A puzzle to ponder on α-conversion

- give an upperbound on the $\# \alpha$-renamings needed to β-reduce $((\underline{2} \underline{8})(\underline{4} \underline{9}))(\underline{5} \underline{7})(\underline{4} \underline{2})$ to normal form?
- note 1: application of Church-numerals is exponentiation; $\underline{k} \underline{n} \rightarrow \beta \underline{n^{k}}$
- note 2: whether α-conversion is needed in a β-reduction is undecidable

On naïvely implementing the $\lambda \beta$-calculus

Vincent van Oostrom

λ-calculus naïvely

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
\text { Church numeral } 2
\end{gathered}
$$

running example, reduces to four
$(\lambda s z . s(s z)) \lambda s z . s(s z)$

λ-calculus naïvely

$$
\underline{2}:=\lambda s z . s(s z)
$$

$\underline{2} 2$

λ-calculus naïvely

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
\beta \text {-reduction with naïve substitution } \\
\text { (not in } \lambda x ; \text { indiscriminantly in } \lambda y \text {) } \\
\underline{2} \underline{2}
\end{gathered}
$$

λ-calculus naïvely

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N]
\end{gathered}
$$

$\underline{2} 2$

combinator system

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \quad \text { lifting } \lambda z . s(s z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N]
\end{gathered}
$$

$\underline{2} 2$

combinator system

$$
\begin{array}{cl}
\underline{2}:=\lambda s z . s(s z) & \quad \text { lifting } \lambda z . s(s z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & \text { skeleton } \lambda z . \square(\square z) \mapsto \mathrm{f} \text {-symbol } Z \\
& \text { maximal free subexpressions } s, s
\end{array}
$$

$\underline{2} 2$

combinator system

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & Z[x, y] z \rightarrow_{k} x(y z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & Z[x, y] \text { represents } \lambda z . x(y z)
\end{array}
$$

$\underline{2}$

combinator system

$$
\underline{2}:=\lambda s z . s(s z) \quad \mid \quad Z[x, y] z \rightarrow_{\kappa} x(y z)
$$

$$
(\lambda x . M) N \rightarrow_{\beta} M[x:=N]
$$

$$
\underline{2} \underline{2}
$$

combinator system

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & \quad \text { | } \quad Z[x, y] z \rightarrow_{k} x(y z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & \text { lifting } \lambda s . Z[s, s] \\
& \text { its own skeleton } \mapsto \text { f-symbol } s \\
& \text { no maximal free subexpressions }
\end{array}
$$

combinator system

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x . M) N \rightarrow{ }_{\beta} M[x:=N]
\end{gathered}
$$

$$
\begin{gathered}
Z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} Z[z, z]
\end{gathered}
$$

$$
S \text { represents } \underline{2}:=\lambda s z . s(s z)
$$

$\underline{2} 2$

combinator system

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N]
\end{gathered}
$$

$$
\begin{gathered}
z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} Z[z, z]
\end{gathered}
$$

running example, reduces to four
$\underline{2} 2$ SS

combinator system

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N]
\end{gathered}
$$

$$
\begin{gathered}
Z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} Z[z, z]
\end{gathered}
$$

$\underline{2} 2$ SS

TGRS

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & Z[x, y] z \rightarrow_{\kappa} x(y z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & S z \rightarrow_{\kappa} z[z, z]
\end{array}
$$

22SS

TGRS

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & \quad \\
(\lambda x . M) N \rightarrow_{\beta} M[x: y] z \rightarrow_{k} x(y z) & S z \rightarrow_{K} Z[z, z]
\end{array}
$$

22
SS
duplication by sharing in rhs

TGRS

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & Z[x, y] z \rightarrow_{\kappa} x(y z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & S z \rightarrow_{\kappa} z[z, z]
\end{array}
$$

22SS

TGRS

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & \quad \\
(\lambda x . M) N \rightarrow_{\beta} M[x: y] z \rightarrow_{k} x(y z) & S z \rightarrow_{K} Z[z, z]
\end{array}
$$

22
SS

running example, reduces to four
λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS
$\underline{2}:=\lambda s z . s(s z)$
$(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$

$$
\begin{gathered}
z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} z[z, z]
\end{gathered}
$$

