

Uniform Completeness

Vincent van Oostrom ${ }^{1}$

${ }^{1}$ Supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with sharing and unsharing.

Completeness

Definition

rewrite system $\rightarrow:=\langle A, \Phi$, src, tgt \rangle with objects A and steps Φ
$\phi: a \rightarrow b$ or $a \rightarrow_{\phi} b$ denotes step ϕ with source $\operatorname{src}(\phi)=a$, target $\operatorname{tgt}(\phi)=b$

Completeness

Definition

rewrite system $\rightarrow:=\langle A, \Phi$, src, tgt \rangle with objects A and steps Φ
rewrite systems have same data as multigraphs, quivers, pre-categories

Completeness

Definition

rewrite system is complete if confluent (CR) and terminating (SN)

Completeness

Definition

rewrite system is complete if confluent and terminating

Lemma (Complete iff)

- locally confluent (WCR) and terminating (SN) (Newman 1942)

Completeness

Definition

rewrite system is complete if confluent and terminating

Lemma (Complete iff)

- locally confluent and terminating
- ordered locally confluent (OWCR) and normalising (WN) (this talk)

Completeness

Definition

rewrite system is complete if confluent and terminating

Lemma (Complete iff)

- locally confluent and terminating
- ordered locally confluent and normalising

Completeness

Definition

rewrite system is complete if confluent and terminating

Lemma (Complete iff)

- locally confluent and terminating
- ordered locally confluent and normalising

Theorem (Newman 1942, $\mathbb{V}^{2007)}$

ordered local confluence \Longleftrightarrow random descent (RD):
if convertible to nf max reductions same length: NF $\ni a^{n} \leftrightarrow^{m} b \Longrightarrow a^{n-m} \leftarrow b$

Example 1: Sorting by swapping adjacent inversions

Example (RTA 2007)

\rightarrow swaps adjacent out-of-order letters in finite strings of letters

Example 1: Sorting by swapping

Example (RTA 2007)

\rightarrow swaps adjacent out-of-order letters in finite strings of letters

- \rightarrow is ordered weak Church-Rosser:

same

orthogonal

overlap

Example 1: Sorting by swapping

Example (RTA 2007)

\rightarrow swaps adjacent out-of-order letters in finite strings of letters

- \rightarrow is ordered weak Church-Rosser
- \rightarrow is normalising by termination of some sorting algorithm, e.g. bubble sort

Example 1: Sorting by swapping

Example (RTA 2007)

\rightarrow swaps adjacent out-of-order letters in finite strings of letters

- \rightarrow is ordered weak Church-Rosser
- \rightarrow is normalising by termination of some sorting algorithm hence \rightarrow is complete because it has random descent

Example 1: Sorting by swapping

Example (RTA 2007)

\rightarrow swaps adjacent out-of-order letters in finite strings of letters

- \rightarrow is ordered weak Church-Rosser
- \rightarrow is normalising by termination of some sorting algorithm hence \rightarrow is complete
and all ways of sorting a string by swapping have same length; $O\left(n^{2}\right)$

Example 2: Bowls and beans

Example (RTA 2007)

\rightarrow moves a bean to both adjacent bowls in two-sided infinite sequence of bowls
sequence s may be modelled as $s: \mathbb{Z} \rightarrow \mathbb{N}$ with $\sum s<\infty$ (finite number of beans)

Example 2: Bowls and beans

Example (RTA 2007)

\rightarrow moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

Example 2: Bowls and beans

Example (RTA 2007)

\rightarrow moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

- \rightarrow is ordered weak Church-Rosser:

same

distinct

Example 2: Bowls and beans

Example (RTA 2007)

\rightarrow moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

- \rightarrow is ordered weak Church-Rosser
- \rightarrow is normalising since repeatedly dropping beans on normal sequences is:

Example 2: Bowls and beans

Example (RTA 2007)

\rightarrow moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

- \rightarrow is ordered weak Church-Rosser
- \rightarrow is normalising since repeatedly dropping beans is
hence \rightarrow is complete

Example 2: Bowls and beans

Example (RTA 2007)

\rightarrow moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

- \rightarrow is ordered weak Church-Rosser
- \rightarrow is normalising since repeatedly dropping beans is
hence \rightarrow is complete
and all bean runs have same length

Incompleteness

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$ trivially complete

Incompleteness

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$ trivially complete
but reductions from a to c do not have same length (1 or 2)

Incompleteness for length

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$ trivially complete
\rightarrow cannot be proven complete by OWCR \& WN; method of (®y 2007) incomplete

