## UNIVERSITY OF BATH

## Greedily Decomposing Proof Terms for String Rewriting into Multistep Derivations by Topological Multisorting

## Vincent van Oostrom ${ }^{1}$

[^0]Termgraph 2022, Haifa; Monday 1-8-2022

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system (SRS) $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| :--- | :--- |$\quad \rightarrow A$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$
$A B A A B$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$
$A B A A B \rightarrow A B B A A B$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$
$A B A A B \rightarrow A B B A A B \rightarrow A A A A B$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\quad \rightarrow A$

$A B A A B \rightarrow A B B A A B \rightarrow A A A A B \rightarrow A A B A A B$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\quad \rightarrow A$

$$
A B A A B \rightarrow A B B A A B \rightarrow A A A A B \rightarrow A A B A A B \rightarrow B A A B A A B
$$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\quad \rightarrow A$

$$
A B A A B \rightarrow A B B A A B \rightarrow A A A A B \rightarrow A A B A A B \rightarrow B A A B A A B \rightarrow B B A A B A A B
$$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\rightarrow A$

$$
A B A A B \rightarrow A B B A A B \rightarrow A A A A B \rightarrow A A B A A B \rightarrow B A A B A A B \rightarrow B B A A B A A B \rightarrow A A A B A A B
$$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\rightarrow A$

$$
A B A A B \rightarrow A B B A A B \rightarrow A A A A B \rightarrow A A B A A B \rightarrow B A A B A A B \rightarrow B B A A B A A B \rightarrow A A A B A A B \rightarrow A B A A B A A B
$$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\rightarrow A$

$$
A B A A B \rightarrow A \underline{B B} A A B \rightarrow A A \underline{A A B} \rightarrow \underline{A A B A A B} \rightarrow B \underline{A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B
$$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\quad \rightarrow A$

$A B A A B \rightarrow \overline{A B B A A B} \rightarrow A A \underline{A A B} \rightarrow \underline{A A B A A B} \rightarrow \underline{B A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B$
reduction $A B A A B \rightarrow A B A A B A A B$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$
$A B A A B \rightarrow \overline{A B B A A B} \rightarrow A A \underline{A A B} \rightarrow \underline{A A B A A B} \rightarrow \underline{B A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B$
reduction $A B A A B \rightarrow A B A A B A A B$
observe $2^{\text {nd }}-3^{\text {rd }}$ steps causally independent, and $6^{\text {th }}-7^{\text {th }}$ steps too

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\quad \rightarrow A$

$A B \underline{A A B} \rightarrow \overline{A B B A A B} \rightarrow \overline{A A A A B} \rightarrow \underline{A A B A A B} \rightarrow \underline{B A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B$
reduction $A B A A B \rightarrow A B A A B A A B$
$A B A A B$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\quad \rightarrow A$

$A B \underline{A A B} \rightarrow \overline{A B B A A B} \rightarrow \overline{A A A A B} \rightarrow \underline{A A B A A B} \rightarrow \underline{B A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B$
reduction $A B A A B \rightarrow A B A A B A A B$
$A B A A B \rightarrow A B B A A B$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$
$A B \underline{A A B} \rightarrow \overline{A B B A A B} \rightarrow \overline{A A A A B} \rightarrow \underline{A A B A A B} \rightarrow \underline{B A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B$
reduction $A B A A B \rightarrow A B A A B A A B$
$A B A A B \rightarrow A B B A A B \rightarrow A A B A A B$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\quad \rightarrow A$

$A B \underline{A A B} \rightarrow \overline{A B B A A B} \rightarrow \overline{A A A A B} \rightarrow \underline{A A B A A B} \rightarrow \underline{B A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B$
reduction $A B A A B \rightarrow A B A A B A A B$

$$
A B A A B \rightarrow A B B A A B \rightarrow A A B A A B \rightarrow B A A B A A B
$$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\quad \rightarrow A$

$A B \underline{A A B} \rightarrow \overline{A B B A A B} \rightarrow \overline{A A A A B} \rightarrow \underline{A A B A A B} \rightarrow \underline{B A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B$
reduction $A B A A B \rightarrow A B A A B A A B$
$A B A A B \rightarrow A B B A A B \rightarrow A A B A A B \rightarrow B A A B A A B \rightarrow B B A A B A A B$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\quad \rightarrow A$

$A B \underline{A A B} \rightarrow A \underline{B B A A B} \rightarrow A A \underline{A A B} \rightarrow \underline{A A B A A B} \rightarrow \underline{B A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B$
reduction $A B A A B \rightarrow A B A A B A A B$

$$
A B A A B \rightarrow A B B A A B \rightarrow A A B A A B \rightarrow B A A B A A B \rightarrow B B A A B A A B \rightarrow A B A A B A A B
$$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\quad \rightarrow A$

$A B \underline{A A B} \rightarrow A \underline{B B A A B} \rightarrow A A \underline{A A B} \rightarrow \underline{A A B A A B} \rightarrow \underline{B A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B$
reduction $A B A A B \rightarrow A B A A B A A B$
$A B \underline{A A B} \rightarrow A \underline{B B} \underline{A A B} \rightarrow \bar{A} \rightarrow \underline{A A B} \rightarrow B \underline{A A B} A A B \rightarrow \underline{B B} \underline{A A B A A B} \rightarrow A B A A B A A B$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\quad \rightarrow A$