$\underline{2}$
SS

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS
$\underline{2}:=\lambda s z . s(s z)$
$(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$

$$
\begin{gathered}
z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} z[z, z]
\end{gathered}
$$

22

$\lambda z . \underline{2}(\underline{2} z)$

SS
ض
$Z[S, S]$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{gathered}
Z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} Z[z, z]
\end{gathered}
$$

$$
\lambda z . \underline{2}(\underline{2} z)
$$

$$
z[S, S]
$$

$$
\stackrel{z}{\stackrel{z}{s}}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & Z[x, y] z \rightarrow_{\kappa} x(y z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & S z \rightarrow_{\kappa} z[z, z]
\end{array}
$$

$Z[S, S]$

weak head normal form (under λ) normal form (Z is stuck)
normal form (Z is stuck)

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \begin{array}{c}
Z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} Z[z, z]
\end{array} \\
& Z[S, S]
\end{aligned}
$$

root-introduce fresh constant
root-introduce fresh constant root-introduce fresh constant

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{array}{cc}
\underline{2}:=\lambda s z . s(s z) & Z[x, y] z \rightarrow_{\kappa} x(y z) \\
(\lambda x . M) N \rightarrow_{\beta} M[x:=N] & S z \rightarrow_{\kappa} Z[z, z] \\
\lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} & Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
\left(z^{\prime}\right. \text { fresh; think of as constant) } & S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
\lambda z . \underline{2}(\underline{2} z) & Z[S, S] \\
\text { factor } \alpha \text { through } \beta \text { (at root) } & \text { unstuck combinator (at roc }
\end{array}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x \cdot M) N \rightarrow_{\beta} M[x:=N] \\
\lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} \cdot(\lambda z . M) z^{\prime} \\
\lambda z . \underline{2}(\underline{2} z) \\
\downarrow_{\alpha} \\
\lambda z_{1} \cdot(\lambda z . \underline{2}(\underline{2} z)) z_{1}
\end{gathered}
$$

$$
\begin{gathered}
Z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} Z[z, z] \\
Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime}
\end{gathered}
$$

$$
Z[S, S]
$$

$$
\boldsymbol{\downarrow}^{\alpha}
$$

$\lambda z_{1} . Z[S, S] z_{1}$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda z_{1} \cdot(\lambda z . \underline{2}(\underline{2} z)) z_{1} \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda z_{1}, Z[S, S] z_{1}
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x \cdot M) N \rightarrow_{\beta} M[x:=N] \\
\lambda z \cdot M \rightarrow_{\alpha} \lambda z^{\prime} \cdot(\lambda z \cdot M) z^{\prime} \\
\lambda z_{1} \cdot(\lambda z . \underline{2}(\underline{2} z)) z_{1} \\
\downarrow_{\beta} \\
\lambda z_{1} \cdot \underline{2}\left(\underline{2} z_{1}\right)
\end{gathered}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda z_{1} . \underline{2}\left(\underline{2} z_{1}\right) \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda z_{1} . S\left(S z_{1}\right)
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

