

Vincent van Oostrom¹

¹Supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with sharing and unsharing.

Definition

rewrite system $\rightarrow := \langle A, \Phi, src, tgt \rangle$ with objects A and steps Φ

 ϕ : $a \rightarrow b$ or $a \rightarrow_{\phi} b$ denotes step ϕ with source src(ϕ) = a, target tgt(ϕ) = b

Definition

rewrite system $\rightarrow := \langle A, \Phi, src, tgt \rangle$ with objects A and steps Φ

rewrite systems have same data as multigraphs, quivers, pre-categories

Definition

rewrite system is complete if confluent (CR) and terminating (SN)

Definition

rewrite system is complete if confluent and terminating

Lemma (Complete iff)

• locally confluent (WCR) and terminating (SN) (Newman 1942)

Definition

rewrite system is complete if confluent and terminating

Lemma (Complete iff)

- locally confluent and terminating
- ordered locally confluent (OWCR) and normalising (WN) (this talk)

Definition

rewrite system is complete if confluent and terminating

Lemma (Complete iff)

- locally confluent and terminating
- ordered locally confluent and normalising

Definition

rewrite system is complete if confluent and terminating

Lemma (Complete iff)

- locally confluent and terminating
- ordered locally confluent and normalising

Theorem (Newman 1942, **%** 2007)

ordered local confluence \iff random descent (RD):

if convertible to nf max reductions same length: NF $\ni a \xrightarrow{n \leftrightarrow m} b \implies a \xrightarrow{n \leftarrow m} b$

Example 1: Sorting by swapping adjacent inversions

Example (RTA 2007)

 \rightarrow swaps adjacent out-of-order letters in finite strings of letters

Example (RTA 2007)

ightarrow swaps adjacent out-of-order letters in finite strings of letters

• ightarrow is ordered weak Church–Rosser:

Example (RTA 2007)

 \rightarrow swaps adjacent out-of-order letters in finite strings of letters

- $\bullet \ \rightarrow$ is ordered weak Church–Rosser
- ullet ightarrow is normalising by termination of some sorting algorithm, e.g. bubble sort

Example (RTA 2007)

ightarrow swaps adjacent out-of-order letters in finite strings of letters

- ullet ightarrow is ordered weak Church–Rosser
- ullet ightarrow is normalising by termination of some sorting algorithm

 $\textbf{hence} \rightarrow \textbf{is}$ complete because it has random descent

Example (RTA 2007)

ightarrow swaps adjacent out-of-order letters in finite strings of letters

- ullet ightarrow is ordered weak Church–Rosser
- ullet ightarrow is normalising by termination of some sorting algorithm

 $\text{hence} \rightarrow \text{is complete}$

and all ways of sorting a string by swapping have same length; $O(n^2)$

Example (RTA 2007)

ightarrow moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

sequence s may be modelled as $s:\mathbb{Z}\to\mathbb{N}$ with $\sum s<\infty$ (finite number of beans)

Example (RTA 2007)

ightarrow moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

Example (RTA 2007)

ightarrow moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

• \rightarrow is ordered weak Church–Rosser:

Example (RTA 2007)

 \rightarrow moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

- ullet ightarrow is ordered weak Church–Rosser
- ightarrow is normalising since repeatedly dropping beans on normal sequences is:

Example (RTA 2007)

ightarrow moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

- ullet ightarrow is ordered weak Church–Rosser
- $\bullet \ \rightarrow$ is normalising since repeatedly dropping beans $\$ is

 $\textbf{hence} \rightarrow \textbf{is complete}$

Example (RTA 2007)

ightarrow moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

- ullet ightarrow is ordered weak Church–Rosser
- $\bullet \ \rightarrow$ is normalising since repeatedly dropping beans $\$ is

hence \rightarrow is complete

and all bean runs have same length

Incompleteness

Example

ightarrow with steps a
ightarrow b, b
ightarrow c and a
ightarrow c trivially complete

Incompleteness

Example

ightarrow with steps a
ightarrow b, b
ightarrow c and a
ightarrow c trivially complete

but reductions from *a* to *c* do **not** have same **length** (1 or 2)

Incompleteness for length

Example

ightarrow with steps a
ightarrow b, b
ightarrow c and a
ightarrow c trivially complete

ightarrow cannot be proven complete by OWCR & WN; method of (ightarrow 2007) incomplete

Example

ightarrow with steps a
ightarrow b, b
ightarrow c and a
ightarrow c trivially complete

Idea

allow to measure steps by appropriate weights (Toyama, \$ 2016)

