms γ and γ'

tragr: rule positions with tracing as graph

Definition (tragr : symbol- and rule-labelled planar dag)

directed acyclic multigraph

Definition (tragr : symbol- and rule-labelled planar dag)

having source and target dags as interface

Definition (tragr proof term algebra []])

• composition $\gamma \cdot \gamma' \mapsto \text{vertical}$ (serial) composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$

Definition (tragr proof term algebra []])

• composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$

Definition (tragr proof term algebra []])

• composition $\gamma \cdot \gamma' \mapsto \text{vertical composition of graphs } [\![\gamma]\!] \text{ and } [\![\gamma']\!] + \text{elision}$

Definition (tragr proof term algebra []])

• composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$

- composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- juxtaposition $\gamma\gamma' \mapsto \text{horizontal}$ (parallel) composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$

- composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- juxtaposition $\gamma\gamma'\mapsto$ horizontal composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$

- composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- juxtaposition $\gamma\gamma' \mapsto \text{horizontal composition of graphs } [\![\gamma]\!] \text{ and } [\![\gamma']\!] + \text{elision}$

- composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- juxtaposition $\gamma\gamma'\mapsto$ horizontal composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$

- composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- juxtaposition $\gamma\gamma'\mapsto$ horizontal composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- symbol a and empty string \mapsto identity graph with 'itself' as source, target

- composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- juxtaposition $\gamma\gamma'\mapsto$ horizontal composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- symbol \mapsto identity graph
- rule \mapsto trace graph from dag of source string to dag of target string

Definition (tragr proof term algebra []])

- composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- juxtaposition $\gamma\gamma'\mapsto$ horizontal composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- symbol \mapsto identity graph
- rule \mapsto trace graph

this tragr algebra [[]] induces causal equivalence on proof terms

Definition (tragr proof term algebra []])

- composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- juxtaposition $\gamma\gamma'\mapsto$ horizontal composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- symbol \mapsto identity graph
- rule \mapsto trace graph

this tragr algebra $[\![\,]\!]$ induces causal equivalence on proof terms, $[\![\gamma]\!] = [\![\gamma']\!]$

Definition (tragr proof term algebra []])

- composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- juxtaposition $\gamma\gamma'\mapsto$ horizontal composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- symbol \mapsto identity graph
- rule \mapsto trace graph

Definition (permutation equivalence \equiv (Lévy, Stark,...))

 $\begin{array}{ll} \text{(left unit)} & s \cdot \gamma \equiv \gamma & \text{(associativity)} & (\gamma \cdot \delta) \cdot \zeta \equiv \gamma \cdot (\delta \cdot \zeta) \\ \text{(right unit)} & \gamma \cdot t \equiv \gamma & \text{(exchange)} & \gamma \delta \cdot \zeta \eta \equiv (\gamma \cdot \zeta) (\delta \cdot \eta) \\ \end{array}$

strings of (non-rule) symbols as vertical unit

Definition (tragr proof term algebra []])

- composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- juxtaposition $\gamma\gamma'\mapsto$ horizontal composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- symbol \mapsto identity graph
- rule \mapsto trace graph

Definition (permutation equivalence \equiv)

(left unit)	$\varepsilon\gamma\equiv\gamma$	(associativity)	$(\gamma\delta)\zeta \equiv \gamma(\delta\zeta)$
(right unit)	$\gamma\varepsilon \equiv \gamma$	(exchange)	$\gamma\delta\cdot\zeta\eta\!\equiv\!(\gamma\cdot\zeta)(\delta\cdot\eta)$

empty string ε as horizontal unit

Tragrs by proof term algebra

Definition (tragr proof term algebra []])

- composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- juxtaposition $\gamma\gamma'\mapsto$ horizontal composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- symbol \mapsto identity graph
- rule \mapsto trace graph

Definition (permutation equivalence \equiv)

(left unit)	$\varepsilon\gamma\equiv\gamma$	(associativity)	$(\gamma\delta)\zeta \equiv \gamma(\delta\zeta)$
(right unit)	$\gamma \varepsilon \equiv \gamma$	(exchange)	$\gamma\delta\cdot\zeta\eta\equiv(\gamma\cdot\zeta)(\delta\cdot\eta)$