$A B \underline{A A B} \rightarrow A \underline{B B A A B} \rightarrow A A \underline{A A B} \rightarrow \underline{A A B A A B} \rightarrow \underline{B A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B$
reduction $A B A A B \rightarrow A B A A B A A B$

$$
A B A A B \rightarrow A B B \underline{A A B} \rightarrow \underline{A A B A A B} \rightarrow B \underline{A A B A A B} \rightarrow \underline{B B} \underline{A A B A A B} \rightarrow A B A A B A A B
$$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$
$A B \underline{A A B} \rightarrow \overline{A B B A A B} \rightarrow \overline{A A A A B} \rightarrow \underline{A A B A A B} \rightarrow \underline{B A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B$
reduction $A B A A B \rightarrow A B A A B A A B$

$$
A B A A B \rightarrow A B \underline{B} \underline{A} A B \rightarrow \underline{A A B} A A B \longrightarrow B \underline{A A B A A B} \rightarrow \underline{B B} \underline{A A B A A B} \longrightarrow A B A A B A A B
$$

multistep reduction $A B A A B \multimap A B A A B A A B$

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$

$$
A B \underline{A A B} \rightarrow \underline{A B B A A B} \rightarrow A A \underline{A A B} \rightarrow \underline{A A B A A B} \rightarrow B \underline{A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B
$$

reduction $A B A A B \rightarrow A B A A B A A B$

$$
A B A A B \rightarrow A B B A A B \rightarrow \underline{A A B A A B} \longrightarrow B A A B A A B \rightarrow \underline{B B} A A B A A B \longrightarrow A B A A B A A B
$$

multistep reduction $A B A A B \multimap A B A A B A A B$
observe both reductions do same amount of work: causally equivalent

## Causal equivalence in string rewriting

## Example (Running)

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$

$$
A B \underline{A A B} \rightarrow \underline{A B B A A B} \rightarrow A A \underline{A A B} \rightarrow \underline{A A B A A B} \rightarrow B \underline{A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B
$$

reduction $A B A A B \rightarrow A B A A B A A B$

$$
A B A A B \rightarrow A B B A A B \rightarrow \underline{A A B A A B} \longrightarrow B A A B A A B \rightarrow \underline{B B} A A B A A B \longrightarrow A B A A B A A B
$$

multistep reduction $A B A A B \multimap A B A A B A A B$
this talk: $2^{\text {nd }}$ is unique greedy multistep reduction causally equivalent to $1^{\text {st }}$

# Methodology for defining equivalence of reductions 

reduction in string rewrite system (Thue 1914)

## Methodology for defining equivalence of reductions

reduction<br>oudenadic / monadic embedding

proof term over signature, rule symbols, composition, and src / tgt (Meseguer 1990,Terese $\mathbb{E}^{2} 2003$ )

## Methodology for defining equivalence of reductions

```
reduction
oudenadic / monadic embedding \(\downarrow\)
proof term algebra
causal graph (Wolfram 2002); trace relation / graph (Terese \(\mathbb{\Downarrow} 2003\) / here) \(_{\text {2 }}\)
```


## Methodology for defining equivalence of reductions


composition of embedding and algebra maps induces equivalence on reductions

## Methodology for defining equivalence of reductions


composition of maps induces equivalence on reductions (via graph isomorphism)

## Methodology for defining equivalence of deductions

```
morphism, deduction
inference as rewrite rules (Khasidashvili, \(\Vdash^{\circledR}\) 1995)
reduction
oudenadic / monadic embedding \(\underbrace{}_{\text {proof term }}\)
```

composition induces equivalence on morphisms, deductions (Guglielmi; paper)

## Methodology for defining equivalence of deductions


composition induces equivalence on morphisms, deductions

## Methodology for defining equivalence of reductions


this talk: composition of maps induces equivalence on reductions

## Embedding reductions into proof terms ( $\longmapsto$ )

## Example

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$

## Embedding reductions into proof terms

## Example

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$

$$
A B A A B \rightarrow \underline{A B B A A B} \rightarrow \overline{A A A A B} \rightarrow \underline{A A B A A B} \rightarrow B \underline{A A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow \underline{A A A B A A B} \rightarrow A B A A B A A B
$$

## Embedding reductions into proof terms

## Example

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$

$$
\begin{gathered}
A B \underline{A A B} \rightarrow A \underline{B B A A B} \rightarrow A A \underline{A A B} \rightarrow \underline{A A B A A B} \rightarrow B \underline{B A B A A B} \rightarrow \underline{B B} A A B A A B \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B \\
\\
A B \beta \cdot A \alpha A A B \cdot A A \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha A A B A A B \cdot A \beta A A B
\end{gathered}
$$

replace redex-patterns by rule symbols $\alpha, \beta$ and arrows by composition symbol .

## Embedding reductions into proof terms

## Example

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$

$$
\begin{aligned}
A B \underline{A A B} \rightarrow A \underline{B B A A B} \rightarrow & A A \underline{A A B} \rightarrow \underline{A A B A A B} \rightarrow B \underline{B A B A A B} \rightarrow \underline{B B A A B A A B} \rightarrow A \underline{A A B A A B} \rightarrow A B A A B A A B \\
& A B \beta \cdot A \alpha A A B \cdot A A \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha A A B A A B \cdot A \beta A A B \\
& A B A A B \rightarrow A B B A A B \rightarrow \underline{A A B A A B \rightarrow B A A B A A B \rightarrow \underline{B B A A B A A B} \rightarrow A B A A B A A B}
\end{aligned}
$$