Example

ightarrow with steps a
ightarrow b, b
ightarrow c and a
ightarrow c trivially complete

- $\langle \textit{M}, \bot, +, \leq
 angle$ derivation monoid if
 - $\langle M, \bot, + \rangle$ a monoid;

Example

ightarrow with steps a
ightarrow b, b
ightarrow c and a
ightarrow c trivially complete

- $\langle \textit{M}, \bot, +, \leq
 angle$ derivation monoid if
 - $\langle M, \bot, + \rangle$ a monoid;
 - \leq well-founded order with \perp least;

Example

ightarrow with steps a
ightarrow b, b
ightarrow c and a
ightarrow c trivially complete

- $\langle \textit{M}, \bot, +, \leq
 angle$ derivation monoid if
 - $\langle M, \bot, + \rangle$ a monoid;
 - \leq well-founded order with \perp least;
 - + is \leq -monotonic in both arguments; strictly in 2nd.

Example

ightarrow with steps a
ightarrow b, b
ightarrow c and a
ightarrow c trivially complete

Definition (Toyama, % 2016; with minor refinements in paper)

- $\langle \textit{M}, \bot, +, \leq
 angle$ derivation monoid if
 - $\langle M, \bot, + \rangle$ a monoid;
 - \leq well-founded order with \perp least;
 - + is \leq -monotonic in both arguments; strictly in 2nd.

main example: ordinals with zero, addition, less-than-or-equal

Example

ightarrow with steps a
ightarrow b , b
ightarrow c and a
ightarrow c trivially complete

- $\langle \textit{M}, \bot, +, \leq
 angle$ derivation monoid
 - measure on \rightarrow maps steps to $M \{\bot\}$;

Example

ightarrow with steps a
ightarrow b , b
ightarrow c and a
ightarrow c trivially complete

- $\langle \textit{M}, \bot, +, \leq
 angle$ derivation monoid
 - measure on \rightarrow maps steps to $M \{\bot\}$;
 - measure of finite reduction is sum (+; tail to head) of steps (starting with \perp);

Example

ightarrow with steps a
ightarrow b, b
ightarrow c and a
ightarrow c trivially complete

- $\langle \textit{M}, \bot, +, \leq
 angle$ derivation monoid
 - measure on \rightarrow maps steps to $M \{\bot\}$;
 - measure of finite reduction is sum of steps ;
 - measure of infinite reduction is \top (fresh top greater than all $m \in M$).

Example

ightarrow with steps a
ightarrow b , b
ightarrow c and a
ightarrow c trivially complete

Definition (Toyama, **%** 2016; with minor refinements in paper)

- $\langle \textit{M}, \bot, +, \leq
 angle$ derivation monoid
 - measure on \rightarrow maps steps to $M \{\perp\}$;
 - measure of finite reduction is sum of steps ;
 - measure of infinite reduction is \top (fresh top greater than all $m \in M$).

Theorem (Toyama, ♥ 2016 & paper)

ordered local confluence (OWCR; wrt measure) \iff peak random descent (PR): peak to nf reductions same weight: NF $\ni a_n^* \leftarrow \cdots \rightarrow_{\mu}^{\circ} b \implies \exists k.a_k^* \leftarrow b \& k + \mu = n$

Example

ightarrow has PR, since $a
ightarrow_1 b$, $b
ightarrow_1 c$ and $a
ightarrow_2 c$ is OWCR

Definition (Toyama, % 2016; with minor refinements in paper)

- $\langle \textit{M}, \bot, +, \leq
 angle$ derivation monoid
 - measure on \rightarrow maps steps to $M \{\perp\}$;
 - measure of finite reduction is sum of steps ;
 - measure of infinite reduction is \top (fresh top greater than all $m \in M$).

Theorem (Toyama, 🏾 2016 & paper)

ordered local confluence (OWCR; wrt measure) \iff peak random descent : peak to nf reductions same weight: NF \ni a $_{n}^{*}\leftarrow \cdot \rightarrow_{\mu}^{\circ} b \implies \exists k.a _{k}^{*}\leftarrow b \& k + \mu = n$

Definition (for property \square **of objects)**

 \rightarrow is uniformly Π if all objects convertible to nf are Π

Definition ($\Pi := CR \& SN$)

 \rightarrow is uniformly complete if all objects convertible to nf are complete

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of if-direction.

PR entails:

• uniform termination: if $c \rightarrow_n b \in SN$ and, say, $b \rightarrow_m a \in NF$, then m + n is an upperbound on measures of reductions from c;

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of if-direction.