Completeness

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$ trivially complete

Idea

allow to measure steps by appropriate weights (Toyama, $\mathbb{V}^{2016)}$

Completeness

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$ trivially complete
Definition (Toyama, \mathbb{V}^{2} 2016; with minor refinements in paper)
$\langle M, \perp,+, \leq\rangle$ derivation monoid if

- $\langle M, \perp,+\rangle$ a monoid;

Completeness

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$ trivially complete
Definition (Toyama, \mathbb{V}^{2} 2016; with minor refinements in paper)
$\langle M, \perp,+, \leq\rangle$ derivation monoid if

- $\langle M, \perp,+\rangle$ a monoid;
- \leq well-founded order with \perp least;

Completeness

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$ trivially complete

Definition (Toyama, $\mathbb{V}^{2016 ; ~ w i t h ~ m i n o r ~}$

$\langle M, \perp,+, \leq\rangle$ derivation monoid if

- $\langle M, \perp,+\rangle$ a monoid;
- \leq well-founded order with \perp least;

Completeness

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$ trivially complete

Definition (Toyama, \mathbb{V}^{2} 2016; with minor refinements in paper)

$\langle M, \perp,+, \leq\rangle$ derivation monoid if

- $\langle M, \perp,+\rangle$ a monoid;
- \leq well-founded order with \perp least;

main example: ordinals with zero, addition, less-than-or-equal

Completeness

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$ trivially complete
Definition (Toyama, $\mathbb{V}^{\mathscr{V}}$ 2016; with minor refinements in paper)
$\langle M, \perp,+, \leq\rangle$ derivation monoid

- measure on \rightarrow maps steps to $M-\{\perp\}$;

Completeness

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$ trivially complete

Definition (Toyama, \mathbb{V}^{2} 2016; with minor in paper)

$\langle M, \perp,+, \leq\rangle$ derivation monoid

- measure on \rightarrow maps steps to $M-\{\perp\}$;
- measure of finite reduction is sum (+; tail to head) of steps (starting with \perp);

Completeness

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$ trivially complete

Definition (Toyama, \mathbb{V}^{2} 2016; with minor refinements in paper)

$\langle M, \perp,+, \leq\rangle$ derivation monoid

- measure on \rightarrow maps steps to $M-\{\perp\}$;
- measure of finite reduction is sum of steps ;
- measure of infinite reduction is T (fresh top greater than all $m \in M$).

Completeness

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$ trivially complete

Definition (Toyama, \mathbb{V}^{2} 2016; with minor refinements in paper)

$\langle M, \perp,+, \leq\rangle$ derivation monoid

- measure on \rightarrow maps steps to $M-\{\perp\}$;
- measure of finite reduction is sum of steps ;
- measure of infinite reduction is T (fresh top greater than all $m \in M$).

Theorem (Toyama, \mathbb{V}^{2016} \& paper)

ordered local confluence (OWCR; wrt measure) \Longleftrightarrow peak random descent (PR): peak to nf reductions same weight: NF $\ni a{ }_{n}^{*} \leftarrow \cdot \rightarrow_{\mu}^{\circ} b \Longrightarrow \exists k \cdot a{ }_{k}^{*} \leftarrow b \& k+\mu=n$

Completeness

Example

\rightarrow has PR, since $a \rightarrow_{1} b, b \rightarrow_{1} c$ and $a \rightarrow_{2} c$ is OWCR

Definition (Toyama, \mathbb{V}^{V} 2016; with minor refinements in paper)

$\langle M, \perp,+, \leq\rangle$ derivation monoid

- measure on \rightarrow maps steps to $M-\{\perp\}$;
- measure of finite reduction is sum of steps ;
- measure of infinite reduction is T (fresh top greater than all $m \in M$).

Theorem (Toyama, $\mathscr{V}^{2} 216$ \& paper)

ordered local confluence (OWCR; wrt measure) \Longleftrightarrow peak random descent: peak to nf reductions same weight: NF $\ni a{ }_{n}^{*} \leftarrow \cdot \rightarrow_{\mu}^{\circ} b \Longrightarrow \exists k \cdot a{ }_{k}^{*} \leftarrow b \& k+\mu=n$

Uniform completeness

Definition (for property Π of objects)

\rightarrow is uniformly Π if all objects convertible to nf are Π

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Uniform completeness

Definition (Π := CR \& SN)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Uniform completeness

Definition ($\Pi:=$ CR $\&$ SN)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of if-direction.

PR entails:

- uniform termination: if $c \rightarrow_{n} b \in \mathrm{SN}$ and, say, $b \rightarrow_{m} a \in N F$, then $m+n$ is an upperbound on measures of reductions from c;

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of if-direction.