## Embedding reductions into proof terms

## Example

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$
$A B A A B \rightarrow A B B A A B \rightarrow A A \underline{A A B} \rightarrow \underline{A A B A A B} \rightarrow B A A B A A B \rightarrow \underline{B B A A B A A B} \rightarrow A A A B A A B \rightarrow A B A A B A A B$ I

$$
A B \beta \cdot A \alpha A A B \cdot A A \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha A A B A A B \cdot A \beta A A B
$$

$$
\begin{aligned}
& A B A A B \rightarrow A B B A A B \longrightarrow A A B A A B \longrightarrow B A A B A A B \longrightarrow B B A A B A A B \longrightarrow A B A A B A A B \\
& \text { I } \\
& A B \beta \cdot A \alpha \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha \beta A A B
\end{aligned}
$$

multisteps may have multiple rule symbols; concurrent / parallel contraction

## Embedding reductions into proof terms

## Example

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$

- $\gamma:=A B \beta \cdot A \alpha A A B \cdot A A \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha A A B A A B \cdot A \beta A A B$
- $\gamma^{\prime}:=A B \beta \cdot A \alpha \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha \beta A A B$


## Embedding reductions into proof terms

## Example

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\rightarrow A$

- $\gamma:=A B \beta \cdot A \alpha A A B \cdot A A \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha A A B A A B \cdot A \beta A A B$
- $\gamma^{\prime}:=A B \beta \cdot A \alpha \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha \beta A A B$


## Definition (multistep and proof term)

multistep term over signature extended with rule symbols proof term idem but also extended with composition $\cdot$ respecting src and tgt for rule $\rho: \ell \rightarrow r, \operatorname{src}(\rho):=\ell$ and $\operatorname{tgt}(\rho):=r$; homomorphically extended

## Embedding reductions into proof terms

## Example

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

$$
\begin{aligned}
\alpha & : B B
\end{aligned} \rightarrow A
$$

- $\gamma:=A B \beta \cdot A \alpha A A B \cdot A A \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha A A B A A B \cdot A \beta A A B$
- $\operatorname{src}(\gamma):=\operatorname{src}(A B \beta):=A B \operatorname{src}(\beta):=A B A A B$


## Definition (multistep and proof term)

multistep term over signature extended with rule symbols
proof term idem but also extended with composition $\cdot$ respecting src and tgt for rule $\rho: \ell \rightarrow r, \operatorname{src}(\rho):=\ell$ and $\operatorname{tgt}(\rho):=r$; homomorphically extended

## Embedding reductions into proof terms

## Example

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

$$
\begin{aligned}
\alpha & : B B
\end{aligned} \rightarrow A
$$

- $\gamma:=A B \beta \cdot A \alpha A A B \cdot A A \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha A A B A A B \cdot A \beta A A B$
- $\operatorname{src}(\gamma):=\operatorname{src}(A B \beta):=A B A A B$ and $\operatorname{tgt}(\gamma):=\operatorname{tgt}(A \beta A A B):=A B A A B A A B$


## Definition (multistep and proof term)

multistep term over signature extended with rule symbols proof term idem but also extended with composition $\cdot$ respecting src and tgt for rule $\rho: \ell \rightarrow r, \operatorname{src}(\rho):=\ell$ and $\operatorname{tgt}(\rho):=r$; homomorphically extended

## Embedding reductions into proof terms

## Example

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :
$\alpha: B B$
$\beta$$\quad \rightarrow A$

- $\gamma$ : $A B A A B \geqslant A B A A B A A B$, target string $P$-reachable from source string
- $\gamma^{\prime}:=A B \beta \cdot A \alpha \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha \beta A A B$


## Definition (multistep and proof term)

multistep term over signature extended with rule symbols proof term idem but also extended with composition $\cdot$ respecting src and tgt for rule $\rho: \ell \rightarrow r, \operatorname{src}(\rho):=\ell$ and $\operatorname{tgt}(\rho):=r$; homomorphically extended

## Embedding reductions into proof terms

## Example

string rewrite system $\langle\Sigma, P\rangle$; alphabet $\Sigma=\{A, B\}$ with letters $A, B$; rules $P$ :

| $\alpha$ | $: B B$ |
| ---: | :--- |$\rightarrow A$

- $\gamma: A B A A B \geqslant A B A A B A A B$
- $\gamma^{\prime}: A B A A B \geqslant A B A A B A A B$


## Definition (multistep and proof term)

multistep term over signature extended with rule symbols proof term idem but also extended with composition • respecting src and tgt for rule $\rho: \ell \rightarrow r, \operatorname{src}(\rho):=\ell$ and $\operatorname{tgt}(\rho):=r$; homomorphically extended

## Properties of embedding $\longmapsto$

## Lemma (multistep reductions as proof terms)

- is injective (obvious);


## Properties of embedding $\longmapsto$

## Lemma (multistep reductions as proof terms)

- is injective;
- maps reductions to compositions of steps


## Properties of embedding $\longmapsto$

## Lemma (multistep reductions as proof terms)

- is injective;
- maps reductions to compositions of steps
- maps multistep reductions to compositions of multisteps


## Properties of embedding $\longleftrightarrow$

## Lemma (multistep reductions as proof terms)

- is injective;
- maps reductions to compositions of steps
- maps multistep reductions to compositions of multisteps
- unique modulo associativity of composition .


## Properties of embedding $\longmapsto$

## Lemma (multistep reductions as proof terms)

- is injective;
- maps reductions to compositions of steps
- maps multistep reductions to compositions of multisteps
- unique modulo associativity of composition .