PR entails:

- uniform termination: if $c \rightarrow_n b \in SN$ and, say, $b \rightarrow_m a \in NF$, then m + n is an upperbound on measures of reductions from c;
- NF-property: object convertible to nf reduces to it, by induction on # peaks

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of if-direction.

PR entails:

- uniform termination: if $c \rightarrow_n b \in SN$ and, say, $b \twoheadrightarrow_m a \in NF$, then m + n is an upperbound on measures of reductions from c;
- NF-property: object convertible to nf reduces to it, by induction on # peaks

so if *b* convertible to nf *a*, SN(*b*) by uniform termination, ending in *a* by NF

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

idea: measure SN objects and steps by wf topological sorting

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

idea: measure SN objects and steps by wf topological sorting, by example

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only-if-direction.

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Definition ($\Pi := CR \& SN$)

ightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Definition ($\Pi := CR \& SN$)

 \rightarrow is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Corollary

uniformly complete iff OWCR for some measure

Example

ightarrow with steps a
ightarrow b, b
ightarrow c and a
ightarrow c

Example

- ightarrow with steps a
 ightarrow b, b
 ightarrow c and a
 ightarrow c
 - \rightarrow OWCR for measure $a \rightarrow_1 b$, $b \rightarrow_1 c$ and $a \rightarrow_2 c$, hence uniformly complete

Example

- ightarrow with steps a
 ightarrow b, b
 ightarrow c and a
 ightarrow c
 - ightarrow OWCR for measure $a
 ightarrow_1 b$, $b
 ightarrow_1 c$ and $a
 ightarrow_2 c$, hence uniformly complete
 - $\bullet \ \rightarrow \text{ is trivially WN}$

Example

- ightarrow with steps a
 ightarrow b, b
 ightarrow c and a
 ightarrow c
 - ightarrow OWCR for measure $a
 ightarrow_1 b$, $b
 ightarrow_1 c$ and $a
 ightarrow_2 c$, hence uniformly complete
 - $\bullet \ \rightarrow \text{ is trivially WN}$
- $\textbf{hence} \rightarrow \textbf{is complete}$

Observation

for finitely branching (FB) systems, measures in completeness proof in $\mathbb N$

Observation

for finitely branching systems, measures in completeness proof in ${\mathbb N}$

+ commutative, cancellative; then OWCR \iff locally Dyck (Toyama, 2016)

Observation

for finitely branching systems, measures in completeness proof in $\ensuremath{\mathbb{N}}$

and forward weights > backward weights: $\forall i.n + \sum \mu'_i > \sum n'_i$

Corollary

uniformly complete iff locally Dyck for some measure

and forward weights > backward weights: $\forall i.n + \sum \mu'_i > \sum n'_i$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

- $\bullet \ \rightarrow$ locally Dyck for length measure, hence uniformly complete
- $\bullet \ \rightarrow \text{ is trivially WN}$

Example (🕸 2008)

 \rightarrow with $b_i \leftarrow a_i \rightarrow c_i$, $b_i \rightarrow b_{i+1}$, and $c_i \rightarrow c_{i+1}$, for $1 \le i \le n$, with $b_{n+1} = c_{n+1}$

- ullet ightarrow locally Dyck for length measure, hence uniformly complete
- $\bullet \ \rightarrow \text{ is trivially WN}$
- hence \rightarrow is complete

1 introduced novel notion uniform completeness (useful?)

- introduced novel notion uniform completeness
- ${f 2}$ updated derivation monoid \implies OWCR & WN is complete for completeness

- introduced novel notion uniform completeness
- ② updated derivation monoid \implies OWCR & WN is complete for completeness
- **③** finding measures for term rewrite systems? (assoc in paper; typed $\lambda\beta$?)

- introduced novel notion uniform completeness
- ② updated derivation monoid \implies OWCR & WN is complete for completeness
- Inding measures for term rewrite systems?
- methods / tools for proving WN? (Nao?)

- introduced novel notion uniform completeness
- ② updated derivation monoid \implies OWCR & WN is complete for completeness
- Inding measures for term rewrite systems?
- In the second second
- **5** proof / PL theory fertile hunting ground for WN systems? (inductive \implies WN)

- introduced novel notion uniform completeness
- ② updated derivation monoid \implies OWCR & WN is complete for completeness
- Inding measures for term rewrite systems?
- In the second second
- proof / PL theory fertile hunting ground for WN systems?

thank you

(return to NL tomorrow night; contact me after at oostrom@javakade.nl)