Lemma (permutation)

permutation equivalence induces causal equivalence: if $\gamma \equiv \delta$ then $[\![\gamma]\!] = [\![\delta]\!]$

Tragrs by proof term algebra

Definition (tragr proof term algebra []])

- composition $\gamma \cdot \gamma' \mapsto$ vertical composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- juxtaposition $\gamma\gamma'\mapsto$ horizontal composition of graphs $[\![\gamma]\!]$ and $[\![\gamma']\!]$
- symbol \mapsto identity graph
- rule \mapsto trace graph

Definition (permutation equivalence \equiv)

(left unit)	$\varepsilon\gamma\equiv\gamma$	(associativity)	$(\gamma\delta)\zeta \equiv \gamma(\delta\zeta)$
(right unit)	$\gamma\varepsilon \equiv \gamma$	(exchange)	$\gamma\delta\cdot\zeta\eta\equiv(\gamma\cdot\zeta)(\delta\cdot\eta)$

Lemma (permutation)

permutation equivalence induces causal equivalence; conversely?

idea : by topological multisorting; maximal rule-parallelism

 $AB\beta \cdot \ldots$; later steps caused by this β

 $AB\beta \cdot A\alpha\beta \cdot \ldots$; α and β independent; later steps caused by (one of) them

 $AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot \ldots$; later steps caused by this β

 $AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot ...;$ later steps caused by this β

 $AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha\beta AAB \cdot \ldots; \alpha \text{ and } \beta \text{ independent; no later steps}$

 $AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha\beta AAB$

 $AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha\beta AAB = \gamma'!$

Definition (cf. greedy decomposition of Dehornoy et al. 2015)

• proof term greedy if multistep reduction without loath pairs

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ not caused by rule in Φ

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ not caused by rule in Φ $\gamma := AB\beta \cdot A\alpha AAB \cdot AA\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha AABAAB \cdot A\beta AAB$ is not greedy

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ not caused by rule in Φ $\gamma := AB\beta \cdot \overline{A\alpha AAB} \cdot AA\beta \cdot \beta AAB \cdot B\beta AAB \cdot \overline{\alpha AAB}AAB \cdot A\beta AAB}$ loath pairs

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ not caused by rule in Φ $\gamma' := AB\beta \cdot A\alpha\beta \cdot \beta AAB \cdot B\beta AAB \cdot \alpha\beta AAB$ is greedy; no loath pairs

Definition (cf. being sorted / standard if no out-of-order pairs)

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ not caused by rule in Φ

Theorem (bijection)

bijection between greedy proof terms and tragrs (tragr algebra, topological sort)

Definition (cf. being sorted / standard if no out-of-order pairs)

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ not caused by rule in Φ

Theorem (bijection)

bijection between greedy proof terms and tragrs

Proof.

topological sort of tragr gives greedy multistep reduction: by induction using that for multistep constructed from first layer, all later steps are (transitively) caused by some rule in that layer / multistep by sorting topologically

Definition (cf. being sorted / standard if no out-of-order pairs)

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ not caused by rule in Φ

Theorem (bijection)

bijection between greedy proof terms and tragrs

Proof.

identity if tragr obtained from greedy proof term by tragr algebra: by induction showing that for a greedy proof term its multisteps induce the layers of the topological sort when read back, since consecutive multisteps are not loath

Definition (cf. being sorted / standard if no out-of-order pairs)

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ not caused by rule in Φ

Theorem (bijection)

bijection between greedy proof terms and tragrs

Example

reading back from the tragr of γ' yields γ' again, since it is greedy; not for γ

Definition (swapping loath pairs)

• consecutive multisteps $\Phi\cdot\Psi$ loath if some rule in Ψ not caused by rule in Φ

Definition (swapping loath pairs)

• consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ can be swapped into Φ : $\exists X \text{ such that } \Phi \subseteq X \text{ having residual step } \psi := X/\Phi \text{ with } \psi \subseteq \Psi$

Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ can be swapped into Φ : $\exists X \text{ such that } \Phi \subseteq X \text{ having residual step } \psi := X/\Phi \text{ with } \psi \subseteq \Psi$
- result of swap is $X \cdot (\Psi/\psi)$; intuition: increase parallelism in 1st multistep

Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ can be swapped into Φ : $\exists X \text{ such that } \Phi \subseteq X \text{ having residual step } \psi := X/\Phi \text{ with } \psi \subseteq \Psi$
- result of swap is $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ can be swapped into Φ : $\exists X \text{ such that } \Phi \subseteq X \text{ having residual step } \psi := X/\Phi \text{ with } \psi \subseteq \Psi$
- result of swap is $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

Example

• $A\alpha \underline{AAB} \cdot \underline{AA\beta}$ swaps into $A\alpha\beta \cdot \underline{AABAAB}$

inverse of 1st multistep and step in 2nd multistep orthogonal

Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ can be swapped into Φ : $\exists X \text{ such that } \Phi \subseteq X \text{ having residual step } \psi := X/\Phi \text{ with } \psi \subseteq \Psi$
- result of swap is $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

Example

- $A\alpha \underline{AAB} \cdot \underline{AA\beta}$ swaps into $A\alpha\beta \cdot \underline{AABAAB}$
- $\alpha \underline{AAB}AAB \cdot \underline{A\beta}AAB$ swaps into $\alpha \underline{\beta}AAB \cdot \underline{ABAAB}AAB$

inverse of 1st multistep and step in 2nd multistep orthogonal

Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ can be swapped into Φ : $\exists X \text{ such that } \Phi \subseteq X \text{ having residual step } \psi := X/\Phi \text{ with } \psi \subseteq \Psi$
- result of swap is $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

Example

- $A\alpha \underline{AAB} \cdot \underline{AA\beta}$ swaps into $A\alpha\beta \cdot \underline{AABAAB}$
- $\alpha \underline{AAB}AAB \cdot A\beta AAB$ swaps into $\alpha \beta AAB \cdot A\underline{BAAB}AAB$
- γ greedily decomposes into $\gamma' \cdot \textit{ABAABAAB} \cdot \textit{ABAABAAB}$

Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ can be swapped into Φ : $\exists X \text{ such that } \Phi \subseteq X \text{ having residual step } \psi := X/\Phi \text{ with } \psi \subseteq \Psi$
- result of swap is $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping + removing empty multisteps

Example

- $A\alpha \underline{AAB} \cdot \underline{AA\beta}$ swaps into $A\alpha\beta \cdot \underline{AABAAB}$
- $\alpha \underline{AAB}AAB \cdot A\beta \underline{AAB}$ swaps into $\alpha \beta \underline{AAB} \cdot \underline{ABAAB}AAB$
- γ greedily decomposes into γ'

Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ can be swapped into Φ : $\exists X \text{ such that } \Phi \subseteq X \text{ having residual step } \psi := X/\Phi \text{ with } \psi \subseteq \Psi$
- result of swap is $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

Theorem (greedy decomposition)

greedy decomposition γ' of γ exists (swapping terminates) and $\gamma\equiv\gamma'$

Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ can be swapped into Φ : $\exists X \text{ such that } \Phi \subseteq X \text{ having residual step } \psi := X/\Phi \text{ with } \psi \subseteq \Psi$
- result of swap is $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

Theorem (greedy decomposition)

greedy decomposition γ' of γ exists and is permutation equivalent to $\gamma : \gamma \equiv \gamma'$

Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in Ψ can be swapped into Φ : $\exists X \text{ such that } \Phi \subseteq X \text{ having residual step } \psi := X/\Phi \text{ with } \psi \subseteq \Psi$
- result of swap is $X \cdot (\Psi/\psi)$

greedy decomposition by exhaustive swapping

Theorem (greedy decomposition)

greedy decomposition γ' of γ exists and is permutation equivalent to $\gamma:\,\gamma\equiv\gamma'$

Proof.

termination : inverse lexicographic size (Huet & Lévy) of multisteps decreases equivalence : loath pair equivalent to result of swap ($\Phi \cdot \Psi \equiv X \cdot (\Psi/\psi)$)

Theorem (permutation equivalence via causal equivalence)

 $\forall \ {\it proof terms} \ \gamma, \ \exists! \ {\it greedy multistep reduction} \ \gamma' \ {\it such that} \ \gamma \equiv \gamma'$