## Upshot

harmless to speak of (multistep) reductions to refer to the corresponding proof term modulo associativity

Evolution: visualisation of reduction $\gamma$ (Wolfram 2002)


## Evolution: visualisation of proof term $\gamma$


$\downarrow A A B$
$A A B A A B$
$\downarrow$ $\beta A A B$
BAABAAB
$\downarrow$ BBAAB
BBAABAAB
$\downarrow \alpha A A B A A B$
AAABAAB
$\downarrow A \beta A A B$
$A B A A B A A B$
$A \mapsto \square, B \mapsto \square, \alpha \mapsto \square$, and $\beta \mapsto \square$; traces show causality (Terese $\mathbb{Q}^{\mathscr{V}} 2003$ )

## Evolution: visualisation of proof terms


$\downarrow A A B$
$A A B A A B$
$\downarrow$ $\beta A A B$
BAABAAB
$\downarrow$ BBAAB
BBAABAAB
$\downarrow \alpha A A B A A B$
$A A A B A A B$
$\downarrow A \beta A A B$
$A B A A B A A B$
$A \mapsto \square, B \mapsto \square, \alpha \mapsto \square$, and $\beta \mapsto \square$; traces show causality (Terese $\mathbb{\bigotimes}$ 2003)

## Causal graph of reduction $\gamma$ (Wolfram 2002)


causal graph: rules as nodes with src and tgt symbols as edges

## Trace relation of proof term $\gamma$ (Terese $\Downarrow_{2003) ~}^{\text {200 }}$


trace relation: rule and symbol positions with tracing as relation

Trace relation of proof term $\gamma$

trace relation: rule positions with tracing as relation

Trace graph of proof term $\gamma$

trace graph: rule positions with tracing as graph

Tragr of proof terms $\gamma$ and $\gamma^{\prime}$

tragr: rule positions with tracing as graph

## Tragrs by proof term algebra

## Definition (tragr : symbol- and rule-labelled planar dag)

directed acyclic multigraph


## Tragrs by proof term algebra

## Definition (tragr : symbol- and rule-labelled planar dag)

having source and target dags as interface


## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical (serial) composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$



## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$



## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket+$ elision



## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$



## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- juxtaposition $\gamma \gamma^{\prime} \mapsto$ horizontal (parallel) composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$



## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- juxtaposition $\gamma \gamma^{\prime} \mapsto$ horizontal composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$



## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- juxtaposition $\gamma \gamma^{\prime} \mapsto$ horizontal composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket+$ elision
 elision


$$
\Rightarrow
$$

## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- juxtaposition $\gamma \gamma^{\prime} \mapsto$ horizontal composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$



## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- juxtaposition $\gamma \gamma^{\prime} \mapsto$ horizontal composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- symbol a and empty string $\mapsto$ identity graph with 'itself' as source, target



## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- juxtaposition $\gamma \gamma^{\prime} \mapsto$ horizontal composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- symbol $\mapsto$ identity graph
- rule $\mapsto$ trace graph from dag of source string to dag of target string



## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- juxtaposition $\gamma \gamma^{\prime} \mapsto$ horizontal composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- symbol $\mapsto$ identity graph
- rule $\mapsto$ trace graph
this tragr algebra $\llbracket \rrbracket$ induces causal equivalence on proof terms


## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- juxtaposition $\gamma \gamma^{\prime} \mapsto$ horizontal composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- symbol $\mapsto$ identity graph
- rule $\mapsto$ trace graph
this tragr algebra $\llbracket \rrbracket$ induces causal equivalence on proof terms, $\llbracket \gamma \rrbracket=\llbracket \gamma^{\prime} \rrbracket$


## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- juxtaposition $\gamma \gamma^{\prime} \mapsto$ horizontal composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- symbol $\mapsto$ identity graph
- rule $\mapsto$ trace graph


## Definition (permutation equivalence $\equiv$ (Lévy, Stark, . . . ))

| (left unit) | $s \cdot \gamma \equiv \gamma$ |  | (associativity) | $(\gamma \cdot \delta) \cdot \zeta \equiv \gamma \cdot(\delta \cdot \zeta)$ |
| :--- | :--- | :--- | ---: | :--- |
| (right unit) | $\gamma \cdot t \equiv \gamma$ | (exchange) | $\gamma \delta \cdot \zeta \eta \equiv(\gamma \cdot \zeta)(\delta \cdot \eta)$ |  |

strings of (non-rule) symbols as vertical unit

## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- juxtaposition $\gamma \gamma^{\prime} \mapsto$ horizontal composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- symbol $\mapsto$ identity graph
- rule $\mapsto$ trace graph


## Definition (permutation equivalence $\equiv$ )

| (left unit) | $\varepsilon \gamma \equiv \gamma$ |  | (associativity) |
| :--- | :--- | :--- | :--- |
| (right unit) | $\gamma \varepsilon \equiv \gamma$ | $(\gamma \delta) \zeta \equiv \gamma(\delta \zeta)$ |  |
| (exchange) | $\gamma \delta \cdot \zeta \eta \equiv(\gamma \cdot \zeta)(\delta \cdot \eta)$ |  |  |

empty string $\varepsilon$ as horizontal unit

## Tragrs by proof term algebra

## Definition (tragr proof term algebra $\llbracket \rrbracket$ )

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- juxtaposition $\gamma \gamma^{\prime} \mapsto$ horizontal composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- symbol $\mapsto$ identity graph
- rule $\mapsto$ trace graph


## Definition (permutation equivalence $\equiv$ )

| (left unit) | $\varepsilon \gamma \equiv \gamma$ | (associativity) | $(\gamma \delta) \zeta \equiv \gamma(\delta \zeta)$ |
| :--- | :--- | :--- | :--- |
| (right unit) | $\gamma \varepsilon \equiv \gamma$ | (exchange) | $\gamma \delta \cdot \zeta \eta \equiv(\gamma \cdot \zeta)(\delta \cdot \eta)$ |

## Lemma (permutation)

permutation equivalence induces causal equivalence: if $\gamma \equiv \delta$ then $\llbracket \gamma \rrbracket=\llbracket \delta \rrbracket$