unshare constructor of redex

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{gathered}
\underline{2}:=\lambda s z . s(s z) \\
(\lambda x \cdot M) N \rightarrow_{\beta} M[x:=N] \\
\lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} \cdot(\lambda z \cdot M) z^{\prime} \\
\lambda z_{1} \cdot \underline{2}\left(\underline{2} z_{1}\right) \\
\boldsymbol{\beta}_{\beta} \\
\lambda z_{1} \cdot \lambda z \cdot \underline{2} z_{1}\left(\underline{2} z_{1} z\right)
\end{gathered}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda z_{1} \cdot \lambda z . \underline{2} z_{1}\left(\underline{2} z_{1} z\right) \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda z_{1}, Z\left[S z_{1}, S z_{1}\right]
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$\underline{2}:=\lambda s z . s(s z)$
$(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$ $\lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime}$
$\lambda z_{1} . \lambda z .2 z_{1}\left(\underline{2} z_{1} z\right)$ ${ }^{\boldsymbol{\gamma}}{ }^{\alpha}$
$\lambda z_{1} z_{2} \cdot\left(\lambda z . \underline{2} z_{1}\left(\underline{2} z_{1} z\right)\right) z_{2}$
$Z[x, y] z \rightarrow_{\kappa} x(y z)$ $S z \rightarrow_{\kappa} Z[z, z]$
$Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime}$ $S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime}$
$\lambda z_{1} . Z\left[S z_{1}, S z_{1}\right]$
〉 ${ }^{\alpha}$
$\lambda z_{1} z_{2} \cdot Z\left[S z_{1}, S z_{1}\right] z_{2}$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda z_{1} z_{2} \cdot\left(\lambda z . \underline{2} z_{1}\left(\underline{2} z_{1} z\right)\right) z_{2} \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda z_{1} z_{2} \cdot Z\left[S z_{1}, S z_{1}\right] z_{2}
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda z_{1} z_{2} \cdot\left(\lambda z \cdot \underline{2} z_{1}\left(\underline{2} z_{1} z\right)\right) z_{2} \\
& \text { † } \beta \\
& \lambda \vec{z} . \underline{2} z_{1}\left(\underline{2} z_{1} z_{2}\right) \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda z_{1} z_{2} . Z\left[S z_{1}, S z_{1}\right] z_{2} \\
& \dagger \kappa \\
& \lambda \vec{z} . S z_{1}\left(S z_{1} z_{2}\right)
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} . \underline{2} z_{1}\left(\underline{2} z_{1} z_{2}\right) \\
& Z[x, y] z \rightarrow_{k} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda \vec{z} . S z_{1}\left(S z_{1} z_{2}\right)
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$\underline{2}:=\lambda s z . s(s z)$
$(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$
$\lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime}$
$\lambda \vec{z} \cdot \underline{2} z_{1}\left(\underline{2} z_{1} z_{2}\right)$
${ }_{\dagger}{ }^{\mathrm{f}} \beta$
$\lambda \vec{z} .\left(\lambda z . z_{1}\left(z_{1} z\right)\right)\left(\left(\lambda z . z_{1}\left(z_{1} z\right)\right) z_{2}\right)$ parallel β (weak family)

$$
\begin{gathered}
Z[x, y] z \rightarrow_{\kappa} x(y z) \\
S z \rightarrow_{\kappa} Z[z, z]
\end{gathered}
$$

$$
Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime}
$$

$$
S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime}
$$

$\lambda \vec{z} . S z_{1}\left(S z_{1} z_{2}\right)$
$\downarrow \mathrm{f} \kappa$
$\lambda \vec{z} . Z\left[z_{1}, z_{1}\right]\left(Z\left[z_{1}, z_{1}\right] z_{2}\right)$ parallel κ (family)

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} .\left(\lambda z . z_{1}\left(z_{1} z\right)\right)\left(\left(\lambda z . z_{1}\left(z_{1} z\right)\right) z_{2}\right) \quad \lambda \vec{z} . Z\left[z_{1}, z_{1}\right]\left(Z\left[z_{1}, z_{1}\right] z_{2}\right) \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime}
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} .\left(\lambda z . z_{1}\left(z_{1} z\right)\right)\left(\left(\lambda z . z_{1}\left(z_{1} z\right)\right) z_{2}\right) \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda \vec{z} . Z\left[z_{1}, z_{1}\right]\left(Z\left[z_{1}, z_{1}\right] z_{2}\right) \\
& \text { unshare constructor of redex }
\end{aligned}
$$

λ－calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} .\left(\lambda z \cdot z_{1}\left(z_{1} z\right)\right)\left(\left(\lambda z . z_{1}\left(z_{1} z\right)\right) z_{2}\right) \\
& \text { 〉 }{ }^{\beta} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(\left(\lambda z . z_{1}\left(z_{1} z\right)\right) z_{2}\right)\right) \\
& \begin{array}{c}
Z[x, y] z \rightarrow_{k} x(y z) \\
S z \rightarrow_{k} Z[z, z]
\end{array} \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda \vec{z} . Z\left[z_{1}, z_{1}\right]\left(Z\left[z_{1}, z_{1}\right] z_{2}\right) \\
& \text { 巾 }{ }^{k} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(Z\left[z_{1}, z_{1}\right] z_{2}\right)\right)
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(\left(\lambda z . z_{1}\left(z_{1} z\right)\right) z_{2}\right)\right) \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(Z\left[z_{1}, z_{1}\right] z_{2}\right)\right)
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$\underline{2}:=\lambda s z . s(s z)$
$(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$
$\lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime}$
$\lambda \vec{z} . z_{1}\left(z_{1}\left(\left(\lambda z . z_{1}\left(z_{1} z\right)\right) z_{2}\right)\right)$