Theorem (permutation equivalence via causal equivalence)

 \forall proof terms γ , \exists ! greedy multistep reduction γ' such that $\gamma \equiv \gamma'$

Lemma (confluence-by-evaluation (Plaisted 1985 / Hardin 1989))

rewrite system \rightarrow is confluent, if nf function on the objects and

- $lacebox{1}$ ightarrow is normalising (WN)
- **2** if $a \rightarrow b$ then nf(a) = nf(b)

(c) if a is a normal form, then nf(a) = a

Theorem (permutation equivalence via causal equivalence)

 \forall proof terms γ , \exists ! greedy multistep reduction γ' such that $\gamma \equiv \gamma'$

Lemma (CbE)

rewrite system ightarrow is confluent, if nf function on the objects and

- $\mathbf{1}
 ightarrow$ is normalising
- **2** if $a \rightarrow b$ then nf(a) = nf(b)

(c) if a is a normal form, then nf(a) = a

Proof.

 $\mathsf{if} b \twoheadleftarrow a \twoheadrightarrow c$

Theorem (permutation equivalence via causal equivalence)

 \forall proof terms γ , \exists ! greedy multistep reduction γ' such that $\gamma \equiv \gamma'$

Lemma (CbE)

rewrite system ightarrow is confluent, if nf function on the objects and

- $\mathbf{1}
 ightarrow$ is normalising
- **2** if $a \rightarrow b$ then nf(a) = nf(b)

(c) if a is a normal form, then nf(a) = a

Proof.

then $b' \twoheadleftarrow b \twoheadleftarrow a \twoheadrightarrow c \twoheadrightarrow c'$ for normal forms b', c' by (1)

Theorem (permutation equivalence via causal equivalence)

 \forall proof terms γ , \exists ! greedy multistep reduction γ' such that $\gamma \equiv \gamma'$

Lemma (CbE)

rewrite system ightarrow is confluent, if nf function on the objects and

- $\mathbf{1}
 ightarrow$ is normalising
- **2** if $a \rightarrow b$ then nf(a) = nf(b)

(c) if a is a normal form, then nf(a) = a

Proof.

hence nf(b') = nf(c') by convertibility of b' and c' and (2)

Theorem (permutation equivalence via causal equivalence)

 \forall proof terms γ , \exists ! greedy multistep reduction γ' such that $\gamma \equiv \gamma'$

Lemma (CbE)

rewrite system ightarrow is confluent, if nf function on the objects and

- $\mathbf{0}
 ightarrow$ is normalising
- **2** if $a \rightarrow b$ then nf(a) = nf(b)

(c) if a is a normal form, then nf(a) = a

Proof.

so
$$b'=c'$$
 by (3), i.e. $b woheadrightarrow b'=c' \twoheadleftarrow c$

Theorem (permutation equivalence via causal equivalence)

 \forall proof terms γ , \exists ! greedy multistep reduction γ' such that $\gamma \equiv \gamma'$

Proof.

for swap rewrite system, and nf mapping to $[\![\,]\!]$ followed by read back TS:

Theorem (permutation equivalence via causal equivalence)

 \forall proof terms γ , \exists ! greedy multistep reduction γ' such that $\gamma \equiv \gamma'$

Proof.

for swap rewrite system, and nf mapping to $[\![\,]\!]$ followed by read back TS:

 swapping is terminating (by greedy decomposition theorem), hence normalising

Theorem (permutation equivalence via causal equivalence)

 \forall proof terms γ , \exists ! greedy multistep reduction γ' such that $\gamma \equiv \gamma'$

Proof.

for swap rewrite system, and nf mapping to $[\![\,]\!]$ followed by read back TS:

- swapping is terminating, hence normalising
- 2 nf is preserved by swapping since $[\![]\!]$ is by permutation lemma using: proof term \equiv multistep reduction (serialisation)

Theorem (permutation equivalence via causal equivalence)

 \forall proof terms γ , \exists ! greedy multistep reduction γ' such that $\gamma \equiv \gamma'$

Proof.

for swap rewrite system, and nf mapping to [[]] followed by read back TS:

- swapping is terminating, hence normalising
- 2 nf is preserved by swapping since [] is by permutation lemma using: proof term \equiv greedy multistep reduction (greedy decomposition theorem)