## Tragrs by proof term algebra

## Definition (tragr proof term algebra 【】)

- composition $\gamma \cdot \gamma^{\prime} \mapsto$ vertical composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- juxtaposition $\gamma \gamma^{\prime} \mapsto$ horizontal composition of graphs $\llbracket \gamma \rrbracket$ and $\llbracket \gamma^{\prime} \rrbracket$
- symbol $\mapsto$ identity graph
- rule $\mapsto$ trace graph


## Definition (permutation equivalence $\equiv$ )

| (left unit) | $\varepsilon \gamma \equiv \gamma$ | (associativity) | $(\gamma \delta) \zeta \equiv \gamma(\delta \zeta)$ |
| :--- | :--- | :--- | :--- |
| (right unit) | $\gamma \varepsilon \equiv \gamma$ | (exchange) | $\gamma \delta \cdot \zeta \eta \equiv(\gamma \cdot \zeta)(\delta \cdot \eta)$ |

## Lemma (permutation)

permutation equivalence induces causal equivalence; conversely?

## Reading back multistep reductions from tragrs by TS


idea : by topological multisorting; maximal rule-parallelism

## Reading back multistep reductions from tragrs by TS


$A B \beta \cdot \ldots$; later steps caused by this $\beta$

## Reading back multistep reductions from tragrs by TS


$A B \beta \cdot A \alpha \beta \cdot \ldots ; \alpha$ and $\beta$ independent; later steps caused by (one of) them

## Reading back multistep reductions from tragrs by TS


$A B \beta \cdot A \alpha \beta \cdot \beta A A B \cdot \ldots$; later steps caused by this $\beta$

## Reading back multistep reductions from tragrs by TS


$A B \beta \cdot A \alpha \beta \cdot \beta A A B \cdot B \beta A A B \cdot \ldots$; later steps caused by this $\beta$

## Reading back multistep reductions from tragrs by TS


$A B \beta \cdot A \alpha \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha \beta A A B \cdot \ldots ; \alpha$ and $\beta$ independent; no later steps

## Reading back multistep reductions from tragrs by TS


$A B \beta \cdot A \alpha \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha \beta A A B$

## Reading back multistep reductions from tragrs by TS


$A B \beta \cdot A \alpha \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha \beta A A B=\gamma^{\prime}!$

## Multistep reductions read back by TS are greedy

Definition (cf. greedy decomposition of Dehornoy et al. 2015)

- proof term greedy if multistep reduction without loath pairs


## Multistep reductions read back by TS are greedy

Definition (cf. being sorted / standard if no out-of-order pairs)

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ not caused by rule in $\Phi$


## Multistep reductions read back by TS are greedy

## Definition (cf. being sorted / standard if no out-of-order pairs)

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ not caused by rule in $\Phi$ $\gamma:=A B \beta \cdot A \alpha A A B \cdot A A \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha A A B A A B \cdot A \beta A A B$ is not greedy


## Multistep reductions read back by TS are greedy

## Definition (cf. being sorted / standard if no out-of-order pairs)

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ not caused by rule in $\Phi$ $\gamma:=A B \beta \cdot \overline{A \alpha \underline{A A B} \cdot A A \underline{\beta}} \cdot \beta A A B \cdot B \beta A A B \cdot \overline{\alpha A A B A A B \cdot A \underline{\beta A A B}}$ loath pairs


## Multistep reductions read back by TS are greedy

## Definition (cf. being sorted / standard if no out-of-order pairs)

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ not caused by rule in $\Phi$ $\gamma^{\prime}:=A B \beta \cdot A \alpha \beta \cdot \beta A A B \cdot B \beta A A B \cdot \alpha \beta A A B$ is greedy; no loath pairs


## Multistep reductions read back by TS are greedy

## Definition (cf. being sorted / standard if no out-of-order pairs)

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ not caused by rule in $\Phi$


## Theorem (bijection)

bijection between greedy proof terms and tragrs (tragr algebra, topological sort)

## Multistep reductions read back by TS are greedy

## Definition (cf. being sorted / standard if no out-of-order pairs)

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ not caused by rule in $\Phi$


## Theorem (bijection)

bijection between greedy proof terms and tragrs

## Proof.

topological sort of tragr gives greedy multistep reduction: by induction using that for multistep constructed from first layer, all later steps are (transitively) caused by some rule in that layer / multistep by sorting topologically

## Multistep reductions read back by TS are greedy

## Definition (cf. being sorted / standard if no out-of-order pairs)

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ not caused by rule in $\Phi$


## Theorem (bijection)

bijection between greedy proof terms and tragrs

## Proof.

identity if tragr obtained from greedy proof term by tragr algebra: by induction showing that for a greedy proof term its multisteps induce the layers of the topological sort when read back, since consecutive multisteps are not loath

## Multistep reductions read back by TS are greedy

## Definition (cf. being sorted / standard if no out-of-order pairs)

- proof term greedy if multistep reduction without loath pairs
- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ not caused by rule in $\Phi$


## Theorem (bijection)

bijection between greedy proof terms and tragrs

## Example

reading back from the tragr of $\gamma^{\prime}$ yields $\gamma^{\prime}$ again, since it is greedy; not for $\gamma$

## Greedy multistep reductions by swapping loath pairs

## Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\Psi$ not caused by rule in $\Phi$


## Greedy multistep reductions by swapping loath pairs

## Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ can be swapped into $\Phi$ : $\exists X$ such that $\Phi \subseteq X$ having residual step $\psi:=X / \Phi$ with $\psi \subseteq \psi$