$\lambda \vec{z} . z_{1}\left(z_{1}\left(z_{1}\left(z_{1} z_{2}\right)\right)\right)$
$Z[x, y] z \rightarrow_{\kappa} x(y z)$
$S z \rightarrow_{\kappa} Z[z, z]$
$Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime}$
$S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime}$
$\lambda \vec{z} . z_{1}\left(z_{1}\left(Z\left[z_{1}, z_{1}\right] z_{2}\right)\right)$
† ${ }^{\kappa}$
$\lambda \vec{z} \cdot z_{1}\left(z_{1}\left(z_{1}\left(z_{1} z_{2}\right)\right)\right)$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(z_{1}\left(z_{1} z_{2}\right)\right)\right) \\
& z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(z_{1}\left(z_{1} z_{2}\right)\right)\right)
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(z_{1}\left(z_{1} z_{2}\right)\right)\right) \\
& \text { normal form } \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& \lambda \vec{z} . z_{1}\left(z_{1}\left(z_{1}\left(z_{1} z_{2}\right)\right)\right) \\
& \text { normal form } \\
& \text { normal form }
\end{aligned}
$$

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS

$$
\begin{aligned}
& \underline{2}:=\lambda s z . s(s z) \\
& (\lambda x . M) N \rightarrow_{\beta} M[x:=N] \\
& \lambda z . M \rightarrow_{\alpha} \lambda z^{\prime} .(\lambda z . M) z^{\prime} \\
& \text { normal form } \\
& Z[x, y] z \rightarrow_{\kappa} x(y z) \\
& S z \rightarrow_{\kappa} Z[z, z] \\
& Z[x, y] \rightarrow_{\alpha} \lambda z^{\prime} . Z[x, y] z^{\prime} \\
& S \rightarrow_{\alpha} \lambda z^{\prime} . S z^{\prime} \\
& 4 \\
& \text { normal form } \\
& \dagger 4 \\
& \text { normal form }
\end{aligned}
$$

Concrete results

- a graph implementation of $\ell 0 \beta$ where every step is bounded (by sizes of liftings of λ-subterms)

Concrete results

- a graph implementation of $\ell o \beta$ where every step is bounded
- leftmost-outermost ($\ell 0$) γ-step corresponds to parallel ℓ o β-step (\# ℓ o β 's is upperbound on space,time; $\ell o \beta$ cost-model)

Concrete results

- a graph implementation of $\ell o \beta$ where every step is bounded
- leftmost-outermost ($\ell 0$) γ-step corresponds to parallel $\ell 0 \beta$-step
- only naïve substitution (no renaming) in $\ell o \beta$; explicit α-steps (fresh) (1 per λ in output term; derived variable name, no de Bruin-indices)

Concrete results

- a graph implementation of $\ell o \beta$ where every step is bounded
- leftmost-outermost ($\ell 0$) γ-step corresponds to parallel $\ell 0 \beta$-step
- only naïve substitution in $\ell 0 \beta$; explicit α-steps
- based on classical TGR techniques (previous millennium)

Concrete results

- a graph implementation of $\ell o \beta$ where every step is bounded
- leftmost-outermost (ℓ o) γ-step corresponds to parallel $\ell o \beta$-step
- only naïve substitution in ℓ o β; explicit α-steps
- based on classical TGR techniques
caution: all this is strategy ($\ell 0 \beta$) specific; combinator translations will hide β-redexes in general (the naïve abstraction algorithm maps any λ-abstraction to a CL-normal form). In the case of ℓ o β explicit α at the root suffices to make such come unstuck. In general, that's not sufficient.