PR entails:

- uniform termination: if $c \rightarrow_{n} b \in \mathrm{SN}$ and, say, $b \rightarrow_{m} a \in \mathrm{NF}$, then $m+n$ is an upperbound on measures of reductions from c;
- NF-property: object convertible to nf reduces to it, by induction on \# peaks

Uniform completeness

Definition ($\Pi:=$ CR \& SN)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of if-direction.

PR entails:

- uniform termination: if $c \rightarrow_{n} b \in \mathrm{SN}$ and, say, $b \rightarrow_{m} a \in N F$, then $m+n$ is an upperbound on measures of reductions from c;
- NF-property: object convertible to nf reduces to it, by induction on \# peaks so if b convertible to $\mathrm{nf} a, \operatorname{SN}(b)$ by uniform termination, ending in a by NF

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

idea: measure SN objects and steps by wf topological sorting

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

idea: measure SN objects and steps by wf topological sorting, by example

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

measure a by supremum $\{($ measure of $b)+1 \mid a \rightarrow b\}$; step $a \rightarrow b$ by dif a and b

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

measure a by supremum $\{($ measure of $b)+1 \mid a \rightarrow b\}$; step $a \rightarrow b$ by dif a and b

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

measure a by supremum $\{($ measure of $b)+1 \mid a \rightarrow b\}$; step $a \rightarrow b$ by dif a and b

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

measure a by supremum $\{($ measure of $b)+1 \mid a \rightarrow b\}$; step $a \rightarrow b$ by dif a and b

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

measure a by supremum $\{($ measure of $b)+1 \mid a \rightarrow b\}$; step $a \rightarrow b$ by dif a and b

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

measure a by supremum $\{($ measure of $b)+1 \mid a \rightarrow b\}$; step $a \rightarrow b$ by dif a and b

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure
Proof of only-if-direction.

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure
Proof of only-if-direction.

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure
Proof of only-if-direction.

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure
Proof of only-if-direction.

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure
Proof of only-if-direction.

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure
Proof of only-if-direction.

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure
Proof of only-if-direction.

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \mathbf{S N}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure
Proof of only-if-direction.

Uniform completeness

Definition ($\Pi:=\mathbf{C R} \& \operatorname{SN}$)

\rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Corollary

uniformly complete iff OWCR for some measure

Example 3: the trivial rewrite system

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$

Example 3: the trivial rewrite system

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$

- \rightarrow OWCR for measure $a \rightarrow_{1} b, b \rightarrow_{1} c$ and $a \rightarrow_{2} c$, hence uniformly complete

Example 3: the trivial rewrite system

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$

- \rightarrow OWCR for measure $a \rightarrow_{1} b, b \rightarrow_{1} c$ and $a \rightarrow_{2} c$, hence uniformly complete
- \rightarrow is trivially WN

Example 3: the trivial rewrite system

Example

\rightarrow with steps $a \rightarrow b, b \rightarrow c$ and $a \rightarrow c$

- \rightarrow OWCR for measure $a \rightarrow_{1} b, b \rightarrow_{1} c$ and $a \rightarrow_{2} c$, hence uniformly complete
- \rightarrow is trivially WN
hence \rightarrow is complete

Finitely branching systems

Observation

for finitely branching (FB) systems, measures in completeness proof in \mathbb{N}

Finitely branching systems

Observation

for finitely branching systems, measures in completeness proof in \mathbb{N}

+ commutative, cancellative; then OWCR \Longleftrightarrow locally Dyck (Toyama, $\bigotimes^{\circledR} 2016$)

Finitely branching systems

Observation

for finitely branching systems, measures in completeness proof in \mathbb{N}

and forward weights $>$ backward weights: $\forall i . n+\sum \mu_{i}^{\prime}>\sum n_{i}^{\prime}$

Finitely branching systems

Corollary

uniformly complete iff locally Dyck for some measure
locally Dyck if

and forward weights $>$ backward weights: $\forall i . n+\sum \mu_{i}^{\prime}>\sum n_{i}^{\prime}$

Example 4: deep valleys but shallow conversions

Example (\mathbb{V} 2008)

\rightarrow with $b_{i} \leftarrow a_{i} \rightarrow c_{i}, b_{i} \rightarrow b_{i+1}$, and $c_{i} \rightarrow c_{i+1}$, for $1 \leq i \leq n$, with $b_{n+1}=c_{n+1}$

Example 4: deep valleys but shallow conversions

Example (: 2008)

\rightarrow with $b_{i} \leftarrow a_{i} \rightarrow c_{i}, b_{i} \rightarrow b_{i+1}$, and $c_{i} \rightarrow c_{i+1}$, for $1 \leq i \leq n$, with $b_{n+1}=c_{n+1}$