## Greedy multistep reductions by swapping loath pairs

## Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ can be swapped into $\Phi$ : $\exists X$ such that $\Phi \subseteq X$ having residual step $\psi:=X / \Phi$ with $\psi \subseteq \Psi$
- result of swap is $X \cdot(\Psi / \psi)$; intuition: increase parallelism in 1st multistep


## Greedy multistep reductions by swapping loath pairs

## Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ can be swapped into $\Phi$ : $\exists X$ such that $\Phi \subseteq X$ having residual step $\psi:=X / \Phi$ with $\psi \subseteq \Psi$
- result of swap is $X \cdot(\Psi / \psi)$
greedy decomposition by exhaustive swapping


## Greedy multistep reductions by swapping loath pairs

## Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ can be swapped into $\Phi$ : $\exists X$ such that $\Phi \subseteq X$ having residual step $\psi:=X / \Phi$ with $\psi \subseteq \Psi$
- result of swap is $X \cdot(\Psi / \psi)$
greedy decomposition by exhaustive swapping


## Example

- $A \alpha \underline{A A B} \cdot A A \underline{\beta}$ swaps into $A \alpha \underline{\beta} \cdot A A \underline{B A A B}$
inverse of 1st multistep and step in 2nd multistep orthogonal


## Greedy multistep reductions by swapping loath pairs

## Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ can be swapped into $\Phi$ : $\exists X$ such that $\Phi \subseteq X$ having residual step $\psi:=X / \Phi$ with $\psi \subseteq \Psi$
- result of swap is $X \cdot(\Psi / \psi)$
greedy decomposition by exhaustive swapping


## Example

- $A \alpha \underline{A A B} \cdot A A \beta$ swaps into $A \alpha \beta \cdot A A \underline{B A A B}$
- $\alpha \underline{A A B A A B} \cdot A \underline{\beta} A A B$ swaps into $\alpha \underline{\beta} A A B \cdot A \underline{B A A B A A B}$
inverse of 1st multistep and step in 2nd multistep orthogonal


## Greedy multistep reductions by swapping loath pairs

## Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\Psi$ can be swapped into $\Phi$ : $\exists X$ such that $\Phi \subseteq X$ having residual step $\psi:=X / \Phi$ with $\psi \subseteq \Psi$
- result of swap is $X \cdot(\Psi / \psi)$
greedy decomposition by exhaustive swapping


## Example

- $A \alpha \underline{A A B} \cdot A A \beta$ swaps into $A \alpha \beta \cdot A A \underline{B A A B}$
- $\alpha \underline{A A B A A B} \cdot A \underline{\beta} A A B$ swaps into $\alpha \underline{\beta} A A B \cdot A B A A B A A B$
- $\gamma$ greedily decomposes into $\gamma^{\prime} \cdot A B A A B A A B \cdot A B A A B A A B$


## Greedy multistep reductions by swapping loath pairs

## Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\Psi$ can be swapped into $\Phi$ : $\exists X$ such that $\Phi \subseteq X$ having residual step $\psi:=X / \Phi$ with $\psi \subseteq \Psi$
- result of swap is $X \cdot(\Psi / \psi)$
greedy decomposition by exhaustive swapping + removing empty multisteps


## Example

- $A \alpha \underline{A A B} \cdot A A \beta$ swaps into $A \alpha \beta \cdot A A \underline{B A A B}$
- $\alpha \underline{A A B A A B} \cdot A \underline{\beta} A A B$ swaps into $\alpha \underline{\beta} A A B \cdot A \underline{B A A B A A B}$
- $\gamma$ greedily decomposes into $\gamma^{\prime}$


## Greedy multistep reductions by swapping loath pairs

## Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ can be swapped into $\Phi$ : $\exists X$ such that $\Phi \subseteq X$ having residual step $\psi:=X / \Phi$ with $\psi \subseteq \Psi$
- result of swap is $X \cdot(\Psi / \psi)$
greedy decomposition by exhaustive swapping
Theorem (greedy decomposition)
greedy decomposition $\gamma^{\prime}$ of $\gamma$ exists (swapping terminates) and $\gamma \equiv \gamma^{\prime}$


## Greedy multistep reductions by swapping loath pairs

## Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ can be swapped into $\Phi$ : $\exists X$ such that $\Phi \subseteq X$ having residual step $\psi:=X / \Phi$ with $\psi \subseteq \Psi$
- result of swap is $X \cdot(\Psi / \psi)$
greedy decomposition by exhaustive swapping
Theorem (greedy decomposition)
greedy decomposition $\gamma^{\prime}$ of $\gamma$ exists and is permutation equivalent to $\gamma: \gamma \equiv \gamma^{\prime}$


## Greedy multistep reductions by swapping loath pairs

## Definition (swapping loath pairs)

- consecutive multisteps $\Phi \cdot \Psi$ loath if some rule in $\psi$ can be swapped into $\Phi$ : $\exists X$ such that $\Phi \subseteq X$ having residual step $\psi:=X / \Phi$ with $\psi \subseteq \psi$
- result of swap is $X \cdot(\Psi / \psi)$
greedy decomposition by exhaustive swapping


## Theorem (greedy decomposition)

greedy decomposition $\gamma^{\prime}$ of $\gamma$ exists and is permutation equivalent to $\gamma$ : $\gamma \equiv \gamma^{\prime}$

## Proof.

termination : inverse lexicographic size (Huet \& Lévy) of multisteps decreases equivalence : loath pair equivalent to result of $\operatorname{swap}(\Phi \cdot \Psi \equiv X \cdot(\Psi / \psi))$

## Greedy multistep reduction represents $\equiv$-class

Theorem (permutation equivalence via causal equivalence)
$\forall$ proof terms $\gamma, \exists$ ! greedy multistep reduction $\gamma^{\prime}$ such that $\gamma \equiv \gamma^{\prime}$