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS, weak

a sharing graph implementation of β (Wadsworth 71)

λ-calculus

optimal (Blanc, Lévy, Maranget 05) for weak β (Çağman, Hindley 98); weak families

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS, weak

। |
optimal for weak β; weak families

weak β families factor through families in combinator systems (® 05, Balabonski 12)

λ-calculus \Longleftrightarrow combinator system \Longleftrightarrow TGRS, ℓ o β

optimal for weak β; weak families

$\ell_{0} \beta$ factors through families in combinator systems by explicit- α (this talk)

Conclusions

- unstucking CL (Schönfinkel, Curry, Reynolds, Hughes) for reduction to β-nf (only naïve substitution; here $\ell o \beta$ but e.g. also call-by-value)

Conclusions

- unstucking CL (Schönfinkel, Curry, Reynolds, Hughes) for reduction to β-nf
- optimal term graph rewriting implementation of ℓ o β (optimal (Maranget) for supercombinators (weak β), not for β (Lévy)!)

Conclusions

- unstucking CL (Schönfinkel, Curry, Reynolds, Hughes) for reduction to β-nf
- optimal term graph rewriting implementation of $\ell 0 \beta$
- cost-model for $\ell 0 \beta$ (Dal Lago,Accatoli) (space,time linear in \#TGRS-steps and bounded by \# ℓ o β-steps)

Conclusions

- unstucking CL (Schönfinkel, Curry, Reynolds, Hughes) for reduction to β-nf
- optimal term graph rewriting implementation of $\ell 0 \beta$
- cost-model for $\ell 0 \beta$ (Dal Lago,Accatoli)
implemented (rapid Haskell prototype) $\ell 0 \beta$ to CL ; from CL to TGRS future work

Meta-Conclusions

- unstucking CL (Schönfinkel, Curry, Reynolds, Hughes) for reduction to β-nf
- optimal term graph rewriting implementation of $\ell 0 \beta$
- cost-model for $\ell 0 \beta$ (Dal Lago,Accatoli)
implemented $\ell 0 \beta$ to CL; from CL to TGRS future work

Meta-Conclusions

- unstucking CL (Schönfinkel, Curry, Reynolds, Hughes) for reduction to β-nf
- optimal term graph rewriting implementation of $\ell 0 \beta$
- cost-model for $\ell 0 \beta$ (Dal Lago,Accatoli)
implemented $\ell 0 \beta$ to CL; from CL to TGRS future work
- rewriting useful both for simple description and efficient implementation (no intermediate abstract machines (Krivine))

Meta-Conclusions

- unstucking CL (Schönfinkel, Curry, Reynolds, Hughes) for reduction to β-nf
- optimal term graph rewriting implementation of $\ell 0 \beta$
- cost-model for $\ell 0 \beta$ (Dal Lago,Accatoli)
implemented $\ell 0 \beta$ to CL; from CL to TGRS future work
- rewriting useful both for simple description and efficient implementation
- higher-order rewriting useful to bridge λ-calculus \Longleftrightarrow supercombinators (rid of binders, no intermediate let-calculus; combinator system novel?)

Meta-Conclusions

- unstucking CL (Schönfinkel, Curry, Reynolds, Hughes) for reduction to β-nf
- optimal term graph rewriting implementation of $\ell 0 \beta$
- cost-model for $\ell 0 \beta$ (Dal Lago,Accatoli)
implemented $\ell 0 \beta$ to CL; from CL to TGRS future work
- rewriting useful both for simple description and efficient implementation
- higher-order rewriting useful to bridge λ-calculus \Longleftrightarrow supercombinators
- substitution calculus (®, van Raamsdonk) useful to modularise TGR (ж makes matching and substitution explicit; see paper)

Meta-Conclusions

- unstucking CL (Schönfinkel, Curry, Reynolds, Hughes) for reduction to β-nf
- optimal term graph rewriting implementation of $\ell 0 \beta$
- cost-model for $\ell 0 \beta$ (Dal Lago,Accatoli)
implemented $\ell 0 \beta$ to CL; from CL to TGRS future work
- rewriting useful both for simple description and efficient implementation
- higher-order rewriting useful to bridge λ-calculus \Longleftrightarrow supercombinators
- substitution calculus (®y, van Raamsdonk) useful to modularise TGR
- classical techniques (Schönfinkel, Wadsworth, Hughes,....) for complexity