Theorem (permutation equivalence via causal equivalence)

 \forall proof terms γ , \exists ! greedy multistep reduction γ' such that $\gamma \equiv \gamma'$

Proof.

for swap rewrite system, and nf mapping to $[\![\,]\!]$ followed by read back TS:

- swapping is terminating, hence normalising
- **2** nf is preserved by swapping since $[\![\,]\!]$ is

Inf is identity on greedy normal forms

Theorem (permutation equivalence via causal equivalence)

 \forall proof terms γ , \exists ! greedy multistep reduction γ' such that $\gamma \equiv \gamma'$

Proof.

for swap rewrite system, and nf mapping to $[\![\,]\!]$ followed by read back TS:

- swapping is terminating, hence normalising
- ${f o}$ nf is preserved by swapping since $[\![\,]\!]$ is

Inf is identity on greedy normal forms

by CbE swapping is complete (confluent and terminating)

Theorem (permutation equivalence via causal equivalence)

 \forall proof terms γ , \exists ! greedy multistep reduction γ' such that $\gamma \equiv \gamma'$

Proof.

for swap rewrite system, and nf mapping to $[\![\,]\!]$ followed by read back TS:

- swapping is terminating, hence normalising
- ${f o}$ nf is preserved by swapping since $[\![\,]\!]$ is

Inf is identity on greedy normal forms

by CbE swapping is complete (confluent and terminating)

Upshot

permutation \simeq causal equivalence; greedy multistep reduction \simeq causal graph

physics (causal graph; Wolfram)

1 physics, Garside theory (greedy decomposition; Dehornoy)

1 physics, Garside theory and concurrency theory (CTS; Stark)

1 physics, Garside theory and concurrency theory mirror rewriting (\equiv ; Lévy)

physics, Garside theory and concurrency theory mirror rewriting: causality

1 physics, Garside theory and concurrency theory mirror rewriting: causality

Cross-citing sporadic (myopic; intentional?)

physics, Garside theory and concurrency theory mirror rewriting: causality

2 cross-citing sporadic, methods same (sorted \simeq decomposed \simeq standard)

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- 2 cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS (nullary, modulo AC)

- 1 physics, Garside theory and concurrency theory mirror rewriting: causality
- 2 cross-citing sporadic, methods same
- **3** oudenadic embedding of SRS in TRS; in paper monadic embedding (unary)

- D physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- **@ empty** causation? ($abc \rightarrow ac \rightarrow d$? for rules $b \rightarrow \varepsilon$, $ac \rightarrow d$; see paper)

- D physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- empty causation?
- **6** complexity? (area? width (parallel) vs. length (serial))

- D physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- empty causation?
- G complexity?
- G extend to term rewriting? cf. sharing graphs (Lamping 1990) TRS non-linear: replication vs. causation (Terese [∞]/₂2003)

- D physics, Garside theory and concurrency theory mirror rewriting: causality
- Cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE? (ground confluence of 0, S, A; Futatsugi)

- D physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- 8 morphism

- D physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- 8 morphism, deduction

- D physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- 3 morphism, deduction \rightarrowtail proof term

- D physics, Garside theory and concurrency theory mirror rewriting: causality
- 2 cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- 3 morphism, deduction \rightarrowtail proof term modulo causality

- D physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- ${f is}$ morphism, deduction ightarrow proof term modulo causality \leftrightarrow causal graph

- D physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- 3 morphism, deduction \rightarrowtail proof term modulo causality \leftrightarrow tragr

- D physics, Garside theory and concurrency theory mirror rewriting: causality
- 2 cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- ${f is}$ morphism, deduction \rightarrowtail proof term modulo causality \leftrightarrow proof term graph

- D physics, Garside theory and concurrency theory mirror rewriting: causality
- cross-citing sporadic, methods same
- oudenadic embedding of SRS in TRS; in paper monadic embedding
- empty causation?
- G complexity?
- 6 extend to term rewriting?
- application / automation of CbE?
- ${f isometry 0}$ morphism, deduction \rightarrowtail proof term modulo causality \leftrightarrow proof term graph

thank you

(return to NL tomorrow night; contact me after at oostrom@javakade.nl)