## Greedy multistep reduction represents $\equiv$-class

Theorem (permutation equivalence via causal equivalence)
$\forall$ proof terms $\gamma, \exists$ ! greedy multistep reduction $\gamma^{\prime}$ such that $\gamma \equiv \gamma^{\prime}$

## Lemma (confluence-by-evaluation (Plaisted 1985 / Hardin 1989))

rewrite system $\rightarrow$ is confluent, if nf function on the objects and
(1) $\rightarrow$ is normalising (WN)
(2) if $a \rightarrow b$ then $\operatorname{nf}(a)=\operatorname{nf}(b)$
(3) if $a$ is a normal form, then $\operatorname{nf}(a)=a$

## Greedy multistep reduction represents $\equiv$-class

## Theorem (permutation equivalence via causal equivalence)

$\forall$ proof terms $\gamma, \exists$ ! greedy multistep reduction $\gamma^{\prime}$ such that $\gamma \equiv \gamma^{\prime}$

## Lemma (CbE)

rewrite system $\rightarrow$ is confluent, if nf function on the objects and
(1) $\rightarrow$ is normalising
(2) if $a \rightarrow b$ then $\operatorname{nf}(a)=\operatorname{nf}(b)$
(3) if $a$ is a normal form, then $\mathrm{nf}(\mathrm{a})=\mathrm{a}$

## Proof.

if $b \nleftarrow a \rightarrow c$
semantical; local confluence / Newman's Lemma not used

## Greedy multistep reduction represents $\equiv$-class

## Theorem (permutation equivalence via causal equivalence)

$\forall$ proof terms $\gamma, \exists$ ! greedy multistep reduction $\gamma^{\prime}$ such that $\gamma \equiv \gamma^{\prime}$

## Lemma (CbE)

rewrite system $\rightarrow$ is confluent, if nf function on the objects and
(1) $\rightarrow$ is normalising
(2) if $a \rightarrow b$ then $\operatorname{nf}(a)=\operatorname{nf}(b)$
(3) if $a$ is a normal form, then $\mathrm{nf}(\mathrm{a})=\mathrm{a}$

## Proof.

then $b^{\prime} \leftrightarrow b \leftrightarrow a \rightarrow c \rightarrow c^{\prime}$ for normal forms $b^{\prime}, c^{\prime}$ by (1)
semantical; local confluence / Newman's Lemma not used

## Greedy multistep reduction represents $\equiv$-class

## Theorem (permutation equivalence via causal equivalence)

$\forall$ proof terms $\gamma, \exists$ ! greedy multistep reduction $\gamma^{\prime}$ such that $\gamma \equiv \gamma^{\prime}$

## Lemma (CbE)

rewrite system $\rightarrow$ is confluent, if nf function on the objects and
(1) $\rightarrow$ is normalising
(2) if $a \rightarrow b$ then $\operatorname{nf}(a)=\operatorname{nf}(b)$
(3) if $a$ is a normal form, then $\mathrm{nf}(\mathrm{a})=\mathrm{a}$

## Proof.

hence $n f\left(b^{\prime}\right)=\operatorname{nf}\left(c^{\prime}\right)$ by convertibility of $b^{\prime}$ and $c^{\prime}$ and (2)
semantical; local confluence / Newman's Lemma not used

## Greedy multistep reduction represents $\equiv$-class

## Theorem (permutation equivalence via causal equivalence)

$\forall$ proof terms $\gamma, \exists$ ! greedy multistep reduction $\gamma^{\prime}$ such that $\gamma \equiv \gamma^{\prime}$

## Lemma (CbE)

rewrite system $\rightarrow$ is confluent, if nf function on the objects and
(1) $\rightarrow$ is normalising
(2) if $a \rightarrow b$ then $\operatorname{nf}(a)=\operatorname{nf}(b)$
(3) if $a$ is a normal form, then $\mathrm{nf}(\mathrm{a})=\mathrm{a}$

## Proof.

so $b^{\prime}=c^{\prime}$ by (3), i.e. $b \rightarrow b^{\prime}=c^{\prime} \nleftarrow c$
semantical; local confluence / Newman's Lemma not used

## Greedy multistep reduction represents $\equiv$-class

Theorem (permutation equivalence via causal equivalence)
$\forall$ proof terms $\gamma, \exists$ ! greedy multistep reduction $\gamma^{\prime}$ such that $\gamma \equiv \gamma^{\prime}$

## Proof.

for swap rewrite system, and nf mapping to 【】 followed by read back TS:

## Greedy multistep reduction represents $\equiv$-class

Theorem (permutation equivalence via causal equivalence)
$\forall$ proof terms $\gamma, \exists$ ! greedy multistep reduction $\gamma^{\prime}$ such that $\gamma \equiv \gamma^{\prime}$
Proof.
for swap rewrite system, and nf mapping to $\llbracket \rrbracket$ followed by read back TS:
(1) swapping is terminating (by greedy decomposition theorem), hence normalising

## Greedy multistep reduction represents $\equiv$-class

Theorem (permutation equivalence via causal equivalence)
$\forall$ proof terms $\gamma, \exists$ ! greedy multistep reduction $\gamma^{\prime}$ such that $\gamma \equiv \gamma^{\prime}$

## Proof.

for swap rewrite system, and nf mapping to $\llbracket \rrbracket$ followed by read back TS:
(1) swapping is terminating, hence normalising
(2) nf is preserved by swapping since 【】 is by permutation lemma using: proof term $\equiv$ multistep reduction (serialisation)