Meta-Conclusions

- unstucking CL (Schönfinkel, Curry, Reynolds, Hughes) for reduction to β-nf
- optimal term graph rewriting implementation of $\ell o \beta$
- cost-model for $\ell 0 \beta$ (Dal Lago,Accatoli)
implemented $\ell 0 \beta$ to CL; from CL to TGRS future work
- rewriting useful both for simple description and efficient implementation
- higher-order rewriting useful to bridge λ-calculus \Longleftrightarrow supercombinators
- substitution calculus (®, van Raamsdonk) useful to modularise TGR
- classical techniques (Schönfinkel, Wadsworth, Hughes,....) for complexity
- Gödel not convinced by $\lambda \beta$ / TRS; me neither because no unit-time steps (abstract from replication; cf. Java abstracting from garbage collection)

Meta-Conclusions

- unstucking CL (Schönfinkel, Curry, Reynolds, Hughes) for reduction to β-nf
- optimal term graph rewriting implementation of $\ell 0 \beta$
- cost-model for $\ell 0 \beta$ (Dal Lago,Accatoli)
implemented $\ell 0 \beta$ to CL; from CL to TGRS future work
- rewriting useful both for simple description and efficient implementation
- higher-order rewriting useful to bridge λ-calculus \Longleftrightarrow supercombinators
- substitution calculus (凶, van Raamsdonk) useful to modularise TGR
- classical techniques (Schönfinkel, Wadsworth, Hughes,....) for complexity
- Gödel not convinced by $\lambda \beta$ / TRS; me neither because no unit-time steps current work: amortised complexity via term rewriting (derivation monoids)

Meta-Conclusions

- unstucking CL (Schönfinkel, Curry, Reynolds, Hughes) for reduction to β-nf
- optimal term graph rewriting implementation of $\ell 0 \beta$
- cost-model for $\ell 0 \beta$ (Dal Lago,Accatoli)
implemented $\ell 0 \beta$ to CL; from CL to TGRS future work
- rewriting useful both for simple description and efficient implementation
- higher-order rewriting useful to bridge λ-calculus \Longleftrightarrow supercombinators
- substitution calculus (®y, van Raamsdonk) useful to modularise TGR
- classical techniques (Schönfinkel, Wadsworth, Hughes,....) for complexity
- Gödel not convinced by $\lambda \beta$ / TRS; me neither because no unit-time steps current work: amortised complexity via term rewriting (derivation monoids) thanks: students, co-workers (Zwitserlood, Hendriks, Grabmayer, Heijltjes,. . .)

λ-calculus \Longrightarrow combinator system in Haskell

```
data Lam = Lam Head [Lam] deriving (Show)
data Head = Var String | Abs String Lam deriving (Show)
subst x s (Lam h l) = let
    (Lam h' l') = case h of
        (Var y) | x == y -> s
        (Abs y u) | x /= y -> Lam (Abs y (subst x s u)) []
        -> Lam h [] in (Lam h' (l'++(map (subst x s) l)))
whnf (Lam (Abs x t) (u:l)) = let Lam h s = subst x u t in whnf (Lam h (s++l))
whnf t = t
nf = rnf (\x -> 1)
rnf f t = let
    (Lam h l) = whnf t
    f' x = \y -> f y + (if (x==y) then 1 else 0)
    v x = x++"_"++show (f x) in case h of
        (Abs x _) -> Lam (Abs (v x) (rnf (f' x) (Lam h [Lam (Var (v x)) []]))) []
                        -> Lam h (map (rnf f) l)
```


λ-calculus \Longleftrightarrow interaction nets (Lafont 90), strong

characterisation of optimal β (Lévy 78); families

λ-calculus \Longleftrightarrow interaction nets (Lafont 90), strong

sharing graph implementation of β families (Lamping 90)

A puzzle to ponder on α-conversion

- give an upperbound on the $\# \alpha$-renamings needed to β-reduce $((\underline{2} \underline{8})(\underline{4} \underline{9}))(\underline{5} \underline{7})(\underline{4} \underline{2})$ to normal form?
- note 1: application of Church-numerals is exponentiation; $\underline{k} \underline{n} \rightarrow \beta \underline{n^{k}}$
- note 2: whether α-conversion is needed in a β-reduction is undecidable