- \rightarrow locally Dyck for length measure, hence uniformly complete:

forward $3 \geq 3$ backward

Example 4: deep valleys but shallow conversions

Example (: 2008)

\rightarrow with $b_{i} \leftarrow a_{i} \rightarrow c_{i}, b_{i} \rightarrow b_{i+1}$, and $c_{i} \rightarrow c_{i+1}$, for $1 \leq i \leq n$, with $b_{n+1}=c_{n+1}$

- \rightarrow locally Dyck for length measure, hence uniformly complete:

forward $3>2$ backward

Example 4: deep valleys but shallow conversions

Example (: 2008)

\rightarrow with $b_{i} \leftarrow a_{i} \rightarrow c_{i}, b_{i} \rightarrow b_{i+1}$, and $c_{i} \rightarrow c_{i+1}$, for $1 \leq i \leq n$, with $b_{n+1}=c_{n+1}$

- \rightarrow locally Dyck for length measure, hence uniformly complete:

forward $3>1$ backward

Example 4: deep valleys but shallow conversions

Example (: 2008)

\rightarrow with $b_{i} \leftarrow a_{i} \rightarrow c_{i}, b_{i} \rightarrow b_{i+1}$, and $c_{i} \rightarrow c_{i+1}$, for $1 \leq i \leq n$, with $b_{n+1}=c_{n+1}$

- \rightarrow locally Dyck for length measure, hence uniformly complete:

forward $2>1$ backward

Example 4: deep valleys but shallow conversions

Example (: 2008)

\rightarrow with $b_{i} \leftarrow a_{i} \rightarrow c_{i}, b_{i} \rightarrow b_{i+1}$, and $c_{i} \rightarrow c_{i+1}$, for $1 \leq i \leq n$, with $b_{n+1}=c_{n+1}$

- \rightarrow locally Dyck for length measure, hence uniformly complete:

Example 4: deep valleys but shallow conversions

Example (: 2008)

\rightarrow with $b_{i} \leftarrow a_{i} \rightarrow c_{i}, b_{i} \rightarrow b_{i+1}$, and $c_{i} \rightarrow c_{i+1}$, for $1 \leq i \leq n$, with $b_{n+1}=c_{n+1}$

- \rightarrow locally Dyck for length measure, hence uniformly complete:

[^0]
Example 4: deep valleys but shallow conversions

Example (: 2008)

\rightarrow with $b_{i} \leftarrow a_{i} \rightarrow c_{i}, b_{i} \rightarrow b_{i+1}$, and $c_{i} \rightarrow c_{i+1}$, for $1 \leq i \leq n$, with $b_{n+1}=c_{n+1}$

- \rightarrow locally Dyck for length measure, hence uniformly complete
- \rightarrow is trivially WN

Example 4: deep valleys but shallow conversions

Example (: 2008)

\rightarrow with $b_{i} \leftarrow a_{i} \rightarrow c_{i}, b_{i} \rightarrow b_{i+1}$, and $c_{i} \rightarrow c_{i+1}$, for $1 \leq i \leq n$, with $b_{n+1}=c_{n+1}$

- \rightarrow locally Dyck for length measure, hence uniformly complete
- \rightarrow is trivially WN
hence \rightarrow is complete

Conclusions / Directions

(1) introduced novel notion uniform completeness (useful?)

Conclusions / Directions

(1) introduced novel notion uniform completeness
(2) updated derivation monoid \Longrightarrow OWCR \& WN is complete for completeness

Conclusions / Directions

(1) introduced novel notion uniform completeness
(2) updated derivation monoid \Longrightarrow OWCR \& WN is complete for completeness
(3) finding measures for term rewrite systems? (assoc in paper; typed $\lambda \beta$?)

Conclusions / Directions

(1) introduced novel notion uniform completeness
(2) updated derivation monoid \Longrightarrow OWCR \& WN is complete for completeness
(3) finding measures for term rewrite systems?
(4) methods / tools for proving WN? (Nao?)

Conclusions / Directions

(1) introduced novel notion uniform completeness
(2) updated derivation monoid \Longrightarrow OWCR \& WN is complete for completeness
(3) finding measures for term rewrite systems?
(4) methods / tools for proving WN?
(5) proof / PL theory fertile hunting ground for WN systems? (inductive \Longrightarrow WN)

Conclusions / Directions

(1) introduced novel notion uniform completeness
(2) updated derivation monoid \Longrightarrow OWCR \& WN is complete for completeness
(3) finding measures for term rewrite systems?
(4) methods / tools for proving WN?
(5) proof / PL theory fertile hunting ground for WN systems?
thank you
(return to NL tomorrow night; contact me after at oostrom@javakade.nl)

[^0]: forward $1>0$ backward