## Greedy multistep reduction represents $\equiv$-class

## Theorem (permutation equivalence via causal equivalence)

$\forall$ proof terms $\gamma, \exists$ ! greedy multistep reduction $\gamma^{\prime}$ such that $\gamma \equiv \gamma^{\prime}$

## Proof.

for swap rewrite system, and nf mapping to $\llbracket \rrbracket$ followed by read back TS:
(1) swapping is terminating, hence normalising
(2) nf is preserved by swapping since 【】 is by permutation lemma using: proof term $\equiv$ greedy multistep reduction (greedy decomposition theorem)

## Greedy multistep reduction represents $\equiv$-class

Theorem (permutation equivalence via causal equivalence)
$\forall$ proof terms $\gamma, \exists$ ! greedy multistep reduction $\gamma^{\prime}$ such that $\gamma \equiv \gamma^{\prime}$

## Proof.

for swap rewrite system, and nf mapping to 【】 followed by read back TS:
(1) swapping is terminating, hence normalising
(2) nf is preserved by swapping since $\llbracket \rrbracket$ is
(3) nf is identity on greedy normal forms

## Greedy multistep reduction represents $\equiv$-class

Theorem (permutation equivalence via causal equivalence)
$\forall$ proof terms $\gamma, \exists$ ! greedy multistep reduction $\gamma^{\prime}$ such that $\gamma \equiv \gamma^{\prime}$

## Proof.

for swap rewrite system, and nf mapping to $\llbracket \rrbracket$ followed by read back TS:
(1) swapping is terminating, hence normalising
(2) nf is preserved by swapping since $\llbracket \rrbracket$ is
(3) nf is identity on greedy normal forms
by CbE swapping is complete (confluent and terminating)

## Greedy multistep reduction represents $\equiv$-class

## Theorem (permutation equivalence via causal equivalence)

$\forall$ proof terms $\gamma, \exists$ ! greedy multistep reduction $\gamma^{\prime}$ such that $\gamma \equiv \gamma^{\prime}$

## Proof.

for swap rewrite system, and nf mapping to 【】 followed by read back TS:
(1) swapping is terminating, hence normalising
(2) nf is preserved by swapping since $\llbracket \rrbracket$ is
(3) nf is identity on greedy normal forms
by CbE swapping is complete (confluent and terminating)

## Upshot

permutation $\simeq$ causal equivalence; greedy multistep reduction $\simeq$ causal graph

## Conclusions / directions

(1) physics (causal graph; Wolfram)

## Conclusions / directions

(1) physics, Garside theory (greedy decomposition; Dehornoy)

## Conclusions / directions

(1) physics, Garside theory and concurrency theory (CTS; Stark)

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting ( $\equiv$; Lévy)

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality

2 cross-citing sporadic (myopic; intentional?)

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same (sorted $\simeq$ decomposed $\simeq$ standard)

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS (nullary, modulo AC)

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS; in paper monadic embedding (unary)

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS; in paper monadic embedding
(4) empty causation? ( $a b c \rightarrow a c \rightarrow d$ ? for rules $b \rightarrow \varepsilon, a c \rightarrow d$; see paper)

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS; in paper monadic embedding
(4) empty causation?
(5) complexity? (area? width (parallel) vs. length (serial))

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS; in paper monadic embedding
(4) empty causation?
(5) complexity?
(6) extend to term rewriting? cf. sharing graphs (Lamping 1990) TRS non-linear: replication vs. causation (Terese $\mathbb{V}^{2} 2003$ )

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS; in paper monadic embedding
(4) empty causation?
(5) complexity?
(6) extend to term rewriting?
(7) application / automation of CbE? (ground confluence of $0, S, A$; Futatsugi)

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS; in paper monadic embedding
(4) empty causation?
(5) complexity?
(6) extend to term rewriting?
(7) application / automation of CbE ?
(8) morphism

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS; in paper monadic embedding
(4) empty causation?
(5) complexity?
(6) extend to term rewriting?
(7) application / automation of CbE ?
(8) morphism, deduction

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS; in paper monadic embedding
(4) empty causation?
(5) complexity?
(6) extend to term rewriting?
(7) application / automation of CbE?
(8) morphism, deduction $\mapsto$ proof term

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS; in paper monadic embedding
(4) empty causation?
(5) complexity?
(6) extend to term rewriting?
(7) application / automation of CbE?
(8) morphism, deduction $\mapsto$ proof term modulo causality

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS; in paper monadic embedding
(4) empty causation?
(5) complexity?
(6) extend to term rewriting?
(7) application / automation of CbE?

8 morphism, deduction $\longmapsto$ proof term modulo causality $\leftrightarrow$ causal graph

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS; in paper monadic embedding
(4) empty causation?
(5) complexity?
(6) extend to term rewriting?
(7) application / automation of CbE?
(8) morphism, deduction $\longleftrightarrow$ proof term modulo causality $\leftrightarrow$ tragr

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS; in paper monadic embedding
(4) empty causation?
(5) complexity?
(6) extend to term rewriting?
(7) application / automation of CbE?
(8) morphism, deduction $\mapsto$ proof term modulo causality $\leftrightarrow$ proof term graph

## Conclusions / directions

(1) physics, Garside theory and concurrency theory mirror rewriting: causality
(2) cross-citing sporadic, methods same
(3) oudenadic embedding of SRS in TRS; in paper monadic embedding
(4) empty causation?
(5) complexity?
(6) extend to term rewriting?
(7) application / automation of CbE?
(8) morphism, deduction $\leftrightarrow$ proof term modulo causality $\leftrightarrow$ proof term graph thank you
(return to NL tomorrow night; contact me after at oostrom@javakade.nl)


[^0]:    ${ }^{1}$ Supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with sharing and unsharing.

